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Abstract. The class hierarchy is an important aspect of object-oriented software
development. Design and maintenance of such a hierarchy is a difficult task that
is often accomplished without any clear guidance or tool support. Formal con-
cept analysis provides a natural theoretical framework for this problem because
it can guarantee maximal factorization while preserving specialization relation-
ships. The framework can be useful for several software development scenarios
within the class hierarchy life-cycle such as design from scratch using a set of
class specifications, or a set of object examples, refactoring/reengineering from
existing object code or from the observation of the actual use of the classes in
applications and hierarchy evolution by incrementally adding new classes. The
framework can take into account different levels of specification details and sug-
gests a number of well-defined alternative designs. These alternatives can be
viewed as normal forms for class hierarchies where each normal form addresses
particular design goals. An overview of work in the area is presented by high-
lighting the formal concept analysis notions that are involved. One particularly
difficult problem arises when taking associations between classes into account.
Basic scaling has to be extended because the scales used for building the concept
lattice are dependent on it. An approach is needed to treat this circularity in a
well-defined manner. Possible solutions are discussed.

1 Introduction

An important part of object software development is the class hierarchy. The design
and maintenance of such a hierarchy has been recognized as a difficult problem [1,
29]. The difficulty increases with the size of the hierarchy and the possible evolution
of the software requirements that may require the incorporation of modifications in the
hierarchy.

A large body of work has focused on problems related to hierarchy construction and
reconstruction. Various development scenarios have been addressed (see [11]), such as:

– Building the hierarchy from scratch using:
• objects [24],
• class specifications [12, 8],

– Evolution of the class hierarchy to accommodate new requirements:
• unconstrained class addition [12, 8],



• addition constrained by backward compatibility with a previous hierarchy [28]
or existing objects [16],

– Reengineering of an existing class hierarchy:
• from the relationship between classes and their attributes/methods [2, 4],
• using code analysis tools [7, 15],
• by applying refactorings [27, 9],
• from UML models including associations [19],
• from access patterns in applications [32],
• prompted by detecting defects using software metrics [30],

– Reengineering procedural code into an object environment [31, 34],
– Merging existing hierarchies [33].

In many cases, the proposed approaches rely on algorithms that are not grounded
on well-established theoretical results. Thus, the corresponding methods may yield un-
predictable results. In some cases, the exact form of hierarchies depend on adjustable
parameters of the procedures. In contrast, Formal Concept Analysis (FCA) provides a
natural theoretical framework for class hierarchy design and maintenance and several
researchers have adopted this framework ([36, 32, 7, 27, 17, 12]). Hierarchies produced
within this framework have a well-defined semantics that remains independent from the
concrete algorithms used. In addition, the produced hierarchies tend to conform to gen-
eral quality criteria such assimplicity, comprehensibility, reusability, extensibilityand
maintainability.

These high-level criteria represent desirable features of the final result that very
much depend on its usage during further stages of the software process. However, these
high-level criteria are knowingly favored by two more concrete quality criteria that may
be measured directly on the target software artifacts:

1. Minimizing redundancy. Having each artefact defined in one single place in the
code/specifications is a well-known software design principle that a class hier-
archy should promote [20, 21, 9]. In contrast, keeping several definitions of the
same artefact at possibly different locations may lead to inconsistencies between
copies. Moreover, redundancy increases the complexity of the resulting software
and, more dramatically, speaks about possible flaws in the design since repeating
code/specification chunks is a hint that these have not given rise to the appropriate
abstractions that help embed them into a single software unit. Besides, lessons from
building large class libraries [26] show that it is hard to identify good abstractions
a priori and it is often necessary to reorganize a library to reflect the undetected
commonalities.

2. Subclasses as specializations. Inheritance hierarchies are sometimes created for
code reuse purposes, especially those in code libraries. Thus, the inheritance be-
tween classes in the hierarchy my not correspond to any particular reality in the
corresponding domain but rather help optimize code sharing in the hierarchy. How-
ever, as observed by [5], in the long run such a designing free of semantic concerns
may produce libraries that are difficult to understand and hence to reuse. Therefore,
many authors have advocated the enforcement of consistency with specialization in
inheritance hierarchies ( [20, 25, 22, 2, 4, 3]) in particular, in order to achieve better
comprehensibility and reusability.



Hierarchies produced by methods based on FCA are guaranteed to meet these crite-
ria. Depending on the design goals and available specifications, several alternative hier-
archy types may be considered within this framework. These hierarchies can be viewed
as ideal structures similar to relational database normal forms, with each normal form
addressing a particular design goal.

In the following, a set of normal forms for class hierarchy design is described, all
of them based on the FCA framework. These normal forms synthesize the previous
propositions in a unified framework. Section 2 introduces the basic idea by defining the
attribute factored lattice form and relating it to a concept lattice. Section 3 introduces
the more compact attribute factored subhierarchy form which is based on the set of
object and attribute concepts of the concept lattice. Section 4 proposes normal forms for
factoring methods taking into account the distinction between signature and body and
the possibility of method redefinitions. Section 5 discusses the factoring of associations
and the complications introduced by circular dependencies. Available software tools are
listed in Section 6 whereas Section 7 provides an overview of some on-going industrial
projects involving FCA and lattices.

2 Attribute factored lattice form

Fundamental constructs of object software are the notions ofobjectandclass. A class
is an abstraction for a set of objects that share the same characteristics. In program-
ming languages, these characteristics, also calledmembersof the class, areattributes
andmethods. In modelling languages,associationsare also used to relate classes. An
attribute, also called instance variable or data member, contains data used to model the
state of an object. This section is concerned with the attributes of the classes. Methods
and associations will be examined in the following sections.

When using formal concept analysis for class hierarchy design, the set of formal
objectsG is a set of software artefacts, i.e., classes, objects or program variables, which
are used as a starting point in the search for a suitable class hierarchy. The set of formal
attributesM corresponds to properties of the classes or objects. Relevant properties
include attributes (instance variables), methods (body and/or signature of the method)
or associations (in the case of classes). Further information may be available such as
values of the variables in objects or links to specific objects for associations. In this
paper, we only consider the case where the starting point is a set of class specifications,
i.e., G is a set of classes. Nevertheless, the principles are directly transposable to the
case of example objects or program variables.

First, we consider the case of factoring out attributes of the classes. Let’s take a
simple example to illustrate the basic idea. Suppose that we have a specification of the
attributes for a set of four concrete classes as illustrated in Figure 1. The specification
could be interpreted as the exact set of concrete classes that the hierarchy must contain,
i.e., these classes will be the only ones to ”produce” objects in an application. Other
classes of the hierarchy can be used to factor common specifications.

This input specification may be produced in several ways depending on the devel-
opment scenario. For example, with a forward engineering process, classes and their
attributes are first specified in the analysis phase of the process. Thus, they are pro-



duced by the analyst and typically expressed by means of a modeling language such
as UML (as in Figure 1 on the left). Within a re-engineering process, the classes are
already organized in a possibly larger hierarchy, with their respective specifications
spread over the entire set of classes in the hierarchy. In this case, the attribute set of
each concrete class is compiled from all its super-classes in the hierarchy. The goal of
the corresponding reengineering scenario is now to refactor an existing hierarchy, i.e.,
to suggest a different organization of specifications within a new set of classes while
preserving the semantics of the initial hierarchy. The semantics here is limited to the
behavior of objects from all concrete classes, an approach that allows the modifications
in the already existing source code that uses services from the initial hierarchy to be
kept to a minimum. The incidence relationI of the formal contextK representing the

Class1
a
f

Class2
a
b
c

Class3
a
b
d

Class4
b
d
e

a b c d e f

1 x x
2 x x x
3 x x x
4 x x x

Fig. 1. Left: Example specification;Right: Corresponding context.

set of four classes and their instance variables is shown in Figure 1 on the right. The
context is drawn as a cross table with classes identified by integers and the variables by
letters.

As the problem is to organize these classes in a hierarchy, a concept lattice is used
as a guideline for the design of such a hierarchy (in some sense, it provides an ideal
design). To that end, each formal concept is interpreted as a class of the hierarchy.
Moreover, the sub-concept relation links are seen as specializations between classes.
Figure 1 (on the left) shows the line diagram of the concept lattice with areduced
labelingof concepts. The labels assigned to the concepts indicate where, i.e., in which
class, a particular attribute should be declared. For example, the attributesa andb will
have to be placed at two general classes that are located immediately below the root
class of the hierarchy. It is noteworthy that for class hierarchies, the bottom concept is
dropped since it is of no use.

Figure 2 shows theattribute factored lattice formhierarchy that corresponds to this
interpretation of the concept lattice. The four initial classes remain in the hierarchy but
there are fewer declared attributes in these classes because of the factoring produced by
the concept lattice. New classes (classes 5 through 9) are added that factor out common
attributes. These are abstract classes because instances are created only for the four ini-
tial classes. The nature of the reduced labeling of the concept lattice guarantees that
each attribute appears exactly once in the hierarchy. Object attributes in the initial con-
crete classes remain unchanged. However, part of them are now inherited from some
new classes. Globally, all subclasses are specializations since they inherit the attributes
of parent classes with no exception. There are no cancellations.
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Fig. 2.Attribute factored lattice form for the input specification of Figure 1.

From a client point of view, using this hierarchy will produce the same effect as
using the initial four classes. Therefore the generated hierarchy can be interpreted as a
refactoring of the initial four class specifications.

There is a large number of possible designs that can minimize redundancy. The
concept lattice attains this goal minimizing the number of classes and the amount of
multiple inheritance, which is often considered as undesirable since more complex.
This is achieved by grouping attributes in classes whenever possible, as illustrated by
the following example. Figure 3 shows two input classes. The attribute factored lattice
form that appears in Figure 4 on the left factors out the common attributesa and b
in the newClass3 . The design presented in Figure 4 on the right also factors out
the common attributes but is unnecessarily complex since it contains two classes, one
for each attribute, thus capturing classes 1 and 2 in a multiple inheritance pattern. In
contrast, the design in Figure 4 on the left is simpler while still providing the same
quality criteria of redundancy avoidance and conformance to specialization.
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Fig. 3. Input specification.

An important hypothesis underlying the approach is that identical attribute names
identify properties that can be matched from a semantic point of view. If the matching
is based on attribute names, care should be taken to identify semantic commonalities
and rename attributes as necessary.
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Fig. 4. Attribute factored lattice form for the input specification of Figure 3 and alternate factor-
ing.

3 Attribute factored subhierarchy form

The concept lattice is an exhaustive representation of commonalities among a set of
concrete classes. As its size could grow rapidly, one may think of skipping some of its
nodes to keep the whole structure manageable. Thus, a first idea could be to remove
abstract classes that declare no properties. These classes, often calledempty classes,
can be removed without violating the formal quality criteria, i.e., no redundancy and
specialization3. In the example in Figure 2 on the right, the empty classes,Class5 and
Class9 , could be omitted (see Figure 2). Even thoughClass3 declares no attributes,
it has to be kept because it is not abstract.

The structure that occurs after the removal of all empty classes, called Galois sub-
hierarchy in [7], corresponds to the set of allattributeandobject conceptsof the concept
lattice. We recall that given an attribute, itsattribute conceptis the maximal concept in
whose intent the attribute appears. Intuitively, the attribute concept of an attributea is
labeled by”a” in the diagram with reduced labeling. The notion ofobject conceptis
dual, i.e., object concepts have at least one object label. When re-engineering a class hi-
erarchy within the FCA framework, the set of attribute and object concepts constitutes
the minimal part of the concept lattice that should be preserved in order to satisfy both
concrete formal quality criteria while respecting the initial class specification. In fact,
object concepts have to be kept because they correspond to the concrete classes that are
used by client code, in particular because they are the classes that can be instantiated4.
Attribute concepts are in turn necessary because they correspond to classes that declare
attributes which are further inherited by their subclasses.

The class hierarchy produced from the Galois subhierarchy constitutes what we call
theattribute factored subhierarchy form. The class hierarchy for our example is shown
in Figure 5 on the right.

Compared to the lattice, the resulting structure has fewer classes while still pre-
serving the quality criteria. Between the lattice form and subhierarchy form, many al-
ternative designs can be produced by selectively keeping subsets of the empty classes.

3 Here ”formal” is used in the sense of measurable, as opposed to ”informal” quality criteria,
e.g., comprehensibility, which are hard to measure.

4 For environments that support multi-instanciation, the concrete classes could also be omitted.
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Fig. 6.Lattice and subhierarchy forms.

These intermediate designs also preserve the quality criteria. There are no clear cut ob-
vious formal criteria for assessing the usefulness of the empty classes. However, there
are some cases where they clearly have value. For example, when a large set of classes
inherit from another set as in the subhierarchy form in Figure 6 on the right, the interme-
diary empty class of the lattice form simplifies the design in the sense that it reduces the
number of multiple inheritance situations. Indeed, multiple inheritance is knowingly
more complex and is not necessarily allowed by all object programming languages.
Therefore, it may sometimes be undesirable in the class hierarchy design. To return to
our example in Figure 6, in the worst case, the removal of an empty class results in
all possible direct links between parent and child classes. Therefore,n + m specializa-
tion relationships in the lattice, withn andm being the number of parent/child classes,
respectively, might be replaced bynm such relationships in the subhierarchy.

The above situation is an extreme case and need not to occur each time. Whenn
andm are small, the value of the empty class is less obvious. Moreover, the valuenm
is an upper bound for the effective number of links that need to be created. In many
cases a pair of parent and child classes will not create a new link since both classes
are already linked through an alternative path of links in the hierarchy. For example,
the removal of the emptyClass5 in the lattice form of Figure 2 does not require a
new link between its parentClass3 and its childClass8 in the subhierarchy form of
Figure 2 because attributeb of Class3 is also inherited from the path going through
Class6 . Some work has been done on guiding the choice of empty classes using class
hierarchy metrics [14].



An important feature of the above hierarchical normal forms is that usually they pro-
duce multiple inheritance. However, this does not automatically mean that the approach
is useless for single inheritance environments. In fact, the normal forms represent an
ideal structure that can be used as a starting point from which a good single inheritance
hierarchy can be extracted. For example, to reduce multiple inheritance to a single one,
a common practice is to choose a single parent class to keep in the hierarchy while
replacing the remaining links by delegation references. A less elegant, but sometimes
unavoidable, strategy for eliminating multiple parents is to duplicate locally the infor-
mation that is inherited from the disconnected parents.

4 Method factored forms

Another important part of class hierarchies in OO development are the behavioral spec-
ifications incorporated in the class descriptions in the form of methods. Method spec-
ifications may be divided into two parts. Method signatures specify the way a method
is invoked (name, parameters, return type), while the actual processing carried out by a
method is specified by its body. The entire set of method signatures for a given class,
also called itsinterface, is usually considered as its contract, i.e., the set of services the
class must offer. If we want simply to factor out the method bodies, we can use the same
approach as for attributes.

Figure 7 shows on the left an example of input specifications for five classes and the
methods they support. Objects ofClass3 need to ”respond” to calls invoking methods
b1() andc1() . Here, methods whose names begin with the same letter, i.e.,a, b, or c,
share the same signature while implementing it in different bodies (but we shall ignore
this for now and come back to it later in the text). Figure 7 shows the corresponding
context on the right.
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Fig. 7.Example specification and corresponding context.

As for the attributes case, the concept lattice of this context reveals an organization
of the class hierarchy that guarantees no redundancy and conformance to specialization.
The reduced labeling in Figure 8 on the left indicates the location in the hierarchy
where each method body should be specified. Shown in Figure 8 on the right is the
corresponding class hierarchy calledmethod body factored latticeform where each
concept is interpreted as a class. Here again, when omitting the empty classes, we obtain
the method body factored subhierarchyform. In our example, the difference with the
lattice form is made up of the abstractClass8 which is skipped in the subhierarchy.
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Fig. 8. Left: Reduced labeling of the concept lattice for the context in Figure 7;Right: Method
body factored lattice form of the hierarchy.

With method factoring that distinguishes method signatures from their bodies, the
computation gets more complex. In our example, methods sharing the same letter in
their names represent different method bodies, i.e., implementations, of the same method
signature. For instance, methodsa1() anda2() represent two different implementa-
tions of thea() signature. Such a distinction is sensible here since in many object-
oriented development environments and languages, the signature and body of a method
can be declared separately and there may be more than one body for the same signature.
For example, in Java, a method can be declared as a mere signature (anabstractmethod)
while leaving one or more implementations as a responsibility for the subclasses that
not only inherit the signature but also need to effectively carry-out the specified work.
Under this circumstance, it becomes necessary to determine the class where each aspect
(signature and body) will be declared in the hierarchy.

The appropriate FCA constructs that help formalize the factoring of methods in-
cluding their signatures are many-valued contexts and conceptual scaling. Thus, for
each method signaturem, we define a many-valued attributem. In our example, there
are three many-valued attributes for the three signaturesa, b andc (see Figure 9 on the
left). The values of a many-valued attribute are the method body names. The valuesa1
anda2 represent method bodies fora.

Figure 9 on the right, shows the scaleSa for the many-valued attributea. The cor-
responding concept lattices for each scale are illustrated in Figure 10. The special value
a in the scale for the multi-valued attribute of the same name represents the declaration
of the method signature. The values for the different bodies are children nodes of this
special value in the scale.

The general case of methodm() with bodiesm1() , m2() , ... , mn() is illustrated
in Figure 11. The scaleSm is built by adding attribute m to a nominal scale for scale
objectsm1, m2, ... , mn. Attributemis assigned to all scale objects in order to represent
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Fig. 9. Left: Many-valued context representing the shared method signatures;Right: ScaleSa for
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Fig. 10.Concept lattices of the scales for the three method signatures,a, b andc .

the fact that every method bodymi() implements signaturem() . Later, we will show
how more general scales are used when taking method redefinitions into account.

Sm m m1 m2 . . . mn

m x . . .

m1 x x . . .

m2 x x . . .

. . . . . . . . . . . . . . . . . .

mn x . . . x

m

m2 ...m1 mn

Fig. 11. Left: ScaleSm for the general case;Right: Concept lattice for the scaleSm.

The one-valued context derived from the scaling for method signatures with our
example appears in Figure 12.

The reduced labeling of the concept lattice (see Figure 9 on the left) produced from
the derived one-valued context shows where each method signature and body parts
should be declared. The corresponding class hierarchy calledmethod signature/body
factored latticeform is illustrated in Figure 14 on the right. The notationm() in the
UML diagram represents the declaration of the signature whilemn() represents the
declaration of a method body corresponding to them() signature. Here again, the class
hierarchy is guaranteed to have no redundancy because each method signature and body
is declared exactly once. Once again, the resulting class hierarchy conforms to special-
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Fig. 12.One-valued context derived from the many-valued context in Figure 9 after scaling.

ization. As previously, in the method signature/body factored subhierarchy form, all
empty classes are dropped out.
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Fig. 13. Concept lattice of the derived one-valued context of Figure 12 and its method signa-
ture/body factored lattice form.

Finally, we consider the method factoring problem in its most general settings, i.e.,
when overriding, or redefinition of inherited methods, is allowed. For example, in most
object languages, a classClass1 which inherits a methoda2() with a signaturea()
from a classClass2 could still declare its own methoda1() of the same signature
a() . In this case,a1() overridesa2() in the sense that onlya1() is directly avail-
able for objects fromClass1 . More precisely, the invocation of the signaturea() on
an object ofClass1 will in fact call method bodya1() while a2() remains hidden
for objects ofClass1 . Such redefinitions should conform to specialization. More so-
phisticated redefinitions can also be supported where the signatures are not identical.



Notice that our framework is orthogonal to the type of redefinitions that are supported
(e.g.covariantor contravariant).

As an illustration, suppose that in the previous example, signatureb is a specializa-
tion of signaturea and method bodyb2 is a specialization ofb1 . If the development
environment supports redefinitions, this knowledge can be used to produce a hierarchy
with finer factoring. For this purpose, we simply use an enhanced scale taking into ac-
count the relationships induced by the specialization order among method signatures
and bodies. For our example, the relationships between the methods for thea andb
signatures are represented in the scale of Figure 14.

Sab a a1 a2 b b1 b2

a x
a1 x x
a2 x x
b x x
b1 x x x
b2 x x x x

b
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a1 a2

b1

b2

c
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Fig. 14.Scaling and graph, both representing the specialization relationships fora andb.

In addition, the scale of Figure 15 reflects the fact that methodc2() is a special-
ization of methodc1() . The graphical representation of the concept lattices of these
scales is given on the right part of both Figures 14 and 15.
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Fig. 15.Scaling and graph, both representing the specialization relationships forc .

The concept lattice produced by applying these scales and the corresponding method
redefinition lattice form class hierarchy are shown in Figure 16. The resulting hier-
archy reveals where each method signature and body should be declared without re-
dundancy and in conformance with specialization. Again, one could consider omitting
empty classes.

When taking specialization relationships between redefined properties into account,
absence of redundancy is formalized by the notion of maximal factorization [7].
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Fig. 16. Concept lattice after applying the scaling of Figures 14 and 15, and the corresponding
method redefinition factored lattice form.

A class hierarchy ismaximally factorizediff whenever two propertiesp1 andp2,
which are declared by the classesC1 andC2, respectively, have a least upper bound in
the specialization hierarchy of the properties, sayp3, then there is a common superclass
C3 of C1 andC2 declaringp3. The special case ofp1 = p2 = p, implies thatp is declared
in C3.

A hierarchy produced from scaling based on the order relationships between prop-
erties is guaranteed to be maximally factorized [7]. For example, observe thata1()
andb1() havea() as an upper bound in the scale. In the class hierarchy, the signature
a() is declared inClass6 which is a superclass of the classes wherea1() andb1()
are defined, i.e.,Class1 andClass3 .

5 Factoring associations

Many environments for object-oriented analysis and design admit explicit representa-
tions of inter-classassociationsand these are an important part of the UML description
arsenal. Associations are to be seen as a generic expression of the links that connect
individual objects, e.g., kinships, spatial and time relations, part-of relations, etc. Most
of the time, they correspond to a classical binary relation between the objects in the
extensions of the related classes. For example, the UML model of Figure 17 shows an
association between classC1 and classC3 and another one between classC2 andC4.
For the purpose of illustration, the classes also have some attributes.

Factoring associations can also be considered in the design process as inheritance
spreads over associations too [19]. In fact, the specialization among associations ap-
pears naturally as most of the time associations models admit specialization links among
associations. Moreover, in UML, associations can have their own properties. However,
for the present discussion, we take a simplified model of an association: associations
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Fig. 17.Example UML model with associations and corresponding context with a formal attribute
for the UML association role.

are directed and their only descriptor is a name. Thus, our model corresponds to what is
called anassociation rolein UML, which allows them to be further assimilated to object
attributes whose values are other objects. This is similar in spirit to representing asso-
ciations by object-valued attributes, or references, in object languages. Thus, a UML
association role may be represented in a context by introducing a many-valued attribute
named by the corresponding role. Such a transformation yields the context of Figure 17
with the many-valued attributer . It is noteworthy that the classical object attributes are
represented as formal attributes of the context, as before. In contrast, the values of the
many-valued attributer are actually the identifiers of the classes that are pointed to by
the association. Thus, the numbers 3 and 4 stand for the classesC3andC4, respectively.
In terms of FCA, this means that the values of the many-valued attribute correspond to
formal objects.

This introduces a circular dependency of the context on itself since the only way
of constructing a lattice out of it is to scale the attributer whose domain is (a part of)
the context. Logically, such a scale would require a conceptual structure to be built on
top of the context in order for meaningful abstractions to be made available as scaling
targets. However, the construction of a meaningful structure is exactly what is the global
analysis process is aimed at. In summary, to construct the conceptual hierarchy of the
context, there must be another hierarchy on the same context to play the role of a scale
and any consistent processing would reasonably require both hierarchies to be identical.
As indicated in [35], the resulting apparent deadlock could be successfully resolved
by a simple bootstrapping strategy. More precisely speaking, the proposed approach
applies an iterative procedure that alternates lattice constructions and scaling. At each
iteration, the lattice resulting from the previous iteration is used as a scale that helps
enrich the current context and therefore leads to a more precise lattice at the next step.
The process halts in a finite number of steps with a lattice which remains stable along
two consecutive steps. The iterative approach is illustrated in the following.

In a first iteration, we consider a nominal scaleJ for the r association role. The
resulting one-valued context and the concept lattice notedB0 appear in Figure 18.

Interpreting the concept lattice as a class hierarchy produces the design in Figure 19.
The first iteration generates a new superclassC5 for C3 andC4 based on the recogni-
tion of their common attributec . This new class would have been produced by factoring
attributes alone and therefore does not bring value to the classical FCA-based factor-
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Fig. 19.Class hierarchy fromB0 after first iteration.

ing. However, by taking associations into account, we can go further by factoring the
association role. Thus, given ther role fromC1 to C3, we can infer that there is also
an association roler from C1 to C5 becauseC3 is now a subclass ofC5. The same
is true for ther role from C2 to C4. This can be taken into account by enriching the
first context with a scale that incorporates the superclass relationships discovered in the
concept latticeB0 of the first iteration context. The result is the second context which
yields the concept latticeB1, both shown in Figure 20.

This leads to the discovery of a common association role abstracted in a new concept
labeledr:5 . This new concept produces the new classC6 in the new hierarchy of
Figure 21, which factors the common association role referencingC5. Again, the newly
discovered class is used to enrich the second iteration context by incorporating it in
the scale. In this way, the third iteration context arises. In our example, the resulting
hierarchy is isomorphic to the previous one, thus yielding a fixed point of our iterative
process. This constitutes the final design whereby the resulting fixed point is called the
the association factored lattice form.

The above simplified procedure has been applied to the re-engineering of UML
analysis models, i.e., UML class diagrams with a rich set of descriptors. Taking into
account all those descriptors that translate relevant aspects of both classes and associ-
ations in a UML class diagram, e.g., association multiplicity factors, property visibil-
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Fig. 21.Second iteration hierarchy.

ity, etc., requires a full-scale translation of the software object landscape elements into
FCA. As a suitable representation, the notion ofRelational Context Familyhas been
proposed which may be thought of as a cluster of formal contexts whose formal objects
are linked by a set of binary relations. A detailed presentation of the relational frame-
work in FCA may be found in [18]. The application of the framework to the analysis of
UML class diagrams and the underlying Iterative Cross-Generalization (ICG) method
is described in [6].

6 Tools

The main algorithmic challenge of the FCA-based hierarchy design is the construction
of the Galois subhierarchy. A number of methods for this task have been designed, start-
ing with the work of Godin and Mili [13], followed by the publication of the algorithms
ARES [7], A ISGOOD [10], andCeres[23]. It is noteworthy that most of the published
methods are incremental procedures, i.e., they construct the hierarchy by acquiring the



input data, e.g., the classes, one-by-one and integrating each newly inserted class into
the current structure. A summary of the methods for class restructuring that do not rely
on a FCA results may be found in [17].

Most of the methods for Galois subhierarchy manipulation have been designed to
work on software-related datasets. The authors have provided generic implementations,
however there is no code repository of all the original implementations. Instead, re-
cently, the implementation of a generic platform for FCA and further lattice manipula-
tions, called GALICIA 5, has been launched.

GALICIA is intended as an integrated software platform including components for
the key operations on lattices and related partially ordered structures such as the Galois
subhierarchy that might be required in practical applications or in more theoretically-
oriented studies. It was designed to cover the whole range of basic tasks that make up
the complete life-cycle of a lattice/subhierarchy: data input, construction and visualiza-
tion. The platform is implemented in Java. On the algorithmic side, GALICIA includes
conform implementations of the major Galois subhierarchy methods that are often ac-
companied by a set of experimental versions. Moreover, an entire component of the
platform is dedicated to the ICG framework that produces several subhierarchies on a
set of mutually related formal concepts representing a UML class diagram.

7 Recent applications

One of the recent and promising application of the FCA-based methods for class design
has been carried out within the MACAO6 project. MACAO is a joint project of France
Télécom, LIRMM, and SOFTEAM7, a French software company specialized in CASE
tool development. It is aimed at enhancing the Objecteering8 CASE tool, an ”all-in-one”
environment that combines the Eclipse9 development environment with model support
(via full UML compliance) and code generation.

As part of the project goals, the ICG procedure within GALICIA has been connected
to Objecteering. ICG thus provides to Objecteering users, i.e., software developers, the
possibility to analyze the UML class models they have created within the CASE tool
and to receive valuable suggestions as to possible improvements in these models. Oper-
ationally speaking, the UML model from the main tool is exported as a RCF and loaded
into GALICIA . The result of ICG running on the RCF, once translated back into UML is
fed into Objecteering. The initial and the re-engineered diagram can then be compared
and the differences are evaluated.

The Objecteering - ICG tandem has been experimentally applied to a set of existing
models of France T́elécom, including medium-sized (e.g., a common user data model
for several telecom services) and large-sized ones (e.g., a design model of an informa-
tion system). The user feed-back about the relevance of the suggested new classes and

5 See the website at:http://www.iro.umontreal.ca/ ∼galicia .
6 http://www.lirmm.fr/∼macao.
7 http://www.softeam.fr/
8 http://www.objecteering.com/
9 http://www.eclipse.org/



associations was positive, as the ICG tool has discovered many abstractions that would
be difficult to extract manually.
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Fig. 22.Example of the creation of a new association (adapted from [6]).

Figure 22 depicts a part of the class diagram in one of the projects that was in-
cluded in the study. The left hand side shows the initial diagram, whereas the right
hand side represents the ICG suggestion. The remarkable element is the abstraction of
a new association out of the initial associations namedcontains . The creation of the
new association has further led to the discovery of a new class,Fact109 . For a more
detailed description of the experimental results for ICG, the reader is referred to [6].

8 Conclusion

We have presented a set of normal forms for the class hierarchy design problem in
object oriented development. Each normal form addresses the factoring of different
aspects of class properties based on the FCA framework. Although the factoring of at-
tributes, methods and associations was presented separately, they could evidently be
combined. The ultimate normal form, called fully factored lattice/subhierarchy form,
consists in factoring out every aspect of the class specifications: attributes, method sig-
natures/bodies with redefinition and associations.

These normal forms can be used as guides for the design of class hierarchies within
several development scenarios. They could be incorporated in integrated development
environment tools by automating the generation of the normal forms. A large body of
algorithmic procedures are available to produce the underlying concept lattices effi-
ciently. In practice, as is the case of normal forms for database design, the class hierar-
chy normal forms should be considered as ideal structures from which some deviations
might be considered based on considerations that are not taken into account in the nor-
malization process. Within tool support, we consider that the design process should not
be seen as completely automated and some form of user interaction should be provided
to produce the final hierarchy possibly by taking a normal form as a starting point or
by contrasting some existing design with a normal form, thus revealing potential design
anomalies.
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