
Theoretical Computer Science 133 (1994) 387419
Elsevier

387

An incremental concept formation
approach for learning from
databases*

Robert Godin and Rokia Missaoui
D6purtement de Mathkmatiques et d’lnformatique, Universitk du Q&bec ir Mont&al, C.P. 8888,
succursale “Centre Vilie”, Montrkal, Canada, H3C 3P8

Abstract

Godin, R. and R. Missaoui, An incremental concept formation approach for learning from
databases, Theoretical Computer Science 133 (1994) 3533385.

This paper describes a concept formation approach to the discovery of new concepts and implica-
tion rules from data. This machine learning approach is based on the Galois lattice theory, and starts
from a binary relation between a set of objects and a set of properties (descriptors) to build a concept
lattice and a set of rules. Each node (concept) of the lattice represents a subset of objects with their
common properties.

In this paper, some efficient algorithms for generating concepts and rules are presented. The rules
are either in conjunctive or disjunctive form. To avoid the repetitive process of constructing the
concept lattice and determining the set of implication rules from scratch each time a new object is
introduced in the input relation, we propose an algorithm for incrementally updating both the lattice
and the set of generated rules. The empirical behavior of the algorithms is also analysed.

The implication problem for these rules can be handled based on the well-known theoretical
results on functional dependencies in relational databases.

1. Introduction

Recent work in the field of databases shows an increasing interest in knowledge
discovery from data [1,2,43]. The basic motivations for such an interest are: (i) in
many organizations, databases are information mines that can be usefully exploited to
discover concepts, patterns and relationships, (ii) the discovered knowledge may be

Correspondence to: R. Godin, Departement Mathematiques et Informatique, Universite du Quebec, C.P.
8888, Succ. A, Montreal, Que., H3C 3P8, Canada. Email: godin(einfo.uqam.ca.

*A preliminary version of this paper appeared in the Proceedings of the Workshop on Formal Methods
in Databases and Software Engineering, Springer-Verlag, London.

0304-3975/94/$07.00 c 1994-Elsevier Science B.V. All rights reserved
SSDZ 0 3 0 4 - 3 9 7 5 (9 4) 0 0 0 5 7 - P

388 R. Godin and R. Missaoui

efficiently used for many purposes such as business decision making, database schema
refinement, integrity enforcement, and intelligent query handling.

Third generation database systems are expected to handle data, objects and rules,
manage a broader set of applications [111, and deal with various kinds of queries such
as intensional ones which are evaluated using the semantics of the data [40]. In
databases (DB), there are two kinds of information: extensional information (data or
facts) which represents real world objects, and intensional information which reflects
the meaning, the structure (in terms of properties) and the relationships between
properties and/or objects. In deductive databases, the intensional information takes
the form of deduction rules defining new relations in terms of existing ones, integrity
constraints expressing predicates the facts are assumed to verify, and sometimes class
hierarchies, describing generalization/specialization relationships.

Research about the discovery of rules and concepts from large databases is relat-
ively recent and is ranked among the most promising topics in the field of DBs for the
1990s [44]. According to [16], knowledge discovery is “the nontrivial extraction of
implicit, previously unknown, and potentially useful information from data”. Know-
ledge discovery techniques as they currently stand cannot be applied to many
database applications. There are at least two reasons for this. One is the fact that DBs
are generally complex, voluminous, noisy and continually changing. Two is the fact
that the overhead due to the application of discovery techniques may be high. That is
why researchers in this area [43] recommend that discovery algorithms for database
applications be incremental, sufficiently efkient to have at most a quadratic growth
with respect to the size of input, and robust enough to cope with noisy data.

The system RX [S] is one of the early works in knowledge discovery. It uses
artificial intelligence techniques to guide the statistical analysis of medical collected
data. Borgida and Williamson [7] uses machine learning techniques to detect and
accommodate exceptional information that may occur in a database. Cai et al. [S]
presents an induction algorithm which extracts classification and characterization
rules from relational databases by performing a step by step generalization on
individual attributes. Classification rules discriminate the concepts of one class from
that of the others, while characteristic rules characterize a class independently from
the other classes. In [27], the discovery process is incremental and includes two
consecutive steps: conceptual clustering, and rule generation using the classification
obtained at the first step. Ioannidis et al. 1283 uses two machine learning algorithms,
viz. COBWEB and UNMEM [lS], to generate concept hierarchies from queries
addressed to a database. The extracted knowledge is used for physical and logical
database reorganization. Kaufman et al. [29] describes the INLEN system which
integrates a relational database, a knowledge base as well as machine learning tools
for manipulating data and knowledge, and for discovering rules, concepts and equa-
tions. In [30], the authors propose algorithms for abstracting class definitions from
a set of instances. In [41], a survey of methods, theories and implementations of
inductive logic programming (ILP) is given. ILP is a new descipline defined as the
convergence of inductive learning and logic programming. Learning in that discipline

An incremental concept formation approach for learning from databases 389

starts from examples and background knowledge to inductively build first-order
clausal theories.

The main purpose of this paper is to present algorithms for generating implication
rules from the Galois (concept) lattice structure of a binary relation. This article
extends our previous work on knowledge discovery [38,39]. Our approach is similar
to the work done by [27] since it is incremental and based on a conceptual clustering
procedure. However, the classification produced by [27] is a tree rather than a lattice.
Like in [S], our approach helps learn characteristic rules (i.e. data summarization) as
well as classification rules. The rules are either in conjunctive or disjunctive form.

The remainder of this paper is organized as follows. In the next section we give
a background on the concept lattice theory and its relationship with machine learning
techniques. Section 3 provides definitions for implication rules. Algorithms for rule
and concept generation are presented in Section 4. Section 5 gives details about the
empirical analysis of the algorithms. Finally, a brief discussion on further refinements
is proposed.

2. The concept lattice

2.1. Preliminaries

From the context (0, 9,&Y) describing a set 0 of objects, a set 3 of properties and
a binary relation .% (Table 1) between 0 and 9, there is a unique ordered set which
describes the inherent lattice structure defining natural groupings and relationships
among the objects and their properties (Fig. 1). This structure is known as a concept
lattice [45] or Galois lattice [4]. In the following we will use both terminologies
interchangeably. The notation x &! x’ will be used to express the fact that an element
x from 0 is related to an element x’ from 9. Each element of the lattice _Y derived from
the context (0,9, .y-R) [45] is a couple, noted (X, X’), composed of an object set X of
the power set P(U) and a property (or descriptor) set X’E.Y(~). Each couple (called
concept by Wille [45]) must be a complete couple with respect to B, which means that
the following two properties are satisfied:

(i) X’=f(X) wheref(X)={x’EglVxEX, x.@x’},
(ii) X=f’(X’) wheref’(X’)={xEUIVx’EX’, x2x’).

X is the largest set of objects described by the properties found in X’, and symetrically,
X’ is the largest set of properties common to the objects in X. From this point of view,
it can be considered as a kind of a maximally specific description [34]. The couple of
functions Cf;f’) is a Galois connection between P(0) and P(s), and the Galois lattice
2 for the binary relation is the set of all complete couples [4,45] with the following
partial order.

Given C,=(X,,X’i) and C,=(X,,X;), C,dC2 o X;cX;. There is a dual
relationship between the X and X’ sets in the lattice, i.e., X ‘i c Xi o X 2 c X 1 and
therefore, Ci < CZ o X2 c X i. The partial order is used to generate the graph in the

390 R. Godin and R. Missaoui

following way: there is an edge from Ci to C2 if C, < CZ and there is no other element
C3 in the lattice such that C, < C3 < C2. In that case, we say that Ci is covered by CZ.
The graph is usually called a Hasse diagram and the precedent covering relation
means that C1 is parent of CZ. When drawing a Hasse diagram, the edge direction is
either downwards or upwards. Given, %Y, a set of elements from the lattice .P, inf (%?)
and sup(V) will denote respectively the infimum (or meet) and the supremum (or join)
of the elements in @.

The fundamental theorem on concept lattices [45]. Let (0,9, .c%) be a context. Then
(9”; <) is a complete lattice for which infimum and supremum of any subset of S? are
given by’

Many algorithms have been proposed for generating the elements of the lattice [6,
10, 15, 17, 32,421. However none of these algorithms incrementally update the lattice
and the corresponding Hasse diagram, which is necessary for many applications. In
[23], we have presented a basic algorithm for incrementally updating the lattice and
Hasse diagram. More details about the basic algorithm and several variants are found
in [19,22]. When there is a constant upper bound on I/f ({xl) /I which is usually the
case in practical applications, the basic algorithm and variants have an 0 11011 time
complexity for adding a new object. Although some variants of the basic algorithm
show a subtantial saving in time, the asymptotical behavior remains 0 110 I]. Extensive
testing with several applications and simulated data has supported the linear growth
with respect to /I 0 II for the complexity of the incremental algorithms [3, 23, 251.
Surprisingly, our current experiments [3] on four existing algorithms for lattice
construction show that, in most cases, our incremental algorithm is the most efficient
and is always the best asymptotically. In this article, one efficient variant of the basic
algorithm has been enriched to embody the generation of rules without increasing the
time complexity (see Section 4 for more details).

2.2. A machine learning approach.

The concept lattice is a form of concept hierarchy where each node represents
a subset of objects (extent) with their common properties (intent) [13,45]. The Hasse
diagram of the lattice represents a generalization/specialization relationship between

1 Since we shall focus on generating rules for descriptors rather than for objects, the partial order as well
as infimum and supremum definitions are given with respect to descriptors instead of objects as in Wille.

An incremental concept formation approach for learning from databases 391

Table 1
The input relation

Objects Attributes

F R E M S

Tiger
Horse
Sheep
Penguin
Frog
Rat

The attributes and their values have the following
meaning:
F = Feet-f, =claw, f, = hoof, f, = web;
R = Ears ~ rl = external, rz = middle;
E = Eats-e, = meat, e, = grain, e3 = grass;
M = Gives milk-m, = no milk; m, = milk;
S = Swims -s,, = unable, s1 = able, s2 = well.

the concepts. Therefore, building the lattice and Hasse diagram corresponding to a set
of objects, each described by some properties, can be used as an effective tool for
symbolic data analysis and knowledge acquisition [24,46].

The task of inducing a concept hierarchy in an incremental manner is called
incremental concept formation [181. Concept formation is similar to conceptual clus-
tering which also builds concept hierarchies [35]. However, the former approach is
partially distinguished from the latter in that the learning is incremental. Concept
formation falls into the category of unsupervised learning also called learning from
observation [9] since the concepts to learn are not predetermined by a teacher, and
the instances are not pre-classified with respect to these concehts. As opposed to
explanation-based learning methods [14], this approach falls into the class of empirical
inductive learning [35] since no background knowledge is needed.

For illustration, a part of the well-known relation describing animals [27] will be
used (see Table 1). The corresponding concept lattice is shown in Fig. 1. More details
about the construction of the lattice are given in Section 4 and in [22].

3. Learning rules from the concept lattice

In addition to being a technique for classifying and defining concepts from the data,
the concept lattice may be exploited to discover dependencies among the objects and
the properties. The process may be undertaken in two different ways, depending on
the peculiarities of the DB under consideration and the needs of the users: (i) scan the
whole lattice or part of it in order to generate a set of rules that can be later used in

392 R. Godin and R. Missaoui

({2). {sl. ml. rl. f2, e3))

(0. {el.e2. e3. fl, f2. f3, m0. ml, rl, R. SO. sl. S21)

Fig. 1. The concept lattice.

a knowledge-based system, (ii) browse the lattice to check if a given rule holds,
without necessarily generating the whole set of rules, but rather by looking for a
node with some specific description. The first kind of operation is useful in a know-
ledge-based environment and helps enrich the knowledge base with the new generated
rules and infer new facts. The motivation behind the second usage is that it often
happens that one wants to confirm a hypothesis or invalidate a claim based on the
analysis of input data. As an illustration of the two kinds of usage, suppose that from
a DB application about divestment of units in a firm, the manager wants to confirm
the following hypothesis: “Zf both the divested unit and the firm to which it belongs
had a performance rate higher than the average in the industry, and the divested unit
was created by internal development, then the motif of the divestment is a strategic
reorientation.” In the first case, we will try to show that this hypothesis, say d, can be
derived from the set C of rules discovered from the data (i.e. C I= d). In the second case,
we do not need to generate rules from the lattice (built from data), but rather we have
to look for the smallest node (w.r.t. descriptors) containing the premise components

An incremental concept Ji,rmation approach ,for learning from databases 393

of that hypothesis, and check if the conclusion components also occur in the intent of
that node.

In the first case, the learning process is as follows.

Input. A relation or a view of the database.
Output. (i) The corresponding concept lattice.

(ii) A set of conjunctive implication rules.
Method

Step 1. Construct the concept lattice of the binary relation.
Step 2. Generate a set of conjunctive rules from the lattice.
Step 3. Remove redundant rules.

Step 2 of the learning process can eiher be handled independently from (but as
a sequel to) Step 1 as in Algorithms 4.1 and 4.2 or be integrated with Step 1 as in
Algorithm 4.3.

In the following we use P, Q, R, . , Z to denote sets of properties, while we use
lower-case letters p, q, Y, to name atomic properties (descriptors). The notation p q
is a simplification of the notation Vx p(x) A q(x) meaning that each object has proper-
ties p and q. In the sequel, we shall take the freedom of using either the logical notation
or the set-oriented notation, depending on the context under consideration.

The general format of a rule is P*Q, where P and Q represent either a set of objects
or a set of properties. Four cases can be considered:

(i) implication rules for descriptors (IRDS) in which both P and Q belong to Y(9);
(ii) implication rules for objects (1~0s) in which both P and Q belong to Y(O);

(iii) discriminant rules for objects (DROS) where PEY(~) and QEY(O);
(iv) discriminant rules for descriptors (DRDS) where PEY(O) and Q~g(9).

In the following, we give definitions for implication rules only. Then, we show that
the rule generation problem is NP-hard. However, under a reasonable assumption,
the problem becomes tractable. In Section 4 we propose a set of efficient algorithms
for implication rule generation.

3.1. Implication rules

We define implication rules (IR) as ones such that P and Q are both subsets of either
0 or 9. Due to the nature of IRS, the inference system for functional dependencies
holds also for IRS. The following definitions are borrowed from the implication theory
on functional dependencies [31] and apply to implication rules as well.

Given a set C of IR, the closure C+ is the set of rules implied by C by application of
the inference axioms. Two sets C and C’ are equivalent if they have the same closure.
l P*Q is redundant in the set C of IRS if C- { P=z=Q} I= P*Q.
l P*Q is full (or left-reduced) if $ P’cP such that (C- {P=sQ})u{P’+Q} EC.
l P*Q is right-reduced if $Q’cQ such that (Z-{P+Q})u{P=Q’j-C.
l P*Q is reduced if it is left-reduced and right-reduced, and Q #@.

394 R. Godin and R. Missaoui

l P*Q is trivial if Q G P.
l P-Q is elementary if it is full and Ij Q // = 1 and Q Q P.
The closure P+ of a set P according to C is defined by: Pi = Pu{ Q IZ G P’ and
Z~QEC}.

3.1.1. Conjunctive implication rules
The problem of generating conjunctive rules can be stated as starting from a finite

model where each atom in the model is denoted by p(a), and finding Horn clauses of
the form:

VXPl(X)AP,(X)A...AP*(X) =- q(x).

Each pi(X) is a property (descriptor) predicate indicating that x may or may not have
property pi. A more accurate notation for pi would be ai(v, where ai is an
attribute predicate, and v is a value from the domain of the attribute ai. For example
(see Table l), Feet(x)=“f,” is a predicate about webbed animals that we shall write
simply asf3(x) or asf3.

Two alternative notations can be used to express conjunctive implication rules: the
compact form and the Horn clause form. Each (compact) rule P*Q may have
a conjunction of properties in the conclusion part, and can equivalently be expressed
as II Q II separate Horn clauses P*qi. The compact notation is commonly used in the
literature about machine learning and knowledge discovery [35,43], while the Horn
clause notation is frequently adopted in deductive databases and logic programming
studies [37,41].

Definition 1. A conjunctive implication rule for descriptors (IRD) is an IR of the form
D-D’ where D and D’ are subsets of 9. A context (C),9, W) satisfies the IRD D=+-D’ if
for every object x in 0, whenever x is characterized by all the properties found in D it
has necessarily the whole set D’ of properties, i.e.,

f(x) 2 D =+ f(x) 2 D’.

Proposition 1. D=+-D’ is a conjunctive IRD o [[(O”, D”) = inf {(X, X’)E_Y? D c X’ and
X#@}]=D’cD”].

In other words, the rule D=z-D’ holds if and only if the smallest concept (w.r.t.
properties) containing D as a part of its intent is also described by D’.

Proof. (a) If D=sD’ is computed based on the node described by some couple
(O”, D”), it means that the objects in 0” have the properties found in D and D’, and
therefore DUD’ c D”. In particular, D’ c D”. To ensure that every x~c0 that has the
properties in D is also characterized by D’, the couple (O”, D”) must be the smallest
concept containing D.

An incremental concept formation approach ,for learning from databases 395

(c=) Whenever the couple (0”, D”) is the smallest concept containing D, it also
contains D'. This corresponds exactly to the definition of the IRD: D*D'. 0

Example 1. From the lattice shown in Fig. 1, one can generate the IRDfi*ml y1 s1
meaning that if an animal has claws, then it gives milk, has external ears, and is able to
swim. This rule is valid since, when starting from the node at the top (i.e. inf(Y)) of the
lattice, the first encountered node containing the property fi, which is node #9,
contains also the properties m 1, r1 and sl. However, the IRD slam1 does not hold
since node #3 is described by the property s1 alone.

Definition 2. A conjunctive implication rule for objects (IRO) is an IR of the form
0-O’ where 0 and 0’ are subsets of 0. A context (0, g,S?) satisfies the IRO 030’ if
for every descriptor x’ in 3, whenever x’ is associated with the objects in 0 it is also
associated with the objects in O’, i.e.,

f’(X’)ZO *f’(x’)30’.

For example, the rule dog*(bulldog, poodle} means that bulldogs and poodles have at
least the properties attached to dogs, i.e. they are dogs with possibly additional
characterizations. The following proposition is the dual of Proposition 1.

Proposition 2. O*O’ is a conjunctive IRO o [[(0”, D”)=sup{(X, X’)~SplOcx and
X’#~}]~O’co”].

In other words, O*O’ if and only if the biggest node (with respect to descriptors)
containing 0 as a part of its extent is also described by 0’.

Proof. A reasoning similar to the proof of Proposition 1 can be done to demonstrate
the correctness of Proposition 2. 0

Proposition 3. D*D + is a full (or left-reduced) conjunctive IRD if and only if
VQE~QQD*Q+~D+.

Proof. (a) If D-D+ is a full rule, it means that ,JQ CD such that Q=D+. Since the
closure of Q is by definition the set of properties that are implied by Q, then Q*Q’
and therefore Q’ CD+.

(-z) Suppose that VQcg [QcD=Q'CD+] holds. As a consequence, Q*D'
does not hold, and therefore D-D+ is a full rule. 0

Definition 3. P*Q is an existence implication rule if

$ZcP such that Z+cP+.

A composite rule is one for which the precedent condition does not hold.

396 R. Godin and R. Missaoui

For example, m, =>rl is an existence rule (see the lattice in Fig. 1) while e, ml =wl slfi
is a full composite rule since there exists Z= {ml} in the premise P= {e, m,} of the
second rule such that Z+ c P+, i.e., {m, rl} c e, m, r1 slfi}. Intuitively, an algorithm(
that computes existence rules associated with a node H ignores any rule P*Q
whenever there exists at least a subset Z of P such that Z’ is the intent of an ancestor
node of H.

NP-hardness of the rule generation problem
It is known that the set-covering problem is an optimization problem that general-

izes and models many NP-complete problems [121.
An instance (Y, 9) of the set-covering problem contains a finite set Y and a collec-

tion F of subsets Si, . . . , S, of Y, such that every element of Y exists in at least one
subset in 9:

YE u Si
sis.9

The problem is to find a minimum-size subset Zg9 such that its members cover
the set Y:

This well-known problem can be useful for proving NP-completeness (and hard-
ness) of the rule generation problem which can be stated as starting from a finite
model where each atom in the model is denoted by p(a), and finding Horn clauses of
the form:

v’x Pi(X) A Pz(x) A ... A Pm(x)*q(x).

The set Y to be covered corresponds to objects for which property q is false. A set
Si in g represents objects for which property pi is false.

Y=O-f’(q)={x~O/q(x)=False}.

Si=jX~YIpi(X)=Fa2Se), 1 didm.

The minimum size cover Z corresponds to the smallest-size union of Si that covers
Y. In other words,

Z={xEYlpl(x)=False v ... v pm(x)=False}, o r

z=(xEYllpi(x) v ‘.’ VlP,(X)}.

Therefore, we get the following implication:

vxlq(x)~1p,(x)v ... VlP,(X).

The contraposition of the above logical expression leads to the following Horn clause:

v’x Pi(X) A pz(x) A “. A Pm(x)*q(x).

An incremental concrpt formation upprouch .fiw learning jwn databases 391

Since we have shown that the rule generation problem can be reduced to the
set-covering problem (which is NP-complete), the rule generation problem is therefore
as hard as finding the minimum-size cover, and hence is an NP-hard problem.

Example: Let us check if e,(x)&m,(x)+f,(x) holds for each object x in Table 1.

Y={x~O~f1(x)=False}=(2,3,4,5}.

The minimum size cover for Y is Z= S,uS,, where:

S,={x~Y~e,(x)=False}={2,3}, and Sz={x~Y~m,(x)=False)={4, 5).

Therefore,

If we assume there exists an upper bound K on the number of descriptors per object,

i.e. IlfC{x>)l/ 6K we limit the size of any rule to contain at most K atoms, and
therefore the problem of rule generation becomes tractable. This assumption is true in
the context of databases since the number of pairs (attribute, value) per row (object) is
bounded. Without this restriction, the general problem of rule generation is NP-hard
as demonstrated before.

3.1.2. Disjunctive implication rules
Disjunctive implication rules are rules such that either their left-hand side (LHS) or

their right-hand side (RHS) contains a disjunctive expression Qi v ... v Qi v
v Qm, where Qi is possibly a conjunction of atomic properties. There is a mapping

between conjunctive and disjunctive rules. The conjunctive IRD d,=aQ can be com-
puted from the right-hand disjunctive IRD djaQ1 v ... v Qm by setting Q to the
properties common to Q1 , . . , Qm. The left-hand disjunctive IRD Qi v ... v Q,jdi
means that Qi, . , Qm are the alternative (sets of) properties which subsume di, and
can be computed from the set of conjunctive IRDs (see Algorithm 4.5).

3.2. Characteristic and clussiJicution rules

As mentioned earlier, classification rules discriminate the concepts of one class (e.g.
a carnivore) from that of the others, while characteristic rules characterize a class
independently from the other classes. The first kind is a suficient condition of the class
under consideration while the second type is a necessary condition of the class (see [S]
for more details).

Implication rules in either conjunctive or disjunctive form can express these two kinds
of rules. The RHS disjunctive IRD djaQ1 v ... v Qm may be useful for defining the
characteristic rule for objects having the property dj, when there is no conjunctive IRD
with dj as a premise. The LHS disjunctive IRD Q1 v ... v Q,adi can be used to define
the cluss$cution rule for objects with the property di. E.g., the classification rule for
animals having claws (propertyf,) is ez?fl while the characteristic rule for carnivora
(property ei) can be expressed by the RHS disjunctive IRD el*fjsl v f3s2 v fi.

398 R. Godin and R. Missaoui

4. Implication rule determination

In [26,46], the authors deal with the problem of extracting rules from the con-
cept lattice structure. However, they do not propose any algorithm to determine
those rules. In this section we propose a set of algorithms for rule generation.
For ease of exposition, we limit ourselves to IRDs. However, owing to the
symmetry of the lattice structure, the definitions and algorithms can be adapted
without difficulty to IROs.

Algorithm 4.1 computes a complete set of (existence as well as composite) IRDs from
an already built lattice while Algorithms 4.1 a and 4.2 compute subsets of the output of
Algorithm 4.1. In fact, Algorithm 4.la determines the set of reduced IRDs while
Algorithm 4.2 computes the set of left-reduced existence rules only. Algorithm 4.3
leads to the same output as Algorithm 4.1. However, it incrementally builds the lattice
and computes the set of rules in one shot.

Based on Proposition 1 defined before, an obvious method for rule generation that
immediately comes to mind is to systematically generate at each node H =(X, X’) the
power set of X’, and for each set P in 2”, make sure that its value is not included in the
intent of the parent nodes of H. The rules generated by this algorithm can be
composite ones. Each rule of the form P*Q can be converted into a set of Horn
clauses P*qi, for 1 < i < 11 Q /I.

Algorithm 4.1.
Input: A lattice _Y.
Output: A set C of conjunctive IRDs: P-Q (not necessarily reduced), and the array

Rules [l...li _!Z 111, where an element Ru/es[H] represents the set of IRDs associated
with the node H.

function GenerateRulesForNode(N =(X, X’))
/*Returns the complete set of rules generated from the node N*/
begin
A:=@;
if X #8 and II X’ /I > 1 then /* discard some trivial rules such as P& */

For each nonempty set Pc{Y(X’)-X’} in ascending I/P I/ do
if ,3 M =(Y, Y’) parent on N such that PC Y’ then

if $ P’=sQEA such that P’ c P then
A:= Au{P+X’-P}

endif
endif

endfor
end if
return(A)
end (GenerateRulesForNode}

An incremental concept jiwmution approach fi)r learning ji.om databases 399

Table 2
Rules generated from the example lattice in Fig. 1

Node Rules generated by Reduced rules generated by Rules generated by
number Algorithm 4.1 Algorithm 4.1 a Algorithm 4.2

4

5

8

9
10
11

12

13

14
15

ml*rl

f-,-m,
.f,-r2, e,, m,
mO=f3, rz, e,
rzqf3, e,, m,

m,=rl
rl*ml
f3-rz, e,. m,
m,*f3, rz3 e,
r,*fi e,, m,

sOsf2,rl, e3, m,
e,+f;, rl, m,, s,

begin
C :=& /* the cumulative set of IRDs */
for each node H = (X, X’)E_Y in ascending I/X’ 11 do

begin
Rules[H] := GenerateRulesForNode(H)
C:=CuRules[H]

end
endfor
return(C)
end

Table 2 shows the rules generated from the lattice illustrated by Fig. 1.
The correctness of the algorithm follows from Propositions 1 and 3. The first

proposition is expressed by the first test inside the For loop in the GenerateRulesFor-
Node function, and ensures that P*Q is valid by checking if the current node is the
smallest concept containing P in its intent. Proposition 3 helps discard non full IRDs
attached to a same node. In the For loop of the GenerateRulesForNode function, the
possible subsets P in 9(X’) are considered in their ascending size to make sure that the
IRDs with the smallest LHS part are produced first. The inner Zf test detects and

400 R. Godin and R. Missaoui

discards non full rules appearing in a same node. The algorithm also discards some
trivial IRDs such as P*@ (which happens when /IX’ I/ = 1) and P*P (which occurs
when P=X’). Since P*P can be inferred by the reflexivity axiom, any valid rule
produced from a concept (X, X’) will have a RHS of the form X’-P.

Complexity analysis
The following lemmas will be useful for the complexity analysis of the algorithms.

Lemma 1. The number of elements in 9 is bounded by 2K x 116 11, where K is an upper

bound on Ilf({~>,ll.

Lemma 2. For every node other than sup(T), the number of ancestors is bounded by 2K
where K is an upper bound on Ilf({x})ll.

The proofs for these lemmas are trivial. A more detailed complexity anlysis of the
lattice can be found in [20,21]. If the upper bound K grows with 110 11, we obtain an
exponential upper bound on 11 Yl/(with respect to IlO 11. However, in practical
applications such as for databases, there is always an upper bound K on lif({x})ll
which is independent of 11~5 11, and therefore the lattice has a linear upper bound with
respect to /I 0 11. In the case of relational databases, the number of attributes per
relation is fixed and bounded by a constant. Furthermore, even though the exponen-
tial factor in K may seem to be a problem, experience with many applications and
theoretical analysis using a uniform distribution hypothesis [24] has shown that 119 11
is usually less than k x II_YIl where k is the average size of Ilf({x})ll. Therefore the
number of iterations in the main loop is 0(11 G 11). Each iteration invokes the Gener-
ateRulesFromNode function. For almost all nodes H =(X, X’) in 9, we need to
compute the power set 9(X’) and compare each element in it with the intent of the
parents of H. Based on the assumption of a constant upper bound K, the number of
iterations of the For loop in the function, the number of parents of a node and the size
of Rules[H] per node are all bounded by the constant 2K. As a consequence, I(C I/ is
0(IlGlI), and the time complexity of Algorithm 4.1 is 0(IIC 11). These results are
supported by the empirical study (see Figs. 3 and 8).

The Zf tests inside the GenerateRulesFromNode function help eliminate redundant
rules produced by a same node. However, the rules generated from Algorithm 4.1 are
not necessarily reduced and non-redundant. Redundancy may occur between rules
generated from two different nodes of the lattice, and can be removed partly by
Algorithm 4.la or completely using the nonredundant cover algorithm [31].

The following algorithm takes the output of Algorithm 4.1 (or 4.3) and pro-
duces a complete set of reduced IRDs. The Reduce function aims at searching the
ancestors of the current node to check if a subset of the RHS of the current rule can be
inferred from already existing rules. After visiting the ancestors, if the new value of
RHS is 8, then the current rule is redundant and has to be removed.

An incremental concept formation approach for learning from databases 401

Algorithm 4.la
Input: A lattice 9, and the array Rules [1 . . . I/ 2 I/] generated by Algorithm 4.1 (or 4.3)

where an element Rules[H] represents the set of rules associated with the node H
in 9.

Output: A complete set C of conjunctive and reduced IRDs: P=Q

function Reduce(H) /* Returns a set of reduced rules corresponding to node H*/
function CheckParents(N, LHS, RHS)
begin

for each parent M = (Y, Y’) of N such that LHSn I” # 8 do
for each rule P*Q in Rules[M] do

if P C {LHSURHS} then
RHS:= RHS-Q /* the common part to RHS and Q is redundant */

endif
endfor
CheckParents(M, LHS, RHS)

endfor
end (CheckParents}

begin {Reduce}
A := 0; /* The set of IRDs for the current node */
for each rule P=>QERules[H] do

CheckParents(H, P, Q);
If Q # 0 then /* Q = 0 means that the initial rule is redundant */

d := du{P*Q}
endif

endfor
return(d)

end {Reduce}
begin

C := 0; /* the cumulative set of IRDs */
for each node H = (X, X’)E~ do

C:= CuReduce
endfor
return(C)

end

Complexity analysis
Based on Lemmas 1 and 2, the number of iterations in the main procedure is linear

with respect to the size of 0, and each call of the function Reduce is done in a constant
time since the number of ancestors of a node is bounded by 2K. Therefore, the time
complexity of Algorithm 4.1 a is 0 (II0 /I), which is supported by the empirical analysis
presented in Section 5.

402 R. Godin and R. Missaoui

Table 2 shows the rules generated from the lattice in Fig. 1 based on applying
Algorithm 4.1 and then Algorithm 4.la. As an example, the IRD : elm,=-fIrIs, is
generated from node # 12 based on Algorithm 4.1. Using Algorithm 4.la, this IRD
will be reduced to e, m, *fi sincef, *m, rl s1 holds from node # 9. Rules generated by
Algorithm 4.1 from nodes # 7, # 11, and # 13 are redundant, and therefore discarded
by Algorithm 4.la.

Algorithm 4.2 generates a subset of the whole set of IRDs discovered by Algorithm
4.1. This subset includes existence rules that are full but not necessarily right-reduced.
Algorithm 4.2 uses a slightly modified description of nodes in L??. Each node H,
instead of being a couple (X, X’) is a triple (X, X’, X”) where X and X’ have the same
meaning as earlier, and X” is the set of properties encountered for the first time in the
node H. Formally, X” is defined as follows: X”=X’-{ UislX’(Ni)}, where X’(Ni)
stands for the intent of the parent node Ni of H.

Algorithm 4.2
Input: A modified version of nodes in _Y where H=(X, X’,X”).
0utput:A set C of conjunctive existence IRDs: PaQ, and the array Rules [l . . .I1 2 111.
begin

C:=@; P:=@;
for each node H =(X, X’, X”)E_Y do

begin
Rules [If] := 0;
if X#8 and X”#@ and IIX’ll>l then

for each x’EX” do
Rules[H] := Rules[H] u { {x’}*(X’- {x’})}

endfor
P:= PUX”
C:= Cu Rules [If]
if P=9 then return(C)
endif

endif
end

endfor
return(C)
end

Complexity analysis
The number of iterations of the outer For loop is lIL.2’ I/ which is 0(II(O) 11) as

indicated earlier. Therefore, the time complexity of Algorithm 4.2 is 0(II (Co) I/). Com-
pared to Algorithm 4.1, Algorithm 4.2 has the same time complexity order but needs
slightly more space to store the lattice nodes, and produces a subset of the output of
Algorithm 4.1.

An incremental concept jbrmation approach for learning from databases

(0. {el. e2. e3. fl, f2, f3. m0. ml. rl. r2. SO. sl. ~2))

Fig. 2. The new concept lattice once the object #7 is added

The reader may notice in Table 2 that the rule e, m, =-slfi produced by Algorithm
4.1 is missing from the output of Algorithm 4.2 because it is a composite rule.

As opposed to semantic integrity constraints (e.g. functional dependencies) which
can be viewed as invariant properties whatever the state of the database is, implication
rules are dependencies that are inductively generated from, and hold for a particular
database relation. Therefore, they have to be updated whenever the state of the
database changes. To avoid the repetitive process of constructing the concept lattice
9 and determining the set C of implication rules from scratch each time a new object
is introduced in the input relation, we propose an algorithm for incrementally
updating both the lattice and the set C of generated rules.

Fig. 2 shows the new concept lattice once the object #7 is added.

Algorithm 4.3. Incremental update of concepts in 3 and rules in C when a new object
x* is introduced.

Input: A lattice 9, a set C of IRDs, and an array Rules [1. .I1 $P I/] before the insertion
of the new element x* characterized by f* ({x*}).

Output: The Galois lattice 9” for the new binary relation, the new value for C, and the
array Rules[l . . . /l_%/l].

404 R. Godin and R. Missaoui

Procedure SelectAndClassifyNodes
Procedure Search(H = X, X’))
begin

Mark H as visited and add H to C[11X’(H) ii];
for each Hd child of H

if Hd is not marked as visited
Search(H,)

endif
endfor

end {Search}
function GenerateRulesForNode (N=(X, X’)) /* See Algorithm 4.1 */

end {GenerateRulesForNode}
begin

Mark inf(_F) as visited and add inf(9) to C[IlX’(inf(.T))il]
for each x’E~* ({x*})

Search (Px.)
endfor

end {SelectAndClassifyNodes}

begin
1. Adjust sup(L?) for new elements in 9’
2. if sup(_Y)=(@, 0) then
3. Replace SUP(~) by: H=(x*,f* ({x*}));
4. for each x’~f* ({x*}) do

Make P,, point to H
endfor

5. Rules[H] := GenerateRulesForNode[H]
6. C := Cu Rules [H]
7. else
8. iff*({x*})q X’(sup(9)) then
9. if X(sup(Y))=@ then

10. for each x’~f+ ({x*}) such that x’$(sup(Z)) do
Make P,, point to sup(9’)
endfor

11. X’(suP(=W):=X’(suP(~))u,f+({x*))
12. else
13. Add a new node H =(8, X’(sup(LZ?))uf* (ix*})) /* H becomes sup(Z) */
14. Add a new edge (sup(Y),H)
15. endif
16. endif
17. SelectAndClassifyNodes;

An incremental concept fbrmation approach for learning from databases 405

18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.
34.
35.
36.
37.
38.

39.
40.
41.

42.
43.
44.
45.
46.
47.
48.
49.

for i=O to maximum cardinality do
C’[i]:= 0; /* Initialize the C’ sets */

endfor
(Treat each bucket in ascending cardinality order}
for i=O to maximum cardinality do

for each node HgC[i] do /* C[i]={Hl IlX’(H)II =i} */
if X’(H)cf” (ix*}) then /* H is then a modijed node */

Add x* to X(H);
Add H to C’[i];
if X’(H)=f* ({x*}) then exit endif

else /* H is then an old node */
Int := X’(H)nf* ({x*});
if j3 H 1 EC’ [// int II] such that X’(H 1) = Znt then /* H is a generator node */
Create New node H,=(X(H)u{x*}, int) and add it to C’[Ilintll];
Add edge < H,, H > ;
for each x’glnt do
if P,, points to H

Make P,, point to H,
endif

endfor
{Modify edges}
forj=O to Ilintl~ - 1 d o

for each H,EC’ [j] do
if X’(H,) c int then /* H, is a potetial parent of H, */

parent := true;
for each Hd child of H, do

if X’(H,) c int then
parent := false;
exit the for loop

endif
endfor;
if parent then

if H, is a parent of H then
eliminate edge (H,, H)

endif
Add edge (H,, H,)

endif
endif

endfor
endfor;
{Modify rules for H}
C :=C-Rules[H]uGenerateRulesForNode[H]));
Rules[H] := GenerateRulesForNode[H]);

406 R. Godin and R. Missaoui

50. Rules[H,,] := GenerateRulesForNode(H,);
51. C := Cu Rules [HJ;
52. if int =f* ({x*}) then exit endif
53. endif
54. endif
55. endfor
56. endfor
57. endif
end

Table 3 shows the results of the incremental modification of the lattice in Fig. 1 and
the generated rules when the new object #7 is added. New nodes and rules are
indicated in bold style, while deleted rules are underlined.

The lattice update process
Algorithm 4.3 is a refinement of the incremental algorithm for updating the lattice

proposed in [22]. The following gives details on the algorithm operation. First we

Table 3
Incremental update of the lattice and rules

Node numbers Rules generated by algorithm 4.3 Incremental modifications
for 6 objects once object #7 is added

4

7

8

9
10
11

12

13

14
15
17
18
19
20

f,==-,, m,, s1

s2-el, m,,f3, r2
f& s1*r2, e,, m,
r2, s,-f3, e,, m,
mO, sI*f3, r2, e,
rl, e,-f,, m,, s,
e,, m,*fI, rl, s1
f,, e,==-r,, m,, s1
e3, s,-fi, rI, m1

An incremental concept formation approach for learning from databases 407

explain how the lattice is incrementally updated, an then we look at the rule updating.
The lattice 2’ can be obtained from Y by taking all the nodes in S? and modifying the
X part of the nodes for which X’cf * (Ix*}) by adding x*. The nodes that remain
unchanged are called old nodes (nodes #2,5,6,&g, 10, 11, 12, 13, 14, 15, and 16 n Fig.
2) and the other ones are called modijied nodes in dp’ (nodes # 1, 3, 4, and 7). In
addition, new nodes are created (nodes # 17, 18, 19,20). These new nodes are always
in the form (Yu Ix*}, Y’nf * (ix*}) for some node (Y, Y’) in LZ’. They correspond to
new X’ sets with respect to 2. The related (Y, Y’) node in 2 is called the generator for
this new node. If the generators can be characterized in some manner, the new nodes
can be generated from them. Proposition 4 is one possible characterization, and is
used implicitly in Algorithm 4.3. This proposition is rather obvious but formal proofs
are found in [22].

Proposition 4. If (X, X’)=inf {(Y, Y’)ELZ~X’= Y’nf*({x*})} for some set X’ and
there is no node of the form (Z, X’) in _%’ then (Y, Y’) is the generator of a new node
(X= Yu{x*}, X’= Y’nf*({X*}))Es?.

Any new X’ set in _C?” will have to be the result of intersecting f * ({x*}) with some
Y’ set already present in the lattice 2. There may be many nodes in S? that give
a particular new intersection in this manner. For example, in Fig. 2, the new X’ set,
{m,, rl, f2} corresponding to the new node # 17 can be formed by intersecting
f*({x*})={sl, m,, rl,fz, e2} with the Y’ set of node #8 which is {rI, m,,f& e3}, or
the Y’ set of node # 14 which is {so, ml, rl, fi, e3}. However, there is only one of
these nodes that is the generator of the new node. It corresponds to the smallest
old node that produces the intersection. Unicity of the greatest lower bound is
guaranteed by the fondamental theorem (see Section 2). In Fig. 2, the generator
nodes for the new nodes # 17, # 18,# 19, and #20 are #8,# 15, # 13, and # 16
respectively.

One minor problem is for the case of the generator being sup(6p) =(@, 9). If the new
instance x* contains new features not contained in 9, there will be no generators for
the node ({x*}, f * ({x*}). In practical applications, we may want CS to grow as new
features are encountered. This is easily taken into account by simply adding the new
features to 9 as a first step in the algorithm, and therefore the characterization
remains valid.

Besides updating the nodes, the edges of the Hasse diagram also have to be taken
care of. First, the generator of a new node will always be a child to the new node in the
Hasse diagram. The children of old nodes do not change. The parents of generator
nodes, however, have to be changed. The generator is the only old node that becomes
a child of a new node. There may be another child but it will be a new node. For
example in Fig. 2, there is an edge from the new node # 17 to its generator # 8 and
there is another child # 19 which is a new node. The parents of old nodes that are not
generators remain unchanged.

408 R. Godin and R. Missaoui

Moreover, the parents of modified nodes never change. However, the children of
some modified nodes may change. There may be new children that are new nodes.
This implies that some old children have to be removed if the new children fall in
between the old child and the modified node. This is the case when the new node falls
between a generator and one of its parents. The result is that the edge from that parent
to the generator (e.g., edge (# 7, # 13) in Fig. 2) is replaced by two edges, one from the
parent to the new node (i.e., edge (#7, # 19)) and one from the new node to the
generator (i.e., edge (# 19, # 13)).

Table 4 is a summary of the modifications resulting from the update process with
respect to our categorization of nodes. The impact of the update on the X set, the X’
set, the parents and children are shown in the four columns of the table. The first three
categories (rows) represent the nodes that are in _P and remain in dp’ with possibly
some modifications. Cases 1 and 2 need the update of nodes or edges. The fourth case
concerns new nodes.

The lattice is initialized with one element: (0, 8). This means that 0 =S+ =0. The
algorithm updates 0 and 3 as new elements are added. If we assume that 0 and
9 contain in advance every element with an empty 9, the lattice would be initial-
ized with the two elements: (6, 0) and (0, 9). This would slightly simplify the algo-
rithm because adjusting 9 by adding new elements from f* (ix*}) would not be
necessary.

Lines 1-16 of the main procedure essentially take into account the case when new
properties appear by adjusting 9 in sup(T). Line 17 calls the SelectAndClassifyNodes
procedure. This procedure does the following tasks:

(1) First, it selects a subset of nodes from the lattice for the updating process, i.e. the
nodes which have at least one property in common with the new object because the
other nodes have no effect on the update process. The result is a huge saving as
opposed to searching the whole lattice. To perform the selection without having to
scan the whole lattice, for each x’ in 9 a pointer P,, on the smallest node containing x’
is maintained and these pointers are used as entry points for a top-down depth-first
search starting with every x’ inf* ({x*}). This guarantees that any node encountered
will have at least x’ in common withf* (Ix*}). Maintaining these pointers is expressed
in lines 4, 10 and 31 of the algorithm.

(2) Second, the nodes are sorted into buckets C[11 X’ II] of same cardinality (1 X’ I/
because the following part of the algorithm needs to work level by level based on

IIX’II.
The main loop (lines 20-56) iterates on the nodes selected in SelectAndClas-

sifyNodes by going through the C buckets in ascending /I X’ 11. Lines 22-25 process the
modified nodes. When the condition in line 25 holds, the rest of the treatment is
skipped because the nodes under consideration cannot be generators. New nodes are
obtained by systematically trying to generate a new intersection from each pair (Y, Y’)
already in the lattice by intersecting Y’ with f* (ix*)) (line 27). Verifying that this
intersection is not already present is done by looking at the sets already encountered

An incremental concept formation approach for learning from databases 409

which are subsets off* ({x*}) (line 28). These sets are kept in C’ (line 24, line 29). This
is valid only because the nodes are treated in ascending /I X’ I/. Furthermore, the first
node encountered which gives a new intersection is the generator of the new node
because it is necessarily the infimum. Thus, we compute the X set of the new node by
adding x* to the generator’s X set (line 29). Also, there is automatically an edge from
the new node to the generator as explained earlier (line 30). When a new node is added,
some edges have to be added from modified or other new nodes to the new node. The
candidates are necessarily in the C’ sets since their X’ set must be a subset off* ({x*}).
These parents of the new node are determined by examining the nodes in C’ (lines
3246) testing if the X’ sets are subsets of the X’ set of the new node (line 35) and
verifying that no child of the potential parent has this property (lines 36-39). It is
necessary to eliminate an edge between the new parent and the generator when there
is such an edge (lines 41 and 42).

The rule update process
The rule updating process is very simple compared to the lattice updating part.

Algorithm 4.3 computes the same set of rules as Algorithm 4.1 and uses the same
procedure for finding rules of a node, that is GenerateRulesForNode. As in Algorithm
4.1, the rules are related to the node which generates them, and represented by an
array Rules[l . . . I/ 9 111. The GenerateRulesForNode procedure, as previously ex-
plained, finds the rules by looking at the parents of the current node. So the non new
nodes which might have their rule set altered by the update operation are the
generator nodes since their parents are altered (see Table 4). The rules for generator
(old) nodes are treated in lines 47-49 where the old set of rules is replaced by the new

Table 4
Summary of the modifications of the update process

Type of node

1. Modified node
(Y, Y’)EG

X set

Add x*

X’ set Parents Children

No change No change Add new nodes in
some cases. Remove
a generator when
a new node in between

2. Old node generator of N No change No change Add new node N No change
and remove parent
when N is in between
this parent and the
generator

3. Old node non-
generator of N

No change No change No change No change

4. New node having
generator (Y, Y’)

Yu{x*} r’nf(ix*}) Old nodes and new Generator and
nodes possibly new node

410 R. Godin and R. Missaoui

set computed from the GenerateRulesForNode function. There are also new rules
which might be generated from the new nodes. This is done in lines 50 and 51 of the
algorithm using the same GenerateRulesForNode function. Lines 5 and 6 take care of
the special case for the first object added to the lattice.

Complexity analysis
The time complexity of iterating on the nodes for creating the intersections and

verifying the existence of the intersection in C’ is the major factor in analyzing the
complexity of the algorithm. Although the linking process is a bit tedious, the number
of nodes affected is bounded by 2K and this part is only done when a generator node is
encountered. This is why we give a fairly straight-forward algorithm for this process.
The rule generation is done only for generators and new nodes. Given the upper
bound K, the number of nodes treated is 0(110 II), // C’ 11 is bounded by 2K, the number
of generators and new nodes are also bounded by 2K and the rule generation using
GenerateRulesForNode is also bounded by a constant as explained earlier. Therefore
the total process is 0(I/O II).

We have proposed so far algorithms for generating rules in conjunctive forms. In
the following we present procedures aimed at detecting rules in (exclusive) disjunctive
forms as well.

Algorithm 4.4.
Input: A descriptor dj in 9, and a lattice 9.
Output: A disjunctive RHS rule of the form dj+Q1 v ... v Q,,,.
begin
RHS := True;

for each parent node Ni of sup(Y) such that X(sup(Z))=0 do
if djsX’(Ni) then /* X’(Ni) stands for the intent of Ni */

RHS:= RHS V (X’(Ni)-{dj})
endif

endfor
return(dj*RHS)
end

To collect the disjunction of the different conjunctions of descriptors that dj implies,
Algorithm 4.4 selects all the parent nodes Ni of sup(Y) such that these nodes include
dj in their intent, and then takes the descriptors other than dj. This algorithm is 0 110 /I
and is particularly useful when there is no (nontrivial) conjunctive IRD with dj as
a premise. E.g., the characterist ic rule for carnivora is e,+f3m0r,sl v

bbr2s2 vfislmlrl which can be simplified (using existing IRDs) into
el+f3s1 vf3s2 vfi, meaning that carnivora are either webbed animals able to swim,
or animals with claws.

An incremental concept .formation approach ,fiw learning ,fk)m databases 41 I

Algorithm 4.5
Input: A descriptor di in 9, and a set C of conjunctive IRDs.
Output: The disjunctive LHS rule Q1 v ... v Q,=di.
begin
Old := 0; New I= di; LHS:= True;

while Old # New or C # $!I do
begin
Old:= New

for each {P~Q}EC do
if 3SE New such that Q c S then
begin

C:= Z- {P+Q}
New := N e w u { P u (S - Q) }
L H S : = L H S v {Pu(S-Q)}

end
endif

endfor
end

endwhile
return (LHS~di)
end

This algorithm implicitly uses the same inference axioms as those related to
functional dependencies to derive all the alternative Qj that imply a discriptor di. For
example, if dj=f and C = { a*b; bcdd; kde; d*e; eaf}, then Algorithm 4.5 will
produce e v d v k v bc v ac*$

Complexity analysis

The While needs about 119 // iterations while the For loop is executed 11 C 11 times.
Therefore, the overall complexity is 0(11% /I x I/ Cf 11) which is reduced to 0(l(c 11)
if the assumption of a fixed bound K on the number of descriptors per object
is retained.

5. Empirical analysis of the algorithms

The algorithms described in Section 4 have been implemented in Smalltalk within
the environment of ObjectWorks (release 4.0). The prototype runs both on SUN
SPARC work-stations and MacTntosh micro-computers equipped with 16 Mega-
bytes RAM. The empirical comparison of the algorithms has been undertaken for
a real-life application. The application concerns a data repository for a large database
describing more than four thousand of attributes by means of a set of keywords, and

412 R. Godin und R. Missuoui

v = .206x + 18.284, R-squared: .961

00. , . , . , . , . , . , . , ,
0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

11011

Fig. 3. Time for generating rules from the lattice using Algorithm 4.1.

30
y = .031x - 2.374, R-squared: .953

? 25 1 0 t
z
42 20.

E
.i? 15.

P
2
= 10.
z

Eiz 5.

0 , 00
0 100 200 300 400 500 600 700 800

Fig. 4. Time for generating the left-reduced rules from the rules discovered by Algorithm 4.1 (or 4.3).

more than one hundred entities with their corresponding attributes. Only a sample of
five to seven hundred attributes has been considered.

For lack of space, only the most significant results are given. Fig. 3 shows the time
(in seconds) for generating rules from an existing lattice using Algorithm 4.1. The rules
were generated for a varying number of objects by increments of 25. As expected, the
growth is linear in 110 /I. The value 0.961 for the R-squared is very significant.
Obviously, given the unpredictable distributions of properties in a real world applica-
tion, there are some variations which depend on how each new batch of objects relates
to the previous ones. Fig. 4 shows the time for reducing the rules using Algorithm

An incremental concept ,fbrmation upproach jbr learning .fiom databases 413

y = 35.542 + .438x + 5.997E-4x2
8001 ot
700.

600.

500.

400.

300.

200.

100.

0. _.o-_______ .ll_l .__...... - 11~ ._._.“.._ _.....

-1004 . , . , . , . , . , . , . , . 4
0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

Fig. 5. Cumulative time for the incremental generation of the lattice and the rules using Algorithm 4.3.

4.la. This process can be applied to the rules produced either by Algorithm 4.1 or
Algorithm 4.3 since they both produce the same set of rules. Also as expected, the
growth is linear in 110 11. A careful look at Figs. 3 and 4 indicates that the additional
time needed to reduce rules is quite small compared to the rule generation itself. The
R-squared value of 0.953 is very significant.

Fig. 5 shows the time for incremental update using Algorithm 4.3. The algorithm
was applied repeatedly for each new object, and the total time was accumulated from
the beginning of processing. Given the 0(116) I/) complexity of adding a new object, we
should expect the total time to be 0(110 l12). This is supported by the empirical
behavior and second order polynomial regression.

In order to see the advantage of using the incremental algorithm against the non
incremental algorithm, we have generated the lattice incrementally using basically
Algorithm 4.3 without the rule generation part, and after each new object was added
to lattice, Algorithm 4.1 was applied for rule generation. The total cumulative time
was measured including both the incremental generation of the lattice and the rule
generation using Algorithm 4.1. Fig. 6 shows the results.2 A comparison of Fig. 5 and
6 shows that the saving in computing resources is very substantial when using the
incremental algorithm.

In this comparison, the underlying hypothesis is that the rules are generated
each time there is a new object added. But suppose the rules are rarely needed. In
such a case, it might be better to generate all the rules upon request for some
batch of objects. In this context, it would be interesting to compare the following
costs:

* Here, I/ 6 11 is limited to 450 due to the overflow of the 16 bit integer time counter in Smalltalk

414 R. Godin and R. Missaoui

y=-838.656+26.694x +.091x2
35ooaf *. . . ' ' . * . ' t

-5oool . , . , . , . , . , . , . , . , . , . 1
350 400 450 5000 50 100 150 200 250 300

11011

Fig. 6. Cumulative time for the incremental generation of the lattice
Algorithm 4.1 for each new object.

plus the generation of rules using

(1) The cost of generating the lattice plus the whole set of rules (using Algorithm
4.1) in one shot for some number of objects /I CO 11.

(2) The total cumulative cost for incrementally maintaining the lattice plus the cost
for generating the whole set of rules (using Algorithm 4.1) for the same set of objects.

(3) The total cumulative cost for incremental generation of the lattice and rules
(using Algorithm 4.3) for the same set of objects.

Based on the evidence of the relative performance of currently known batch
algorithms versus our incremental algorithm for generating the lattice [3], surpris-
ingly, the incremental algorithm outperforms the batch algorithms in most cases of
practical interest when counting the total cumulative time for incremental update. It is
therefore as efficient or better to use the incremental algorithm even for one shot batch
generation. Case (1) can therefore be taken into account by case (2) where we think of
the lattice batch update being done by the lattice incremental algorithm.

Fig. 7 compares case (2) and (3). One can notice that using the batch Algorithm 4.1
might be advantageous if the rules are rarely needed or if we only want to see the rules
for a one shot analysis of some fixed set of objects. However, given a batch of new
objects, when is it better to use the incremental algorithm for the rules versus using the
regeneration from scratch? Fig. 8 helps answering this question. For the lattice update,
in both cases we can use the same incremental algorithm. For rule generation, we
isolated, in Algorithm 4.3, the additional time needed for incremental rule updating
and the result is compared to the batch rule updating using Algorithm 4.1. For
example, when there are 400 objects already treated, if we want to generate the whole
rule set using Algorithm 4.1, it takes 96 seconds. The additional time in Algorithm 4.3
for incrementally updating the rule set is 15 seconds. Therefore, if we want to add
a batch of 7 objects, the additional time for incrementally updating the rules would be

An incremental concept formation approach,for learning from databases 415

800~

700.

600.

500.

400.

300.

200.

100.

0,

Scattergram for columns: X lY1 . ..XlY2

OCase(2): lattice + rules (4.1) 0 Case(3): Cumulative time (4.3)

0
0 _

on
0

0

q n0
0 .

q n+
O0

oo” .

ooo”
oo”

-100 t
0 100 200 300 400 500 600 700 800

11011

Fig. 7. Incremental generation of the lattice plus batch generation of rules using Algorithm 4.1. versus
incremental generation of the lattice and rules.

Scattergram for columns: X lY1 . ..XlY2
OTime for rules (4.1) q Additional time for rules (4.3)

225a ’ ’ ’ ’ n ’ ’ - L
200. 0 .
175. oOO -
150. 0

0

-25 t
0 100 200 300 400 500 600 700 800

11011

Fig. 8. Incremental versus batch comparison when isolating the rule processing.

about 10.5 (= 7*15) seconds compared to 96 seconds for regenerating the whole set of
rules. It therefore becomes preferable to use the batch updating of the rules if we want
to add about 7 or more objects before looking at the rules when there are 400 objects
in the lattice. This number would become larger as the lattice grows because the
growth factor of the batch generation of rules is larger than for the incremental update
as can be observed from Fig. 8.

Finally, Fig. 9 compares the time for generating the rules using Algorithm 4.1
(composite and existence rules) and Algorithm 4.2 (existence rules only). If the subset
generated by Algorithm 4.2 is useful enough, the savings are significant. For

416 R. Godin und R. Missaoui

Scattergram for columns: X lY1 . ..XlY2

225~
OTime for rules (4.1) q Time for rules (4.2)

- . - . * . * . * . I.
200. 0 .

175. oo” -
3 0
: 150- 0
3 125. 0
.g 100. oooooO

r
2 75. 00

oooOo

w
50.

oooO

00 000

25- 0

0_~..8.~.D~.96.e.~~~~~.~~~.~.~~~.n.~.n.~~~~~~.~.

- 2 5 , . , . , . , . , . , . , . , . ,-
0 100 200 300 400 500 600 700 800

11011

Fig. 9. Time for generating the rules from the lattice using Algorithm 4.1 versus Algorithm 4.2.

Algorithm 4.2, the time is less than two seconds as opposed to [6 . . .205] range for
Algorithm 4.1.

6. Conclusion

We have proposed an approach based on the concept lattice structure to discover
concepts and rules related to the objects and their properties. This approach has been
tested on many data sets found in the literature and has been proved to be as efficient
and effective as some works related to knowledge mining [S, 431. For example, all
rules that can be generated by algorithms in [S, 271 are also produced by our
algorithms. The algorithms presented in this paper have also been tested on real-life
applications [25].

Our approach to rule generation can be very useful in database applications for
discovering semantic integrity constraints such as implication dependencies and
functional dependencies which are very common in DB applications. The knowledge
discovered may be helpful for future learning and a better understanding of the
semantics of the data. It may also be helpful in making more effective decisions with
regard to scheme refinement, integrity enforcement, and semantic query optimization.

However, databases are basically used to store and retrieve a large amount of data.
The schema of real-life applications is most likely complex in terms of the entities, the
attributes, and the relationships among entities. Moreover, there may be a great
number of possible modalities for the attributes. To overcome this complexity in the
size and the structure of data, we believe that two kinds of pruning can be undertaken
before or during the process of knowledge mining: input pruning and search space

An incremental conwpt ,jiwmation approach for leuming from datuhases 417

pruning. The first one consists of discarding some input data in order to avoid both
the processing of potentially useless data and the generation of more likely irrelevant
concepts and rules. The second pruning happens once the concept lattice is produced,
and consists into bypassing some concepts and ignoring some rules. There are some
studies done on lattice pruning [33,25, 361 which could be applied in this context. To
deal with input pruning, we suggest the use of sampling techniques to reduce the size
of the observation set, and exploratory data analysis techniques to get hints about
attributes and objects that play a significant role in discriminating objects. In that
way, only the objects and attributes that are most likely relevant and representative
are selected. The search space pruning includes also the confirmation of a hypothesis
PaQ by selecting the smallest node (in the lattice) with a discription P without
necessarily generating the whole set of rules. This task can be done in a constant time.

Our current research in the area of knowledge discovery includes: (i) generalizing
the Galois lattice nodes structure to allow richer knowledge representation schemes
such as conceptual graphs, (ii) dealing with complex objects, (iii) and testing the
potential of these ideas in different application domains such as software reuse,
database design, and intensional query answering.

Acknowledgements

We are greatful to the anonymous referees for their valuable comments and
suggestions that helped a lot in improving the original paper. This research has been
supported by NSERC (the Natural Sciences and Engineering
Canada) under grants Nos. OGP0041899 and OGP0009184.

Research Council of

References

111

VI

131

141

I51

161

c71

IS1

R. Agrawal, S. Ghosh, T. Imelinski, B. Iyer and A. Swami, An interval classifier for database mining
applications, in: Proc. 18th VLDB Conf: (1992) 560-573.
R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in large
databases, in: Proc. ACM SIGMOD’9_7 Confi (1993) 2077216.
H. Alaoui, Algorithmes de manipulation du treillis de Galois d’une relation binaire et applications,
these de maitrise, Department de Mathematiques et d’Informatique, Universite du Quebec a Mon-
treal, 1992.
M. Barbut and B. Monjardet, Ordre et Ckkfication. A/g&e et Comhinatoire, Tome II (Hachette,
Paris, 1970).
R.L. Blum, Discovery confirmation and incorporation of causal relationships from a large time-
oriented clinical data base: The RX Project, Computers Biomedical Research 15 (1982) 164-l 87.
J.P. Bordat, Calcul pratique du treillis de Galois d’une correspondance, Mathkmatiques et Scwnces
Humaines 96 (1986) 3 l-47.

A. Borgida and K.E. Williamson, Accommodating exceptions in databases, and refining the schema
by learning from them, in: Proc. flrh Co@ On Very Large Data Bases, Stockholm (1985) 72-81.
Y. Cai, N. Cercone and J. Han, Attribute-oriented induction in relational databases, in: G. Piatetsky-
Shapiro and W.J. Frawley, eds., Knowledge Discovery from Databases (AAAI Press/MIT Press, Menlo
Park, CA, 1991) 213-228.

418 R. Godin and R. Missaoui

[9] J.G. Carbonell, Introduction: Paradigms for machine learning, in: J.G. Carbonell, ed., Machine
Learning: Paradigms and Methods, (MIT Press, Cambridge, MA, 1990) l-9.

[lo] M. Chein, Algorithme de recherche des sous-matrices premikres d’une matrice, Bull. Math. Sot. Sci.
R.S. Roumanie 13 (1969) 21-25.

[ll] Committee for Advanced DBMS Function, Third Generation Database System Manifesto, SIG-
MOD RECORD 19 (1990) 31-44.

[12] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Lattices and Order (Cambridge
University Press, Cambridge, 1990).

1137 B.A. Davey and H.A. Priestley, Introduction CO Alqorithms (McGraw-Hill. New York. 1990).

1171

IIf31

Cl91

PO1

PI

WI

1231

[241

1251

1261

1271

T. Ellman, Explanation-based learning: A survey of programs and perspectives, ACM Comput.
Surljeys 21 (1989) 162-222.
G. Fay, An algorithm for finite Galois connexions, J. Comput. Linguistic and Languages 10 (1975)
99-123.
W.J. Frawley, G. Piatetsky-Shapiro and C.J. Matheus, Knowledge discovery in databases: An
overview, in: G. Piatetsky-Shapiro and W.J. Frawley, eds., Knowledge Discovery from Databases
(AAAI Press/MIT Press, Menlo Park, CA, 1991) l-27.
B. Ganter, Two basic Algorithms in Concept Analysis. Preprint #831, Technische Hochschule
Darmstadt, 1984.
J.H. Gennari, P. Langley and D. Fisher, Models of incremental concept formation, in: J.G. Carbonell,
ed., Machine learning: Paradigms and methods, (MIT Press, Cambridge, MA, 1990) 1 l-62.
R. Godin, L’utilisation de treillis pour Paccts aux systtmes d’information, Ph.D. Thesis, Universiti de
Montrbal, 1986.
R. Godin, E. Saunders and J. Gecsei, Lattice model of browsable data spaces, Inform. Sci. 40 (1986)
89-116.
R. Godin, Complexit& de structures de treillis, Annales des Sciences Math&natiques du Quihec, 13(l)
(1989) 19-38.
R. Godin, R. Missaoui and H. Alaoui, Incremental algorithms for updating the Galois lattice of
a binary relation, Tech. Rep. # 155, Dkpartement de Mathbmatiques et d’Informatique, Universitk du
Qukbec B Montrial, 1991.
R. Godin, R. Missaoui, and H. Alaoui, Learning algorithms using a Galois lattice structure, in: Proc.
Third Int. Co@ on Tools for Art$cial Intelligence, San jose, CA (1991) 22-29.
R. Godin, R. Missaoui and A. April, Experimental comparison of Galois lattice browsing with
conventional information retrieve1 methods, Internat. J. Man-Machine Studies, 38 (1993) 747-767.
R. Godin, G. Mineau and R. Missaoui, Rapport de la phase 2 du projet Macroscope pour le volet
Rkutilisation, 1993.
J.L. Guigues and V. Duquenne, Families Minimales d’Implications Informatives RCsultant d’un
Tableau de Donnkes Binaries, Mathbmatiques et Sciences Humaines 95 (1986) 5-l 8.
J. Hong and C. Mao, Incremental discovery of rules and structure by hierarchical and parallel
clustering, in: G. Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery from Databases,
(AAAI Press/MIT Press, Menlo Park, CA, 1991) 177-194.

[28] Y.E. Ioannidis, T. Saulys and A.J. Whitsitt, Conceptual learning in database design, ACM Trans.
Information Systems 10 (1992) 265-293.

[29] K.A. Kaufman, R.S. Michalski, and L. Kerschberg, Mining for knowledge in databases: goals and
general description of the INLEN system, in: G. Piatesky-Shapiro and W.J. Frawley, eds., Knowledge
Discoveryfkom Databases (AAAI Press/MIT Press, Menlo Park, CA, 1991) 449462.

1301 K.J. Liecerherr, P. Bergstein and I. Silve-Lepe, Abstraction of object-oriented data models, in: Proc. of
International Conf. on Entity-Relationship (Elsevier, Lausanne, 1990) 81-94.

[31] D. Maier, The Theory of Relational Databases (Computer Science Press, Rockville, MD, 1983).
1321 Y. Malgrange, Recherche des Sous-Matrices Premieres d’une Matrice B Coefficients Binaires; Ap-

plications i Certains Probl2mes de Grpahes, in: Proc. Deuxiime Congrk de I’AFCALTI. (Gauthier-
Villars, Paris, 1962) 231-242.

1331 E. Mephy Nguifo, Concevoir une Abstraction B Partir de Ressemblances, Doctorat, Universitb
Montpellier II Sciences et Techniques du Languedoc, 1993.

[34] R.S. Michalski, J. Carbonell and T. Mitchell, Machine learning: an artificial intelligence Approach
(Tioga Palo Allo, CA, 1983).

An incremental concept formation approachfor learning from databases 419

1351 R.S. Michalski and Y. Kodratoff, Research in machine learning: Recent progress, classification of
methods and future directions, in: Y. KodratofI and R.S. Michalski, eds., Machine learning. An
artificial intelligence approach (Morgan Kaufmann, San Mateo, CA, 1990) l-30.

1361 G. Mineau and R. Godin, Automatic structuring of knowledge bases by conceptual clustering, IEEE
Trans. on Knowledge and Data Engineering, accepted for publication.

1371 J. Minker ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los
Altos, CA, 1988).

[38] R. Missaoui and R. Godin, An incremental concept formation approach for learning from databases,
in: V.S. Alagar, VS. Lakshmanan and F. Sadri eds., Workshop on formal methods in databases and
software engineering, Montreal, May 15-16, 1992 (Springer, London, 1993) 39-53.

1391 R. Missaoui and R. Godin, An expert system for discovering and using the semantics of databases, in:
Proc. The World Congress on Expert Systems, Orlando, FL (Pergamon Press, Oxford, 1991)
1732-1740.

[40] A. Motro, Using integrity constraints to provide intensional answers to relational queries, in: Proc.
Fifteenth International Con& On Very Large Data Bases. Amsterdam (1989) 2317246.

[41] S. Muggleton and L. De Raedt, Inductive logic programming: Theory and methods, J. Logic
Programming (1993).

1421 E.M. Norris, An algorithm for computing the maximal rectangles in a binary relation, Revue
Roumaine Math. Pares Appl. 23 (1978) 243-250.

1431 G. Piatetsky-Shapiro and W.J. Frawley, Eds., Knowledge discouery in databases (AAAI Press/MIT
Press, Menlo Park, CA, 1991).

1441 A. Silbershatz, M. Stonebraker and J.D. Ullman, Database systems: Achievements and comm.
opportunities, ACM 34 (1991) 110-120.

[45] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival, ed.,
Ordered sets (Reidel, Dordrecht, 1982) 4455470.

1461 R. Wille, Knowledge acquisition by methods of formal concept analysis, in: E. Diday, ed., Data
analysis, learning symbolic and numeric knowledge (Nova Science, New York, 1989) 3655380.

