
Formal Concept Analysis for Knowledge Discovery and
Data Mining: The New Challenges

Petko Valtchev1, Rokia Missaoui2, and Robert Godin3

1 DIRO, Universit́e de Montŕeal, C.P. 6128, Succ. “Centre-Ville”,
Montréal, Qúebec, Canada, H3C 3J7

2 Département d’informatique et d’ingénierie, UQO, C.P. 1250, succursale B,
Gatineau, Qúebec, Canada, J8X 3X7

3 Département d’informatique, UQAM, C.P. 8888, succ. “Centre Ville”,
Montréal (Qc), Canada, H3C 3P8

Abstract. Data mining is the activity of extracting potentially interesting regu-
larities out of the raw data, which are further transformed within the wider process
of knowledge discovery into non-trivial facts intended to support decision mak-
ing. Formal concept analysis (FCA) offers an appropriate framework for knowl-
edge discovery, whereby our focus here is on its potential for data mining sup-
port. Indeed, a variety of methods powered by FCA results have been published
and the numbers grow steadily, especially in the association rule mining (ARM)
field. However, an analysis of current practices in this latter field indicates that
the impact of FCA has not reached its limits, i.e., that a number of situations exist
where appropriate FCA-based methods could successfully apply. As a contribu-
tion to the understanding of the current needs in ARM, we discuss the existing
methods for itemset mining and provide a set of guidelines for the design of novel
algorithms. As a first step, we propose on-line methods computing the generator
family of a closure system and compare the practical performances to those of
existing batch procedures.

1 Introduction

Knowledge discovery in databases (KDD) is the process of discovering useful knowl-
edge from data, possibly stored in a large database or a data warehouse. Data mining
is its main step, i.e., the one that consists in extracting potentially interesting regulari-
ties out of the raw data. According to Han et Kamber [13], the main challenges faced
by researchers on data mining in the late 90s were the specific characteristics of the
target datasets, i.e., ”large, noisy, of unknown generation laws, of high dimensionality,
distributed, etc.” that did not allow the conventional methods for data analysis / ma-
chine learning to apply. Thus, the key features of data mining tools and methods were
efficiency and scalability to large datasets, robustness to missing and incorrect items in
data, visualization and exploration of the mining results.

The core of FCA is an approach towards the design of conceptual hierarchies, the
concept lattices, from observations organized in a formal context. Therefore, the pro-
cess of concept formation in FCA is a knowledge discovery from datapar excellence,
whereby the construction of the concept set constitutes the ”mining” phase. A key ad-
vantage of the FCA-like mining lays in the fact that due to the closure properties only
patterns of maximal size are extracted, thus reducing the exploration/interpretation bur-
den for the analyst and, possibly, increasing efficiency.

Among classical mining paradigms, the association rule mining (ARM) has seen
the largest number of successful methods that can be qualified as FCA-based [40, 26].

These basically take advantage of the reduced size of the closed pattern set as opposed
to the one of plain patterns. As a result, some of the methods from that group are listed
among the most efficient ones in the field.

Nowadays, the KDD faces new challenges in more realistic situations, e.g., the dy-
namicity in databases, the distribution of the datasets over the Web and the resulting
need for integration of partial results, the processing of rich data formats (XML doc-
uments, DNA sequences, OO data), etc. The ARM discipline is on its front-line since
associations are among the most universal patterns that are easily interpreted and may
even support other mining activities such as clustering and classification. We believe
that FCA can still offer suitable theoretical and algorithmic tools for the resolution of
the underlying mining problems.

The goal of the present study is first to put the existing ”FCA-aware” work on ARM
in the perspective of what are some open problems, e.g., the on-line rule base mining, as
well as new research directions such as mining of distributed or structured data. We thus
define a set of new challenges by first clarifying the underlying practical motivations to-
gether with the existing conventional mining methods that address them. We then show
how the related difficulties translate into concrete algorithmic problems within the FCA
framework and provide general guidelines for the design of effective mining tools. For
some of the problems, solutions are proposed, with particular attention paid to the on-
line computation of the generator family of a closure system. Generators are key ele-
ments in the FCA-based approach to ARM since they compose several non redundant
bases of rules while underlying the computation in several closed itemset (CI) miners.
We propose two on-line algorithms that combine closure and generator maintenance
and compare practical performances to CLOSE and ACLOSE, two batch CI miners that
also rely on generators.

The paper starts with a short recall on formal concept analysis theory (Section 2) and
association rule mining problem (Section 3). The relevant work on ARM with closed
patterns is then summarized followed by a discussion on the lessons that may be drawn
from past experience (Section 3.3). We then suggest translations for the set of algo-
rithmic problems into the FCA domain, before presenting recent algorithmic results on
some of the identified problems (Section 5).

2 Background on concepts, lattices and implications

Formal concept analysis(FCA) [9] is a discipline that studies the hierarchical struc-
tures induced by a binary relation between a pair of sets. The structure, made up of
the closed subsets (see below) ordered by set-theoretical inclusion, satisfies the proper-
ties of a complete lattice4. It appeared, under different names, in the work ofÖre [20],
Birkhoff [3], and Barbut and Monjardet [2]. In FCA, it is known as theconcept lat-
tice [34] of a context.

2.1 FCA basics

FCA considers a binary relationI (incidence) over a pair of setsO (objects, further
denoted by numbers) andA (attributes, denoted by lower-case letters). The relation is
given by the matrix of its incidence relation (oIa means that objecto has the attribute
a) which is called aformal contextor simplycontext(see Figure 1, on the left, for an
example). Following standard FCA notations, sets notations are separator-free, e.g.,127
stands for{1, 2, 7}, andabdf for {a, b, d, f}).

4 An excellent introduction to partial orders and lattices may be found in [6].

Two set-valued functions,f andg, summarize the links established by the context:

– f : P(O) → P(A), f(X) = X ′ = {a ∈ A|∀o ∈ X, oIa}
– g : P(A) → P(O), g(Y) = Y ′ = {o ∈ O|∀a ∈ Y, oIa}

For example, w.r.t. the context in Figure 1,134′ = fgh andabc′ = 127. The pair of′

functions induces aGalois connection[2] betweenP(O) andP(A).

a b c d e f g h

1 X X X X X X X X
2 X X X X X
3 X X X X X
4 X X X X
5 X
6 X X X
7 X X X X
8 X X X
9 X

1

13 12

134

1345

17

146178

13789 12346

1346

1246

14

1378 123127

1278

12378

123456789

d c g f

cd

bc fh

abc cf fgh ef

bcd efh

abcd cdfgh abcef efgh

abcdefgh

Ø

Fig. 1. Left: ContextK (adapted from [9]) withO = {1, 2, ..., 9} andA = {a, b, ..., h}. Right:
The Hasse diagram of the concept (Galois) lattice derived fromK.

Furthermore, the composite operators′′, which map each of the setsP(O) andP(A)
into itself (e.g.,36′′ = 1346 anda′′ = abc), constituteclosure operatorsand therefore
each of them induces a family ofclosedsubsets over the respective power-set (Co

K and
Ca
K). A pair (X, Y), of mutually corresponding subsets, i.e.,X = Y ′ andY = X ′, is

called a(formal) conceptin [34] wherebyX is referred to as the conceptextentandY
as the conceptintent(e.g.,c = (134, fgh) is a concept of the context in Figure 1).

The setCK of all concepts of the contextK = (O,A, I) is partially ordered by the
set-theoretic inclusion of extents:

(X1, Y1) ≤K (X2, Y2) ⇔ X1 ⊆ X2(Y2 ⊆ Y1).

In fact, the inclusion order induces twocomplete latticesoverCo
K andCa

K, respectively,
which are dually isomorphic with′ operators as dual isomorphisms. Both lattices can
thus be merged into a unique structure called theGalois lattice [2] or the (formal)
concept latticeof the contextK [9].

Property 1 The partial orderLK = 〈CK,≤K〉 is a complete lattice with joins and
meets as follows:

–
∨k

i=1(Xi, Yi) = ((
⋃k

i=1 Xi)′′,
⋂k

i=1 Yi),
–

∧k
i=1(Xi, Yi) = (

⋂k
i=1 Xi, (

⋃k
i=1 Yi)′′).

Figure 1 on the right shows the Hasse diagram of the concept/Galois lattice of the
contextK. For example, thejoin and themeetof the conceptsc1 = (123, cf) and
c2 = (1246, ef) are(12346, f) and(12, abcef), respectively.

2.2 Implications

Dependencies among attributes in the dataset constitute important information and may
be the goal of separate analysis process for a context. Indeed, a fact like “the attribute
h is met in an object each time the attributesf and g are met” may convey a deep
knowledge about the regularities that exist in the domain where the data comes from.

FCA offers a compact representation mode for this type of knowledge, theimplica-
tion rules, which follows the same pattern as its logical counterpart, with two attribute
sets, premise and conclusion,X → Y (X, Y ⊆ A).

Intuitively, an implication isvalid in a context if none of the objects violates it which
basically meansX → Y is valid iff Y ⊆ X ′′ (e.g.,cg → h is valid inK from Figure 1,
whereascd → f is not).

Moreover, a rule isinformative[12] if its premise is minimal and its consequence
maximal for set inclusion (e.g.,ab → c is a valid but non informative rule whereas
a → bc is informative). The minimal sets that may be put in the premise part of a rule
for a given conclusion are called (minimal)generators(or key sets). Formally,Y ⊆ A
is a generator iff∀Ȳ ⊂ Y, Ȳ ′′ ⊂ Y ′′.

The setΣK of all valid implications in a contextK may be of a large size. Even the
number of informative rules may be larger than the number of concepts inCK. Fortu-
nately, a lot of redundant information is stored in these sets in the sense that inference
mechanisms close to natural deduction in logics may help retrieve the same content
from subsets. A popular system due to Armstrong is made out of threeinference rules
(theArmstrong axioms[17]): (∅ |= Y → Y), (Y → Z, U → V |= Y ∪ U → Z ∪ V),
and (Y → Z, U → V , U ⊆ Z |= Y → V).

The above axioms underly the definition of a number of compact representations,
or bases, forΣK. For example, the basis defined by Guigues and Duquenne [12] (the
Duquenne-Guigues basis) is known to be minimal in the number of rules. It relies on
pseudo-closedsets:Y ⊆ A is pseudo-closed if it is not closed and for any other pseudo-
closedZ, Z ⊂ Y entailsZ ′′ ⊂ Y [9]. The Duquenne-Guigues basis ofK, denotedBK,
is made out of all the rulesY → Y ′′ whereY is pseudo-closed. The entire setΣK may
be obtained as theimplicational hullof BK.

Implication rules as closely related to functional dependencies in the database field
(see [17]) made their way into data mining, where approximative functional dependen-
cies inspired the association rule mining (see Section 3). In fact, approximative asso-
ciations correspond topartial, i.e., not necessarily overall valid, implications, whereas
exact associations are the counterpart of (valid) implications. For example, the rule
ab → cd is valid in 66, 67% of the cases since three objects haveab, but only two of
them have alsocd. In [16], a basis for partial implications is provided, later called the
Luxenburger cover basis. It is made out of all rules of the form̄Y → Y − Ȳ where
Ȳ andY are closed attribute sets (intents) and(Y ′′, Y) is a lower cover of(Ȳ ′′, Ȳ) in
the respective lattice. For example, rulesc → b andc → d are extracted from concept
(12378, c) and its lower covers (see Figure 1) as parts of the Luxenburger basis, both
valid in 80% of all cases.

2.3 Lattice construction

A variety of efficient algorithms exist for constructing the concept lattice of a binary
table [8, 4, 11, 19]. We only recall key algorithms here, interested readers are re-
ferred to [15]. A classical distinction between lattice algorithms is made upon two axes:
whether or not the lattice order (precedence) relation is computed, on the one hand, and
whether or not the context evolves during construction, on the other hand.

Batch construction The algorithm NEXTCLOSUREdesigned by Ganter [8] uses deep
insights into the structure of the concept set to avoid generating concepts more than
once. The concepts are thus listed according to thelectic order on their intents, each
time considering the closure of a current candidate set.

Batch algorithms constructing both concepts and order have been proposed first by
Bordat [4] and then by Nourine and Raynaud [19]. The first algorithm uses structural
properties of the precedence relation inL to generate concepts from their upper covers.
The second one represents an efficient procedure for constructing a family of open
sets5 and it was shown that it may be used to construct the lattice. The core step of the
method is a fast mechanism for the computation of the precedence relation that exploits
cardinality properties of neighbor concepts in the lattice.

On-line construction On-line or incremental algorithms fit to the context of rapidly
evolving datasets, e.g., dynamic databases. They construct the latticeLK starting from
a single objecto1 and gradually incorporating any new objectoi into the latticeLi−1

(over a contextKi−1 = ({o1, ..., oi−1}, A, I)), each time carrying out a set of structural
updates. An early incremental procedure was proposed by Godinet al. [11], which
locally modifies the lattice structure while keeping large parts of the lattice unaltered.

The basic approach follows a fundamental property of theGalois connectionstating
that both familiesCo andCa are closed under intersection. Thus, the updates are aimed
at the integration intoLi−1 of all concepts whose intents correspond to intersections
of {oi}′ with intents fromCa

i−1, which are not themselves inCa
i−1 (such concepts are

further callednew). Basically, three groups of concepts inLi−1 are distinguished in
the approach of Godinet al.: generatorconcepts (denotedGi−1(o)) which give rise to
new concepts and help compute the respective new intents and extents;old concepts
(denotedUi−1(o)) which remain completely unchanged; andmodifiedconcepts (la-
belledMi−1(o)) which evolve by integratingoi into their extents while their intents re-
main stable. Here, we suggest a change in the standard terminology: the termgenerator
will be further used for minimal generators of concept intents (see previous paragraph)
whereas the specific members ofLi−1 that play the markers for the insertion of the new
concepts will be further referred to asgenitors6.

Given a latticeL and a new objecto, the main tasks for a reconstruction algorithm
include the identification of the two important sets,G(o) andM(o), together with the
creation of the new concepts (N+(o)), and their subsequent integration into the existing
lattice structure. These jointly lead to the construction of the target latticeL+ (where
the counterparts ofG(o) andM(o) are denotedG+(o) andM+(o), respectively).

In [31], we have presented a detailed study of the lattice substructures relevant to
incremental construction with characterizations of the setsG(o) andM(o), as well
as of the evolution in the precedence relation in the final latticeL+. A key fact says
that concepts fromG(o) andM(o) are the unique maximal elements in the respective
equivalence classes inL induced by the functionQ : C → 2A that maps a concept
into the intersection of its intent witho′ (Q(X, Y) = Y ∩ {o}′). A further distinction
between both sorts of concepts is based on the inclusion of the corresponding intents
in o′: this holds only for members ofM(o). Another remarkable property that will be
used here is that when connecting a new conceptc into the lattice under reconstruction
the only lower cover ofc in L+ that has a counterpart inL (i.e., concept with the same
intent) is the respective genitor fromM+(o). The complete set of results was embedded

5 i.e., the dual to a family of closed sets as in the lattice
6 The American Heritage Dictionary of the English Language: Fourth Edition. 2000:genitor: 1.

One who produces or creates. 2.AnthropologyA natural father or mother.

in a generic scheme for incremental lattice methods as described in [29]. Algorithm 1
provides a viewpoint on the scheme limited to tasks that are relevant here.

1: procedure ADD-OBJECT(In/Out: L = 〈C,≤〉 a lattice; In: o an object)
2:
3: for all c in C do
4: if c = max([c]Q) then
5: if Intent(c) ⊆ o′ then
6: Extent(c)← Extent(c) ∪ {o}
7: else
8: ĉ← NEW-CONCEPT(Extent(c) ∪ {o}′,Q(c))
9: UPDATE-ORDER)(ĉ, c)

10: C ← C ∪ {c}

Algorithm 1: Generic scheme for the insertion of a new object into a concept (Galois)
lattice.

To sum up the structural changes inL+, from all the concepts that behold their intents
from L to L+, only genitorshavetheir upper covers changed, and only modifiedmay
havetheir lower covers changed. Consequently, given a conceptc from C+ − N+(o)
and a new conceptcn from N+(o), c ≤L+ cn if and only if c ≤L+ cg wherecg is the
genitor ofcn.

As database increments rarely happen to be object-wise, i.e., sets of objects are
added/deleted at a time, we have investigated a generalization of the incremental ap-
proach that considers merging the lattices obtained from two fragments of the same
database. The key results are summarized in the following paragraphs.

2.4 Table splits and lattice assembly

FCA has studied the relations between the lattice of a context and those of a set of
sub-contexts, further called thefactors, based on subposition/apposition.

Subposition of contexts and semi-product of latticesSubposition is the horizontal
assembly of contexts7 sharing the same set of attributes [9].

Definition 1 Let K1 = (O1, A, I1) andK2 = (O2, A, I2) be two contexts sharing
the attribute setA, the contextK3 = (O1∪̇O2, A, I1∪̇I2) is called their subposition,
denotedK3 = K1

K2
.

For example, for the contextK = (O,A, I) as given in Figure 1, letO1 = {1, 2, 3, 4}
andO2 = {5, 6, 7, 8, 9}. The factor lattices corresponding toK1 andK2, sayL1 and
L2, are given in Figure 2.

The latticesL1 andL2 are related to the latticeL3 of the subposition context in very
specific way. In the extreme case,L3 will be isomorphic to the direct product ofL1 and
L2, L1 × L2 (denoted shortlyL1,2 in the sequel). However, in the general case,L3 is
only a meet sub-semi-lattice ofL1,2. The lattice operator that sends couples of lattices
of “subposed” contexts into the lattice of the resulting context is called thesemi-product
in [9].

7 Apposition is dual assembly uponO; both generalize ton-splits.

5

7

6 78

789

g efh bcd

d

abcdefgh

abcd

56789

Ø

Ø

1

1312 14abcef

efcf

f

cdfgh

fgh123 124 134

1234

efgh

abcdefgh

#1 #1

#2 #3 #4

#5 #6 #7

#8

#2 #3

#4

#5

#6

#7

1

42 3

a
8

9 d
b

c

f

e 5 h

6

g

7

Fig. 2. Left: Partial latticesL1 andL2 built from a horizontal decomposition of the context in
Figure 1.Right: The nested line diagram of the latticeL1,2.

Furthermore, two mappings link the factor lattices to the semi-product andvice versa.
The composition of two concepts from the factors is based on the fact that the attribute
dimension in both remains steady and thus the semi-product may be seen as the merge
of two Moore families onA. Therefore, each pair of concepts(c1, c2) fromL1,2 is sent
to the conceptc from L3 such that the intent ofc is the intersection of the intents of
c1 andc2. For example, the couple(c#7, c#3) (see Figure 2) is sent into the concept
(146, efh) sinceefh is the intersection of the respective intents. The resulting function
fromL1,2 toL3 is a surjective order morphism that preserves lattice meets (see [32] for
details). Conversely,L3 is surjectively projected on each factor by the simple projection
of the concept intent on the respective subset ofA. In other words, the projections of
a closed attribute set (intent) fromL3 both onO1 andO2 are themselves closed in
K1 andK2, respectively. For example, the concept(127, abc) is projected to the node
(c#5, c#6).

A framework for the effective transition from a given pair of latticesL1, L2 to their
semi-product, as studied in [32, 30], is briefly described in the reminder of this section.

Merge of factor lattices Our merge method basically filters the direct product of the
factor latticesL1 andL2, and keeps only the product nodes that belong to the join/meet
sub-semi-lattices isomorphic to the semi-productL3. These nodes, like in the reference
case, are the canonical representative of their respective equivalence classes, which arise
through intersection between intents from the factor lattices. In fact, for subposition a
global concept(X, Y) is projected into a pair of concepts((X1, Y1), (X2, Y2)) where:
X = X1 ∪X2 ; Y = Y1 ∩ Y2.

As the function that maps concept pairs from the direct productL1,2 to concepts
from L by preserving intent intersection is not injective, a further property states that
the pair((X1, Y1), (X2, Y2)), whereX = X1 ∪X2 is the canonical representative for
its intersection class. In fact, it is the maximal node of the direct product among all
those which satisfyY = Y1 ∩ Y2.

The above facts together with further properties characterizing the order inL3 with
respect to that inL1,2 underlie a straightforward algorithm for lattice merges. The al-
gorithm performs a top-down traversal of all combinations of factor concepts inL1,2

with successive canonicity tests for each combination. An overview of the method is
provided by the following Algorithm 2.

1: procedure MERGE(In: L1, L2 lattices; Out: L3 a lattice)
2:
3: L ← ∅
4: SORT(C1); SORT(C2) {Decreasing order }
5: for all (ci, cj) in L1 × L2 do
6: I ← Intent(ci) ∩ Intent(cj)
7: if CANONICAL((ci, cj), E) then
8: c← NEW-CONCEPT(Extent(ci) ∪ Extent(cj),I)
9: UPDATE-ORDER(c, L3)

10: L3 ← L3 ∪ {c}

Algorithm 2: Assembling the global Galois lattice from a pair of partial ones.

It is noteworthy that the canonicity test in the initial MERGE method is based on a
comparison of intent intersection on a node(ci, cj) (variableI) to the intersection on
node’s immediate successors (upper covers) inL1,2. For example, the node(c#7, c#3)
is canonical for its class since the extent intersection of both factor concepts,efh, is
strictly greater than the intersection on immediate successors(c#7, c#1), (c#3, c#3)
and(c#4, c#3) in L1,2 (∅, ef , andfh, respectively).

Algorithm 2 is completed to a first-class lattice construction procedure of adivide-
and-conquertype. The resulting method performs recursive context splits until the basic
case of a single column is reached, followed by the reverse merges that end up by
computing the lattice of the entire context.

3 Association rule mining problem

Given a database of transactions, the problem of mining association rules consists in
generating all association rules that have certain user-specified minimum support and
confidence.

Let I = {i1, i2, · · · , im} be a set ofm distinct items. A transactionT contains a
set of items inI, and has an associated unique identifier calledTID. A subsetX of I
wherek = |X| is referred to as ak−itemset (or simply an itemset), andk is called the
length ofX. A transaction database (TDB), sayD, is a set of transactions. The fraction
of transactions inD that contain an itemsetX is called the support ofX and is denoted
supp(X). For example, the support ofbcd in the TDB represented by the context in
Figure 1 is 33%8. Thus, an itemset is frequent (or large) whensupp(X) reaches at least
a user-specified minimum threshold calledminsupp.

As a running example, let us consider Figure 1 which may be thought of as showing
a supermarket database with a sample set of transactionsD = {1, · · · , 9} involving
items from the setI = {a, · · · , h}. The itemsets whose support is higher or equal to
40% of|D| are given in Table 1 hereafter.

3.1 Association rule generation

An association rule is an implication of the formX ⇒ Y , whereX andY are subsets
of I, andX ∩ Y = ∅ (e.g.,d ⇒ c). The support of a ruleX ⇒ Y is defined as

8 In the rest of the paper, we shall use the number, rather than the proportion, of the transactions
supportingX.

Itemset Supp. Itemset Supp. Itemset Supp. Itemset Supp.
b 4 c 5 d 5 f 5
g 4 h 4 e 4 - -
bc 4 cd 4 fh 4 ef 4

Table 1.The itemsets of support greater than 40%.

supp(X ∪ Y) while its confidence is computed as the ratiosupp(X ∪ Y)/supp(X).
For example, the support and confidence ofd ⇒ c are 44% and 80% respectively.

The problem of mining association rules with given minimum support and confidence
(calledminconf) can be split into two steps:

– Detecting all frequent (large) itemsets (FIs) (i.e., itemsets that occur in the database
with a support≥ minsupp),

– Generating association rules from large itemsets (i.e., rules whose confidence≥
minconf).

The second step is relatively straightforward. However, the first step presents a great
challenge because the set of frequent itemsets may grow exponentially with|I|.

3.2 Frequent closed itemsets

Since the most time consuming operation in association rule generation is the compu-
tation of frequent itemsets, some recent studies have proposed a search space pruning
based on the computation of frequentcloseditemsets only, without any loss of informa-
tion. In particular, FCA-powered approaches have been suggested to that end in [39, 23].
The gain is in producing and storing only a subset of theFIs, which is made up offre-
quent closed itemsets(FCIs), i.e., the intents of concepts that have their extents above
the size-limit. The subset of the concept set corresponding to the FCIs is usually referred
to as theiceberg(concept) lattice [26].

In [24], an itemsetX is considered to be closed if adding an arbitrary itemi from
I −X to X results in an itemset whose support is lower than the support ofX:

∀i ∈ I −X, supp(X ∪ {i}) < supp(X).

This is clearly equivalent to the definition given in Section 2.
A key property in theCI framework states that any itemset has the same support as its

closure, and hence is as frequent as its closure. For example, the closure of the itemset
b is bc and both sets have an absolute support of4.

3.3 Relevant results from the FCI framework

As indicated earlier, association rules can be advantageously generated fromFCIsrather
thanFIs. However, even in this case, there is still a large set of generated rules with
information redundancy. It is therefore more useful and relevant to provide a non-
redundant rule set.

The notion ofgeneratorof a closed itemset plays a key role in the construction of
non redundant rule set as indicated in [23, 25].

Definition 2 A generic basisfor exact or implication rules is a collection of rules of
the form :Z → Z ′′ − Z such thatZ is a generator forZ ′′ andZ 6= Z ′′.

The generic basis can hence be constructed fromFCIs and generators only. For ex-
ample, the concept(178, bcd) (see Figure 1) leads to the generation of rulebd → c with
a support of44%.

A similar basis is defined for approximative association rules, in particular as a rem-
edy of the problem of informativeness in the Luxenburger basis. Indeed, the rules in the
latter basis are not necessarilymaximallyinformative (i.e., the premise is minimized and
the consequence is maximized). Thus, the informative basis has been defined in [22],
where every rule is maximally informative.

Definition 3 An informative basisis a set of rules of the form:Z → Y2−Z whereZ is
a generator forY1 such thatC1 = (X1, Y1), C2 = (X2, Y2) andC1 coversC2. Support
and confidence of a ruler in such basis aresupp(Y2) and|Y ′

2 |/|Z ′| respectively.

Based on Figure 1, rules such asb → ac (supp = 44%, conf = 75%) andfg → eh
(supp = 33%, conf = 67%) are part of the informative basis.

4 Computation of FCI families and rule bases

Like lattice algorithms, ARM methods can be divided into batch and on-line, whereby
on-line here covers a broader range of mining settings in which the input data evolves.
Moreover, distinctions are made on the target structure: FCI, complete sets of rules,
rule bases, etc. Finally, the input format is a criterion too: standard itemsets are opposed
to sequences of items or itemlists or to even richer descriptions. In the following, we
present a set of methods from the ARM field that either aim at FCIs or address a key
issue for our presentation.

4.1 FCI miners

Historically, the first efficient FI mining algorithm is the APRIORI algorithm [1]. It
performs a level-wise generation of FIs within the powerset lattice of the items, starting
by singleton sets and moving upwards in the lattice levels. At each level, the candidates
are generated by joining FIs from the previous level that differ by a single element.
Candidates which have at least one non-frequent subset are prunned a priori, i.e., before
looking at the database to estimate frequencies.

ACLOSE is probably the first FCI miner. Like APRIORI, it performs level-wise com-
putation within the powerst lattice, but this time based on the generators of the FCIs.
Generators replace candidates in the APRIORI framework; they guide the FCI look-
up in the database. TITANIC [26] is a descendent of ACLOSE, but relies on advanced
features of generators to avoid redundant computation, e.g., cardinality reasoning for
closure computation and minimalness checks for the filtering of non-generator sets.

CHARM [40] is another closed pattern miner which generates FCIs in a tree orga-
nized by inclusion. Closure and support computation of relies on storage and intersec-
tion of TID-sets(i.e., the set of transactions per item, the equivalent of concept extent).
To speed-up closure computation, it usediffsets, the set difference on the TID-sets of a
given node and of its unique parent node in the tree.

CLOSET and its recent modification CLOSET+ [33] both generate FCIs as maximal
branches of aFP-tree, a structure that is basically a prefix tree (ortrie) augmented with
with transversal lists of pointers. The global FP-tree of a database is projected into a
set of conditional FP-trees that organize patterns sharing the same suffix. Cardinality
resoning is applied to compute the closure of a given branch in the FP-tree.

Computation of various rule bases has been addressed in [23] and in [39]. However,
to the best of our knowledge, there is no efficient method for their construction. An
interesting insight on rule bases and their effective construction is provided in [14].

Finally, a very recent trend in closure-based mining is the discovery of closed patterns
on richer descriptions, i.e., patterns that range over a collection of structured objects
such as sequences [21, 37] or graphs [36] and that represent sub-objects common to
some of the collection members.

4.2 On-line FI miners

Realistic databases often evolve in time, with regular add or remove of bunches of
transactions. On-line mining algorithms were introduced to cope with data evolution at
low cost, i.e., without starting from scratch.

Early incremental FI miners were based on the APRIORI framework. FUP [5] updates
the set of association rules whenever some new transactions are added. The candidates
for the incremental transaction set are generated with respect to their frequencies in the
initial database which are in turn deduced from some pre-computed support informa-
tion for the database. The descendant of the FUP method, FUP-2 admits a larger set
of operations on the database, including insertion, removal and modification of trans-
actions. An alternative paradigm for on-line FI mining relies on the notion ofnegative
border[18], i.e., the set of all infrequent itemsets that are minimal for inclusion (see [7]
and [27] for concrete methods). More recently, the UWEP method was proposed which
performs a look-ahead pruning to drop any unfrequent candidate as early as possible.

To the best of our knowledge, the problem of on-line FCI mining has not been ad-
dressed within the data mining community. This is mainly due to the fact that along the
data evolution, patterns may repeatedly change their status between frequent and in-
frequent. The underlying difficulties are easily summarized in the one-case, i.e., where
a single transaction is added: given the initial and the target families of FCIs, some
new FCIs may be produced by genitors that are not themselves frequent enough and
therefore lay out of the initial iceberg. Thus, the classical incremental reasoning about
genitors and modified concepts holds no more. Besides, the application of algorithms
computing incrementally the set of all CIs, to the above task is described in the next
section.

4.3 Parallel and distributed FI mining

Parallelism and distribution constitute a yet different computation paradigm that has
been largely explored in data mining, in particular for cost reduction purposes (see [38]
for a survey). It is noteworthy that most of the strategies for parallel mining rely on a
distribution of the dataset among the available processors.

4.4 Observations

Despite the apparent proximity between the respective targets, algorithms for lattice/implication
basis construction and association miners are based on diverging principles which im-
pede easy adaptation of FCA methods to the mining tasks. To summarize the distinc-
tions, one could say that ARM methods are designed to work on very large datasets
that do not hold in the main memory of a computer and therefore keep the access to
the raw data (in the database) to a minimum. For instance, CLOSET only scans the
database twice, whereas TITANIC would make a number of scans that equals the size

of the largest generator. In contrast, NEXTCLOSUREwill look at the data table on each
closure computation, i.e., a prohibitively large number of times.

Moreover, the potentially huge size of the mining results limits the quantity of in-
formation that can be stored per FI or FCI. Typically, the itemsets are stored with their
support, a number, and rules with their premises, conclusion, support and confidence.
Unlike that, in addition to concept intents, lattice algorithms may store extents and
order as well, most of the time because these are relied on at a later step of the cal-
culations. Space limits forced the ARM methods to use advanced data structures that
enable speedy computation of the basic operations, i.e., set inclusion and intersection,
as well as direct access to sub-patterns. For example, prefix-tree-like structures, e.g.,
FP-trees, are massively used in the compact storage of itemset families, whereas hash
tables provide direct access to sets of patterns.

4.5 Lessons learned

Based on our experience both in FCA and KDD, we strongly believe that FCA is a
suitable paradigm for KDD [35] since it offers valuable features such as the strong
mathematical background, the availability of algorithmic methods that can perform con-
ceptual clustering, implication and association rule generation, the effective framework
for data fragmentation (e.g., apposition, concatenation) and the reverse fusion together
with the corresponding lattice operations, etc. Moreover, line diagrams and scaling can
be seen as tools for visualization/browsing and data preprocessing mechanisms, respec-
tively. Moreover, when focusing on the data mining step and on the particular activity
of ARM, basic theoretical results from FCA have been successfully used to reduce the
size of the output in both ARM tasks, i.e., FI mining and rule extraction. However, the
work done by the FCA community [12, 10, 16, 22] do not seem to have a significant
echo in the DM field. This is partly due to the fact that the proposed FCA algorithms do
not compete with the leading algorithms in a particular subfield, or, in some cases, to the
lack of sufficient empirical evidence on how those methods scale over large datasets.

We firmly believe that the potential of FCA is much bigger than the current status, in
particular in what concerns managing data evolution, distributive and parallel computa-
tion, and coping with structure in the data items. To put it in more fancy way, in order to
attract stronger interest from the general KDD and DM community, FCA should (also)
stand forFacility, Cost-effectiveness andAdaptability.

Facility is the ease of use, in particular on various data formats (expressiveness). This
aspect covers both the availability of user-friendly FCA tools and the compatibility with
various mining settings such as constraints, multi-level conceptual hierarchies, or other
structure defining domain knowledge.

Cost-effectiveness amounts to insuring high performance and good scalability. It can
be achieved through an effective and efficient implementation of DM algorithms, and,
whenever applicable, a well-organized decomposition of the mining effort using paral-
lel/distributed architectures.

Adaptability is the faculty to easily change or be changed in order to fit evolving
situations such as modified user needs, changes in input data, new system constraints.
To reachadaptability, FCA should offer on-line mining (e.g., incremental procedures
for adding/removing transactions or itemsets), and provide mechanisms for adapting
the DM step to the needs of the user.

In the following section, we present a set of results intended to clear the way for new
FCA-based mining methods that fit the above requirements.

5 Flexible mining of FCIs and association bases

In the following paragraphs, we summarize past and present work on flexible mining
methods based on FCA.

5.1 Mining scenarios and related FCA problems

As a starting point, we have identified a set of mining scenarios that correspond to
practical situations and considered the underlying algorithmic problems. The following
is a first attempt to draw systematic list of the FCA problems whose solution is of
potential interest to the data mining community. In fact, Table 2 presents each situation
with the respective operations on contexts, CI/FCI families, and rule bases, whereby
algorithmic problems are given unique identifierspX.

Scenario Context CI/FCI Rule bases
ADD transac-
tions

Subposition Increment/Assembly
(p1/p2) of FCI families
on ground setA

Merge of Duquenne-Guigues (p3),
Luxenburger cover (p4), informa-
tive/generic (p5) bases

REMOVE
transactions

Horizontal SplitContraction of an FCI
family (p2′)

Filtering of Duquenne-Guigues (p3′),
Luxenburger cover (p4′), informa-
tive/generic (p5′) bases

JOIN database
fragments
(views)

Apposition Assembly (p6) of dis-
joint FCI families

Merge of disjoint Duquenne-Guigues
(p7), Luxenburger cover (p8), informa-
tive/generic (p9) bases

PROJECT a ta-
ble on a subset
of attributes

Vertical Split Projection of an FCI
family (p6′)

Factoring of Duquenne-Guigues (p7′),
Luxenburger cover (p8′), informa-
tive/generic (p9′) bases

Table 2.The translation of mining scenarios into algorithmic problems.

Before going on, it is noteworthy to underline the fact that in order to compute the
various bases, one needs the concept intents, the pseudo-closed (Duquenne-Guigues),
the generators (generic, informative), order relation (Luxenburger).

We have paid significant attention to the problemp1, i.e., the incremental mainte-
nance of the FCI family upon insertions of single transaction. The problem is the basic
building block for the study of larger increments, on the one hand, and is close in spirit
to the lattice incremental construction, on the other hand. However, as noted in the pre-
vious section, substantial differences exist between input structures, in particular in the
availability of genitor/modified information for all new concepts that need to be cre-
ated. Indeed, in the iceberg case, there might be new FCI in the target structure whose
genitors are ”hidden” below the ”sea-level”, i.e., the border of the iceberg. Clearly, the
discovery of those new FCIs by an updating procedure cannot rely on the standard gen-
itor/modified framework.

The problem of the incremental FCI computation was therefore approached with
strategies relying on the computation of all the CI of the database. The approach effec-
tively removes the obstacle created by hidden genitors/modified, but the price to pay is
the storage of the entire CI family whereas usually only a tiny part of it will be exam-
ined by the analyst. The extra storage increases substantially memory consumption and
algorithmic cost of the method. To avoid processing the entire concept set, two separate

techniques have been applied (see [31]). In the first method, GALICIA -P, an index (item
x CI) is used to avoid producing all the the empty intersections between an existing con-
cept intent and the new object description. The second algorithm, GALICIA -LBU, uses
a bottom-up lattice traversal which is not typical for object increments. Thus, it looks
for a quick jump from any concept which is not maximal in its class[]Q, to the effec-
tive maximum of that class. The jump mechanism has its own cost since it forces the
lattice order to be available and hence to be maintained. When compared to CLOSED,
the former algorithm has shown satisfactory performances.

Another sort of problems that we have studied carefully is the maintenance of im-
plication bases upon the insertion of one new object. The following section explains
how generators may be efficiently extracted upon single-object increments and how the
corresponding procedure generalizes to the lattice assembly case. In contrast, the com-
putation of all pseudo-closed in the incremental settings, has not been tackled so far
since very complex.

Problems related to object removal (REMOVE line of the above table) have the op-
posite effect on the mining results when compared to their ADD counterpart. Conse-
quently, the respective methods could simply reverse the incremental scheme. There-
fore, we do not insist on the theoretical foundations of the remove operations.

In the dual case, i.e., with attributes evolving, the reasoning is unfortunately not sym-
metric. Thus, whereas the iceberg maintenance does not pose serious challenges, unlike
in the object case, the computation of all generators is tricky. Moreover, the Duquenne-
Guigues basis may be obtained in an indirect manner, as shown in [28]. The underlying
algorithm produces both closed and pseudo-closed. Like in the object case, the removal
problems just follow the reverse scheme of their ADD counterpart, that is why we do
not focus on them here.

5.2 On-line computation of the generator family forCa

Definitions and notations Given a contextK = (O,A, I), consider the family of its
concept intents,Ca, ordered by inclusion and the corresponding equivalence relation
induced by the associated closure operator′′. The latter will be denoted explicitlyϕCa

in order to avoid confusion. Moreover, given an objecto 6∈ O, a specific mapping from
new concepts to their genitors in the augmented latticeL+ is defined:

γ : G+(o) → N+(o); γ(X, Y) = (X ∪ {o}, Y ∩ o′).

Our first goal is to clarify the evolution of the set of generators in every concept from
C along the transition fromL toL+. To denote the various generator sets, we shall use
the following notations:

– gen : P(P(A)) → P(P(A)) assigns the set of all generators to a given family,
– genCa : C → P(P(A)) assigns to a closed set in a familyCa, the set of its genera-

tors, i.e., the minima of its equivalence class,
– ∆genCa

1→Ca
2

is a shortcut forgenCa
1
(Y)− genCa

2
(Y).

Structural results The generator evolution is first tackled in a global manner. Thus,
we consider the status of a generator fromgen(Ca) in Ca+. A first result states that
wheneverY is a generator inCa, its status either remains steady or it can change so
that Y becomes a closed set inCa+. In the latter case,Y is a new closed set, i.e.,
corresponds to the intent of a concept fromN+(o). More generally speaking,Y has a
different closure inC+, i.e.,ϕCa(Y) 6= ϕCa+(Y). The examination of all the cases of

sets changing their closures aftero has been inserted, leads to the observation that the
old closure is necessarily the intent of a genitor concept and the new one is the intent of
a new concept.

Lemma 1 For a setY ⊆ A, whenever its closure changes inCa+, i.e., ϕCa(Y) 6=
ϕCa+(Y), the closed sets involved may be characterized as follows:

1. ϕCa(Y) is the intent of a concept fromG(o),
2. ϕCa+(Y) is the intent of a concept fromN+(o).

Further to the above property, one may express the evolution of the entire equivalence
classes fromCa to Ca+. In fact, the equivalence class of a new intent is exactly the part
of the class of its genitor intent which is made out of elements that are themselves
included in the new intent. Conversely, the new equivalence class of a c-generator is
included in the set difference between the old class and the elements mentioned before,
i.e., all those included in the respective new intent. In all other cases, the class remains
the same both inCa andCa+.

Corollary 1 For anyc ∈ Ca+, the following holds:

c ∈ G+(o) : [Int(c)]Ca+ ⊆ [Int(c)]Ca − P(Int(γ(c)))
c ∈ N+(o) : [Int(c)]Ca+ = [Int(γ−1(c))]Ca ∩ P(Int(c))

else : [Int(c)]Ca+ = [Int(c)]Ca

Another remarkable fact is that any attribute setY which is minimal in its respective
class[Y]Ca is still minimal in its new class[Y]Ca+ .

Lemma 2 For all Y ∈ A, Y ∈ min([Y]Ca) impliesY ∈ min([Y]Ca+).

It is noteworthy that the above lemma holds even in case of a non-closedY becoming
closed inCa+. As a result, one may assert that all the generators inCa either remain
generators inCa+ or become closed sets, i.e., members ofCa+.

Corollary 2 gen(Ca) ⊆ gen(Ca+) ∪ Ca+.

Now that we know that all the generators can only become closed or stay generators,
the complementary question comes to the light: where do new generators come from?

First, it is noteworthy that only in the case of a genitor concept, new generators can
emerge inCa+. In fact, as the elements in the new classes inCa+, i.e., those correspond-
ing to new intents, preserve their inclusion-based order, any minimal elementY of such
a class is minimal in its class inCa. Thus, to characterize the new generators, one has
to focus on the minima of the c-generator classes inCa+. The real difference is then a
sum of all differences between actual and all minima over the set of all c-generators.
Obviously,gen(Ca+) - gen(Ca) = ∪c∈G+(o) ∆genCa+→Ca(c), where, following pre-
vious results,∆genCa+→Ca(c) may be written as(min([Int(c)]Ca −P(Int(γ(c))))−
min([Int(c)]Ca)). We shall now characterize the sets∆genCa+→Ca(c) wherec is in
G+(o). In fact, we show that all new generators come from former generators for the
samec to which an attribute from the difference between the c-generator intent and the
new intent (Int(c) − Int(γ(c))) is added. This difference is called the “face” [25] of
Int(c) with respect toInt(γ(c)).

Property 2 For anyY ∈∆genCa+→Ca(c) for a givenc fromLwherec is a c-generator,
the following holds:

Y = Yo ∪ {a}

whereYo ∈ min([Int(γ(c))]Ca+ anda ∈ Int(c)− Int(γ(c))

This property states that every new generator in∆genCa+→Ca(c) is the union of a
generator that went toγ(c) and an attribute that belongs toInt(c) but not toInt(γ(c)).

An example In the following, we illustrate the evolution of an equivalence class as-
sociated with a closet itemset of a c-generator when a new object is added, and the
computation of the set of generators for thatCI as well as the generators of the new
generated closet itemset.

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf fghfgh

cgcg cdcfcf chchdgdf dh

dd
fgh

bg

closed

generator
inter-class
link

class border

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

Fig. 3.The equivalence class of the closet setcdfgh in 2A prior to the insertion of object7 (abcd)
into the contextK1 (left) and after the insertion (right).

The evolution of the equivalence class associated with the closet itemsetcdfgh at-
tached to the genitor(13, cdfgh) is depicted in Figures 3. As it may be seen in left
part of the figure, the generators ofbcdgh before the insertion of object7 ared, cg,
andch. Once object7 is added, a new concept(137, cd) is derived from the genitor
(13, cdfgh) and the generatord moves to the class of its intentcd (see the right part of
the figure). This migration leaves three new minima in the class ofcdfgh: df , dg, and
dh. Thus, the set of all generators associated tocdfgh in the new familyCa+ increases
to {cg, ch, df, dg, dh}.

5.3 A scheme for incremental generator construction

The structural results from the previous paragraphs underlie a procedure (see Algo-
rithm 3) which, given a generator conceptc and its corresponding new conceptc̄ com-
puted using Algorithm 1, updates the set of generators associated with the intent ofc
and identifies the set of generators attached to the intent ofc̄.

Principles of the method The proposed procedure for generator extraction relies on
the properties of a generator [25] of a closet itemset as well as the structural results we
defined in the previous section.

The algorithm includes two main tasks: (i) identify the generators of the intent of a
new concept̄c from the generatorsg in c.gens (i.e., the generators of the CI related

1: procedure COMPUTE-GENERATORS(In/Out: c, c̄ concepts)
2:
3: for all g in c.gens do
4: if g ⊆ c̄.Intent then
5: c̄.gens← c̄.gens ∪ {g}
6: c.gens← c.gens - c̄.gens
7: SORT(c̄.gens)
8: for all ḡ in c̄.gens do
9: new-gens← ∅

10: for all a in (c.Intent - c̄.Intent) do
11: gen-cond← true
12: for all g in c.gens do
13: if g ⊆ ḡ ∪ {a} then
14: gen-cond← false
15: if gen-cond then
16: new-gens← new-gens ∪ {ḡ ∪ {a}}
17: c.gens← c.gens ∪ new-gens

Algorithm 3: Computation of the generators of a new concept and of its genitor.

to c, the genitor ofc̄), and (ii) update the generators of the CI related to conceptc
by discarding any generatorg that is included in the intent of̄c and augmenting any
generator̄g (identified at the first step) with individual itemsa from c.Intent - c̄.Intent
whenever the produced itemset is minimal (i.e., the condition of line 13 does not hold).

5.4 Implementation and performance tests

The INC-GEN algorithm was implemented inJava , within the 1.1 version of the Gali-
cia platform9.

The method has been tested as a stand-alone application and its performances were
compared to those of two basic algorithms for FCI mining that rely on generator com-
putation, CLOSE and ACLOSE. The experiments were done on a Windows PC station
(Pentium III 996 MHz with 512 MB of RAM) using various subsets of the IBM trans-
action database T25I10D10K. This dataset is made out of 10 000 transactions over a set
of 10 000 items. It is known to be a sparse one, with an average of 25 items per transac-
tion. The graphs drawn in Figure 4 summarize our findings so far. They clearly indicate
that the incremental method, INC-GEN, is not competitive as a batch miner for support
thresholds of 2% and up. This fact is not surprising given the large number of concepts
that the algorithm must examine on each insertion of a new transaction and the even
larger number of generators. For example, the first 2 500 transactions produce 900 000
generators in the entire concept set. It is more surprising to see that for supports of 1%
and lower, the incremental method scores better than the batch ones, at least for the first
quarter of the dataset. This result is even more surprising given the large discrepancy
in the number of closed sets and generators produced (ca. 3 000 for CLOSE/ACLOSE

versus 900 000 for INC-GEN) and the fact that the overwhelming part of the CPU time
is spent on generator computation.

Further tests will be necessary to fully understand the behavior of the INC-GEN)
method. However, the current track seems promising, especially if combined with an
efficient on-line miner of iceberg lattices.

9 See the website at:http://www.iro.umontreal.ca/ ∼galicia .

Inc-Gen, Close, AClose (supp. 1%) on T25I10D10K

0

1000

2000

3000

4000

5000

6000

7000

8000

500 1000 1500 2000 2500

Transaction Nb

T
im

e
(s

ec
)

Close
AClose
Inc-Gen

Inc-Gen, Close, AClose (supp. 2%) on T25I10D10K

0

500

1000

1500

2000

2500

3000

3500

4000

500 1000 1500 2000 2500

Transaction number

T
im

e
(s

ec
)

Close
AClose
Inc-Gen

Fig. 4. Evolution of the CPU-time for all three algorithms on transaction batches up to 2500
drawn from the dataset T25I10D10K. CLOSE and ACLOSE were given min. supp. thresholds of
1% (left) and 2% (right).

5.5 Generator evolution along the factor lattice assembly

Generator computation can easily extend to the construction of the subposition-based
semi-product of factor latticesL1 andL2. First, recall that any concept in the semi-
productL3 is created by a pair of factor concepts that play symmetric role (call them the
genitors). We nevertheless adopt an asymmetric view on factors and setL1 to the initial
lattice where generators already exit whereasL2 is seen as the surrogate for ”new”
concepts that constituteL3. Consequently, when such a new concept is detected by the
assembly algorithm, its generators will be computed with respect to its genitor inL1,
i.e., the respective component of the canonical representative inL1,2. Obviously, unlike
the object-wise increment, there can be several new concepts per genitor (these are
exactly the conceptsc3 = (X, Y) from L3 whereY 11 = Intent(c1)). The challenge
will be to determine their generators without an interference between those.

Next, observe that new concepts corresponding to a genitorc1 have intents that lay in
the equivalence class[Intent(c1)]11. Moreover, they define a partition of this class into
finer classes according to the33 closure, whereas a unique new concept has the same
intent asc1.

A safe strategy for consecutive insertions of the new concepts is to insure that when-
ever a newc3 is inserted, there is a larger intent aboveIntent(c3) in the class[Intent(c1)]11
whose generators are known and can be filtered in the way described in Algorithm 3.
The straightforward way to do this is to perform insertions in an order compatible with
≤3, i.e., starting with smaller intents and then proceeding with larger ones. Given the
set of the intents of new concepts generated byc1, sayCa

3 ∩ [Intent(c1)]11, the previous
condition imposes that at any time the set of already inserted concepts corresponds to
an order ideal of that set, provided with inclusion order.

A noteworthy fact about the concrete computation method is that it perfectly fits
Algorithms 2 and 3 (with parametersc1 andc3). Moreover, all along the insertions, the
temporary set of generators that are to be considered for the next insertion is stored at
the genitor node withinL3. Indeed, the concept corresponding toc1 in L3 (i.e., with
the same intent) will be the last one to be created since its intent is the greatest element
of the equivalence class. For example, the evolution of the equivalence class associated
to cdfgh (from L1) is depicted in Figure 5. Indeed, the inner loop of Algorithm 2
discovers three new concepts with intentsd, cd, andcdfgh, respectively, and in this
order. These are gradually ”inserted” in the class ofcdfgh: the generators of the new
intent are computed and those ofc1 = (13, cdfgh) are updated inL1. Thus, the new
intent d which corresponds to an initial generator of the class forces the creation of

four new generators (cd, df, dg, dh). In contrast, the closedcd merely converts a former
generator into a closure.

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

Fig. 5.The evolution of the equivalence class of the closet setcdfgh inP(A) during the assembly
process (see initial state in Figure 3, on the left): after the creation of the new closedd (left) and
after the creation ofcd (right).

6 Conclusion

A fundamental problem with association rule mining (ARM) is the enormous amount
of information that needs to be managed. FCA has already had an important impact on
this problem with the introduction of FCI mining and related minimal covers for rules
including the Duquenne-Guigues, generic, Luxenberger and informative basis. Several
important algorithmic contributions are rooted in these concepts.

Improvement to the flexibility of ARM can be achieved through approaches that
adapt to dataset evolution. Incremental approaches for mining CI, FCI and related basis
is one direction that we have tackled with some success. Furthermore, this work has re-
vealed some important insights on the properties of these objects from an evolutionary
point of view including the more general divide and conquer context fusion problem.
Another direction that could contribute to the flexibility of ARM tools is the adaptation
to user needs. In the same spirit as OLAP analysis tools, the incremental and fusion
approaches are also relevant to this aspect of the problem by providing techniques to
dynamically handle several levels of details in the analysis process as expressed by user
needs.

Finally, a direction that could contribute to the flexibility of ARM tools but that has
had little impact up to now is the ability to handle more expressive data representations
(many-valued contexts, objects, scaling, etc.). Much work remains to be done in order
to fully exploit the power of FCA in the overall knowledge discovery process.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. InProceedings of
the 20th International Conference on Very Large Data Bases (VLDB’94), pages 487–499,
Santiago, Chile, September 1994.

[2] M. Barbut and B. Monjardet.Ordre et Classification: Alg̀ebre et combinatoire. Hachette,
1970.

[3] G. Birkhoff. Lattice Theory, volume XXV of AMS Colloquium Publications. AMS, 3rd
edition, 1967.

[4] J.-P. Bordat. Calcul pratique du treillis de Galois d’une correspondance.Mathématiques et
Sciences Humaines, 96:31–47, 1986.

[5] D. W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. InProceedings, ICDE-96,
pages 106–114, New Orleans (LA), USA, 1996.

[6] B. A. Davey and H. A. Priestley.Introduction to lattices and order. Cambridge University
Press, 1992.

[7] R. Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient Algorithms for Discover-
ing Frequent Sets in Incremental Databases. InProceedings, ACM SIGMOD Workshop
DMKD’97, pages 59–70, Tucson (AZ), USA, 1997.

[8] B. Ganter. Two basic algorithms in concept analysis. preprint 831, Technische Hochschule,
Darmstadt, 1984.

[9] B. Ganter and R. Wille.Formal Concept Analysis, Mathematical Foundations. Springer--
Verlag, 1999.

[10] R. Godin and R. Missaoui. An Incremental Concept Formation Approach for Learning from
Databases.Theoretical Computer Science, 133:378–419, 1994.

[11] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on
galois (concept) lattices.Computational Intelligence, 11(2):246–267, 1995.

[12] J.L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant
d’un tableau de donńees binaires.Mathématiques et Sciences Sociales, 95:5–18, 1986.

[13] J. Han and M. Kamber.Data Mining : Concepts and Techniques. Morgan Kaufmann, 2001.
[14] M. Kryszkiewicz. Concise representations of association rules.Pattern Detection and

Discovery, pages 92–109, 2002.
[15] S. Kuznetsov and S. Ob’edkov. Comparing the performance of algorithms for generating

concept lattices.Journal of Experimental & Theoretical Artificial Intelligence, 14(2-3):189–
216, 2002.

[16] M. Luxenburger. Implications partielles dans un contexte.Mathématiques et Sciences
Humaines, 29(113):35–55, 1991.

[17] D. Maier. The theory of Relational Databases. Computer Science Press, 1983.
[18] H. Mannila, H. Toivonen, and A. Verkamo. Efficient algorithms for discovering association

rules. In U. Fayyad and R. Uthurusamy, editors,Proceedings, AAAI Workshop on Knowl-
edge Discovery in Databases, pages 181–192, Seattle (WA), USA, 1994. AAAI Press.

[19] L. Nourine and O. Raynaud. A Fast Algorithm for Building Lattices.Information Process-
ing Letters, 71:199–204, 1999.

[20] O. Öre. Galois connections.Transactions of the American Mathematical Society, 55:493–
513, 1944.

[21] F. Pan, G. Cong, A. Tung, J. Yang, and M. Zaki. Carpenter: Finding closed patterns in
long biological datasets. InProceedings of the 9th International Conference on Knowledge
Discovery and Data Mining (KDD’03), Washington (DC), August, 2003.

[22] N. Pasquier. Extraction de bases pour les règles d’associatioǹa partir des itemsets ferḿes
fréquents. InProceedings of the 18th INFORSID’2000, pages 56–77, Lyon, France, 2000.

[23] N. Pasquier, Y. Bastide, T. Taouil, and L. Lakhal. Efficient Mining of Association Rules
Using Closed Itemset Lattices.Information Systems, 24(1):25–46, 1999.

[24] J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed
Itemsets. InProceedings, ACM SIGMOD Workshop DMKD’00, pages 21–30, Dallas (TX),
USA, 2000.

[25] J. Pfaltz and C. Taylor. Scientific discovery through iterative transformations of concept
lattices. InProceedings of the 1st International Workshop on Discrete Mathematics and
Data Mining, pages 65–74, Washington (DC), USA, April 2002.

[26] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg Concept
Lattices with Titanic.Data and Knowledge Engineering, 42(2):189–222, 2002.

[27] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An Efficient Algorithm for the Incre-
mental Updation of Association Rules in Large Databases. InProceedings, KDD-97, pages
263–266, New Port Beach (CA), USA, 1997.

[28] P. Valtchev and V. Duquenne. Towards scalable divide-and-conquer methods for comput-
ing concepts and implications. In E. SanJuan, A. Berry, A. Sigayret, and A. Napoli, edi-
tors,Proceedings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM’03):
Knowledge Discovery and Discrete Mathematics, Metz (FR), 3-6 September, pages 3–15.
INRIA, 2003.

[29] P. Valtchev, M. Rouane Hacene, and R. Missaoui. A generic scheme for the design of effi-
cient on-line algorithms for lattices. In B. Ganter A. de Moor, W. Lex, editor,Proceedings
of the 11th Intl. Conference on Conceptual Structures (ICCS’03), volume 2746 ofLecture
Notes in Computer Science, pages 282–295, Berlin (DE), 2003. Springer-Verlag.

[30] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: generalizing the
incremental methods. In H. Delugach and G. Stumme, editors,Proceedings of the ICCS’01,
volume 2120 ofLecture Notes in Computer Science, pages 290–303, 2001.

[31] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji. Generating Frequent Itemsets Incre-
mentally: Two Novel Approaches Based On Galois Lattice Theory.Journal of Experimental
& Theoretical Artificial Intelligence, 14(2-3):115–142, 2002.

[32] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois
(concept) lattices.Discrete Mathematics, 256(3):801–829, 2002.

[33] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Fre-
quent Closed Itemsets. InIn Proceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD’03), Washington, DC, USA, 2003.

[34] R. Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In
I. Rival, editor,Ordered sets, pages 445–470, Dordrecht-Boston, 1982. Reidel.

[35] R. Wille. Why can concept lattices support knowledge discovery in databases.Journal of
Experimental & Theoretical Artificial Intelligence, 14(2-3):81–92, 2002.

[36] X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. InProceedings
of the 9th International Conference on Knowledge Discovery and Data Mining (KDD’03),
Washington (DC), 2003.

[37] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large
Datasets. In R. Grossman, J. Han, V. Kumar, H. Mannila, and R. Motwani, editors,Proceed-
ings of the 3rd SIAM International Conference on Data Mining (ICDM’03), San Fransisco
(CA), 2003.

[38] M.J. Zaki. Parallel and Distributed Association Mining: A Survey.IEEE Concurency,
7(4):14–25, december 1999.

[39] M.J. Zaki. Generating Non-Redundant Association Rules. InProceedings, KDD-00, pages
34–43, Boston (MA), USA, 2000.

[40] M.J. Zaki and C.-J. Hsiao. CHARM: An Efficiently Algorithm for Closed Itemset Mining.
In R. Grossman, J. Han, V. Kumar, H. Mannila, and R. Motwani, editors,Proceedings of
the 2nd SIAM International Conference on Data Mining (ICDM’02), 2002.

