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Abstract

In this paper, the use of Markov Logic Networks (MLN) is considered for applica-
tion in spoken dialogue systems.

In spoken dialogues information that can be represented in logical form is often
not explicitly expressed, but has to be inferred from detected concepts. Often, it
is necessary to perform inferences in presence of incomplete premises and to get
results with an associated probability. MLNs can be used for this purpose even in
cases in which other known techniques llike CRF or Bayesian Networks cannot be
easily applied.

Results on the inference of user goals from partially available information are
presented using the annotated French Media corpus.
Keywords: spoken dialogue system, spoken language understanding, markov logic
network, probabilistic logic

1 Introduction

In early Spoken Language Understanding (SLU), interpretations were carried on
by binding variables and instantiating objects based on Automatic Speech Recog-
nition (ASR) results [Walker et al. (1977)]. More recently, techniques for automatic
learning from corpora were introduced in which interpretation is seen as a clas-
sification or a translation process. Classifiers and translators are automatically
trained. As a first step, a surface semantic representation is generated. The ele-
ments of such representations are often called semantic or concept tags. Concept
tags may represent relation names, variable types and values, function names.
In a second step, composition of tags is performed into structures. Composition
has to satisfy structural descriptions that are commonly expressed in logic form
(see [Brachman (1978)]). Thanks to this representation, assertions not present in
a natural language message can be obtained by inference. Composition knowledge
can be learned from examples but can also be compiled by experts because seman-
tic structures have precise definitions in terms of their components.
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In a recent paper [Damnati et al. (2007)], a dialogue system has been described.
It includes semantic knowledge represented in logic form following the KLONE
model [Brachman (1978)]. Logic knowledge has been integrated in a probabilistic
finite-state model.

When SLU systems are used in a telephone service, most often their output
is processed with the objective of executing an action to satisfy one or more user
goals.

In applications such as information seeking dialogues, there are different types
of actions that can be performed, based on concept tags which have been detected
and possibly been associated with values. Examples of actions are inferences for
asserting new facts not explicitly expressed in the spoken message. System actions,
like the access to a database, are performed when enough information is available,
e.g, for submitting a request. Requests to users are issued when the dialogue
manager considers that it needs more information in order to satisfy a user goal.

While inferences can be performed in a logic framework, other types of ac-
tions are described by precondition, action, post-condition rules which are not
necessarily described by logic formulae. These actions can be executed only if pre-
conditions are asserted as true. Action results are represented by post-conditions.
Asserting preconditions for performing actions can be considered as intermediate
goals useful for reaching a final goal which satisfies what the system considers a
well understood user request.

In this framework, the role of SLU is to hypothesize the truth of preconditions
for possible actions. Generation of hypotheses is affected by degrees of imprecision
because SLU knowledge is often imperfect and the transcription of user utterances
in terms of words may contain errors. Furthermore, information may be provided
by users in different dialogue turns. Thus, in a given dialogue turn, there may be
several possible goal hypotheses which are all affected by a degree of uncertainty
due to the fact that only some elements of the goal description (e.g. preconditions
for an action) have been hypothesized and the hypotheses are uncertain.

In order to make decisions about future dialogue actions, it is useful to estimate
a probability that an hypothesized goal or sub-goal is part of the user intentions.
Interesting approaches have been proposed for combining the expressive power of
first order logic and the possibility of assigning probabilities to imprecise or in-
complete inferences using exponential methods.

In this paper, the possibility of using Markov Logic Networks (MLN) in SLU
systems is discussed and a probabilistic model for predicting user goals is proposed.
Section 2 introduces the use of probabilistic logic for composing concept tags into
structures and predicting user goals. Section 3 provides a background of MLNs.
Section 4 describes experimental results.

2 On the use of probabilistic logic for semantic composition

Essential definition of logic formulas used in the following can be found in books
[Nilsson (1980)] [Nilsson (1986)].They are now briefly reminded. Logic formulae
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are used for structural description of semantic objects and potential goals. They
are part of the domain independent and the domain dependent semantic knowl-
edge of an application. Their computational repository is a knowledge base (KB).
Formulae contain variables which are bound to constants and may be typed. An
object is built by binding all the variables of a formula or by composing existing
objects.

Formulae return truth and are constructed using constants which represent
objects and may be typed, variables, functions which are mappings from tuples
of objects to objects and predicates which represent relations among objects. An
interpretation specifies which objects, functions and relations in the domain are
represented by which symbol. A term is an expression representing an object (it
can be a constant, a variable or a function). An atomic formula (or atom) is a
predicate applied to a tuple of terms.

A formula is recursively constructed from atomic formulae using logical connec-
tives (conjunction, disjunction, negation, implication, equivalence) and quantifiers
(universal, existential). Formulae of KB are implicitly conjoined, so KB is a large
formula.

A ground term is a term containing no variables. A ground atom (or ground
predicate) is an atomic formula all of which arguments are ground terms. Atoms
are grounded when values for variables are found and associated with predicates.
Based on ground atoms, inferences can be performed in the KB to instantiate
objects. Hypotheses about functions and instantiated objects are written into a
Short Term Memory (STM).

In SLU, interpretations are carried on by binding variables and instantiating
objects based on ASR results and inferences performed in the KB. A possible world
assigns a truth value to every possible ground atom. A formula is satisfiable if and
only if there exists at least one world in which it is true.

The basic inference problem consists in determining whether KB |= F which
means that a formula F is true in all worlds in which KB is true. The semantic
knowledge used in [Damnati et al. (2007)] is represented in logical form by defining
entities with roles, specifying the type of values the roles can take and a structural
description expressing relations among roles and their fillers [Brachman (1978)].

A practically useful class of user goals consists in requests which can be fulfilled
by instances of structures and roles represented by ground atoms. As dialogue pro-
gresses, some predicates are grounded by the detection of predicate tags, property
tags and values. Such detection is made by the interpretation component. Other
predicates are grounded as an internal result of inference. A user goal is asserted
when all its components are grounded and asserted true.

The proposed approach is illustrated by the example of a user goal consisting
in a reservation of an hotel in a town for some dates. Such a request implies the
grounding of the predicates represented by the premise of an inference rule that
corresponds to the structural description of the request:
town(t) ∧ hotel(h) ∧ date(d) ∧ reservation(i) ∧ resHotRelated(i,h) ∧ resDateRelated(i,d)

∧ isLocatedIn(h,t) ⇒ requestReservation (h,t,d).
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The rule contains unary predicates expressing the roles of the request and
binary predicates expressing the necessary relations among roles.
A simple example of implications is made by the following formula grounded by
constants A,B and G of the following sentence: I have to fly from A to B and I
would like to know about ground transportation (G) at the destination.

move(A,B) ∧ queryService(G,destination) ⇒ queryService(G,B)

where queryService(z,y) means query about z at location y.

Once the inference is completed, a request can be submitted to a database that
will produce an answer. If the answer is negative, the system should find out which
ground atoms prevented from performing the transaction in the database. If the
answer is positive, then it can be used to instantiate a post-condition structure by
assigning values to all its roles.

Grounding the predicates of a premise for asserting a goal is a process that
goes through a sequence of states. Let Γi,k be the content of the STM used for
asserting the predicates grounded at the kth turn which are part of the premise
for asserting the ith goal. Let Gi be an instance of the ith goal asserted after
grounding all the predicates in the premise.

Γi,k can be represented by a composition from a partial hypothesis Γi,k−1 avail-
able at turn k − 1, the machine action am,k−1 performed at turn k − 1 and the
hypothesis xi,k about a semantic component γi,k generated at turn k, based on
evidence provided by acoustic features Yk, i.e.: Γi,k = χ(xi,k, am,k−1,Γi,k−1).

Let Sk(Gi) be the information state representing the hypothesis that Γi,k is
a partial grounding of the premise for asserting Gi. State probability can be
written as follows: P (Sk(Gi)|Y ) = P (Gi|Γi,k)P (Γi,k|Y ) where P (Gi|Γi,k) is the
probability that Gi is the type of goal that corresponds to the user intention given
the ground predicates in Γi,k. Notice that Γi,k not only contains the ground atoms
which are premises for asserting Gi, but also the portion of the KB which has been
used to assert these predicates.

Predicates in a structural description like isLocatedIn(h,t) express the fact that
the user did not simply mention a town and a hotel, but indicated that the goal
is about a hotel h in a town t. It is possible, in fact, to mention a hotel and a
town in a discourse with a different relation, like in the sentence I read about town
A in my hotel room. The fact that a user asks about a hotel h in a town t does
not necessarily implies that the relation isLocatedIn(h,t) will be asserted after a
database request.

It is useful, for deciding about dialogue actions, to define dialogue states and
compute their probabilities. Dialog states may represent successive phases of an
inference process which may use incomplete or imprecise implication rules. Prob-
abilities of states can be used to define a belief of a dialogue system and justify the
need for the computation of P (Sk(Gi)|Γi,k). To that extend, the MLN seems an
appropriate framework to derive probabilities from logically formulated structures.
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3 Markov Logic Network

A Markov logic network (MLN) is a probabilistic knowledge representation over a
finite domain of objects. MLNs provide a simple although efficient way to specify
very large Markov networks and are able to incorporate a wide range of domain
knowledge. But, more than that, a major asset of MLNs is their ability to han-
dle uncertainty, i.e. to tolerate imperfect and contradictory knowledge and thus
reducing brittleness. More details can be found in [Richardson and Domingos
(2006)]. Some definitions are given in the following.

3.1 Markov network

A Markov network is a model for the joint distribution of a set of random variables
X [Pearl (1988)]. X is a Markov network (or a Markov random field) iff the
conditional probability of a random variable is only function of its neighbours in
the k-cliques of dependencies. Formally, a Markov network consists of:

• an undirected graph G = (V, E), where each vertex v ∈ V represents a random
variable in X and each edge (u, v) ∈ E represents a dependency between the
random variables u and v.

• a set of potential functions φk, one for each clique k in G. Each φk is a mapping
from possible joint assignments (to the elements of k) to non-negative real
numbers.

From the Markov network, the joint distribution of X is derived as:

P (X = x) = 1
Z

∏
k φk(x{k})

where x{k} is the state of the random variables in the kth clique and the par-
tition function Z (normalizing constant) is: Z =

∑
x∈X

∏
k φk(x{k}).

3.2 Markov Logic Networks

A first-order KB defines a set of possible worlds with hard constraints. A world
violating a constraint has a null probability. A distinctive feature of MLNs is their
ability to smooth the constraints. Whenever a world is in contradiction with a
formula, its probability is lowered, not zeroed. And globally the fewer formulae
a world violates, the more probable it is. A weight is associated to each formula
reflecting how strong the constraint it represents is: the higher the weight, the
greater the difference in log probability between a world that satisfies the formula
and one that does not. At the limit of infinite weights, the MLN is a logical model
(the probability distribution tends to converge to a uniform distribution over the
worlds satisfying the KB).

Formally, an MLN L is a set {(Fi, wi)} with Fi a formula in first-order logic
and wi a real number. Together with a finite set of constants C = {c1, c2, ..., c|C|},
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{(Fi, wi)} defines a Markov network ML,C (example: see Figure 1). This network
has one node for each possible grounding of each predicate appearing in L. The
node value is 1 if the ground atom is true, and 0 otherwise. The weight of the
feature in the potential function is given by the wi associated with Fi in L. The
weight of a formula F is the log likelihood difference between the worlds where F is
true and where it is false. Unfortunately, if F shares variables with other formulae,
it is hardly possible to have those formulas’ trueness unchanged while reversing
F ’s. The one-to-one correspondence between formulae weights and probabilities
is then lost. This is the reason why a learning strategy is used to derived the
formulae weights. The algorithm provided in [Richardson and Domingos (2006)]
uses a Monte-Carlo maximum likelihood estimator and the limited-memory BFGS
algorithm.

To illustrate the use of MLN, an MLN providing a model to describe relations
in the hotel reservation field can be built. Here, the predicate N(h, k) means ”hotel
h and hotel k are neighbours”, S(h) means ”h is near the sea” and B(h) means
”h offers beach leisure activities”. Example of constraints is proposed in Table 1:

Table 1: Proximity of the sea

English First order logic Clausal form Weight
If two hotels are ∀h∀k N(h, k) ⇒ ¬N(h, k) ∨ S(h) ∨ ¬S(k) 1,5

neighbours, either (S(h) ⇔ S(k)) ¬N(h, k) ∨ ¬S(h) ∨ S(k) 1,5

both are near the sea

or neither does.

Proximity of the sea entails ∀h S(h) ⇒ B(h) ¬S(h) ∨B(h) 2

beach leisure activities

Figure 1: Grounded Markov network obtained by applying the two formulae of Table 1
to the constants H and K

N ( K , H )

N ( H , K )

N ( K , K )

B ( K )

S ( K )S ( H )

B ( H )

N ( H , H )

An MLN and different constant sets produce different Markov networks but all
have regularities in their structure and parameters. For instance, all groundings of
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the same formula have the same weight. Each state of ML,C stands for a possible
world. The probability distribution over possible worlds of an ML,C is given by:

P (X = x) =
1
Z

exp
( ∑

i

wini(x)
)

=
1
Z

∏

i

φi(x{i})ni(x) with ni(x) the number of

true groundings of Fi in the world x, x{i} the truth values of the atoms appearing
in Fi and
φi(x{i}) = ewi .

As an example, let us consider the MLN containing the second formula of
Table 1 and the set of constants C = {H}. Four worlds are possible: {S(H), B(H)},
{¬S(H), B(H)}, {S(H),¬B(H)}, {¬S(H),¬B(H)} . From the last equation, we obtained
P ({S(H), ¬B(H)}) = 1/(3e2 + 1) . The probability of each of the other three worlds
is e2/(3e2 + 1).

3.3 Inferences

The inference mechanism is generalized to any formula in the MLN. The proba-
bility of the formula F1, given that the formula F2, is provided by:

P (F1|F2, L, C) =
P

x∈XF1
∩XF2

P (X=x|ML,C)
P

x∈XF1
P (X=x|ML,C) such that L is an MLN, C is a set of

constants appearing in F1 and F2 and XFi is the set of worlds where Fi appears1.
An approximation is obtained using a MCMC (Monte Carlo Markov Chain) al-
gorithm: it considers only worlds where F2 is satisfied and counts the number of
samples in which F1 holds. Richardson & Domingos [Richardson and Domingos
(2006)] provides an efficient variant using Gibbs distributions and a local search
algorithm (MaxWalkSat).

4 Experiments

In order to evaluate the possibility of using MLNs for computing P (Gi|Γi,k), some
preliminary experiments were carried out on the annotated French Media dialogue
corpus [Bonneau-Maynard et al. (2006)]. The Media corpus has been recorded
using a wizard of Oz system simulating a vocal tourist information and hotel book-
ing phone server. The corpus accounts 1257 dialogues from 250 speakers and is
on the order of 70 hours of transcribed dialogues. The Media training corpus is
conceptually rich (more than 80 basic concepts) and manually transcribed and an-
notated. In the latter experiments, the reference concept annotations will be used.
To give an idea, a minimum loss of 20% in understanding error rate is observed
with an automatic extraction of the concept sequences [Lefèvre (2007)].

In the reference annotations, only the user messages are annotated with basic
concept tags, associated values and generic references. Relations and compositions
are not available. The wizard system made inferences about user intentions and

1Computing P (F1|F2, L, C) is tractable only for small domains. Probabilistic inference is
#P-complete and logical inference is NP-complete [Richardson and Domingos (2006)].
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proposes solutions based on what it was supposed to find in a database.

Our first set of experiments was limited to the computation of P (Gi|Γi,k) for
hotel room reservation with constraints on dates, rooms and facilities. An example
of such a goal is a request about a hotel in a city, offering some services such as
tennis court. Its logical formulation is:
requestReservation(hotel?, town Paris, service Tennis, days Apr07 13-15).
It may notice that some groundings have to be inferred. For instance, the user
may ask for a double-bed room without mentioning that it is in a hotel even if
this sounds implicit. Many relations of that kind, necessary for asserting a goal,
are not annotated and have to be inferred automatically.

Not many dialogues are required for training the MLN used for computing
P (Gi|Γi,k) because the frequencies of occurrences of values are already accounted
for in P (Γi,k|Y ). Instead, it is crucial to elaborate a well calibrated KB by consider-
ing a set of dialogues encompassing all important aspects of the domain knowledge
and by further generalizing this knowledge with human expertise.

User goals are not annotated in the Media corpus. In telephone services, user
goals can be inferred from the actions performed by human operators. By analyz-
ing these actions, logical relations have been derived. With the analysis of these
relations, representations of user goals have been derived. They are expressed by
implications whose premises are conjunctions of predicates representing relations.
The most complex relations are not annotated and have to be inferred for hypoth-
esizing user goals. An important dialogue task is to infer user goals as the dialogue
progresses. Often, premises of inferences do not have all the required predicates
asserted. Nevertheless, using an MLN, it is possible to compute a probability of
the inference of a goal based on partially available knowledge.

If goals cannot be inferred because the facts asserted in the STM are not suffi-
cient, the verification of a necessary but not asserted relation can be required and
performed. For example, the detection of an hotel and a town may trigger the
verification of the relation (assertion of predicate) isLocatedIn(h,t). Verifica-
tion can be performed by asking the user a question or executing a classifier that
outputs the truth of the predicate as a function of pertinent information already
asserted and values for functions of words in the spoken message. MLN can also
be used to compute the probability that verifying a relation will be allowing a
pertinent inference in future processing. This possibility has not been evaluated
yet.

Experiments have been performed on the computation of a user goal proba-
bility, given incomplete information asserted in the STM. This probability will be
used with the acoustic evidence of the components to obtain the probability of an
information state.

A test for the recognition of user goals was performed using 50 Media dia-
logues having 888 user dialogue turns and 1108 user goals. Basic concepts related
to predicates such as hotel,town,service,roomtype,date and reservation,
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were automatically selected from context-independent annotations. When a basic
concept appears, the corresponding atoms and formulae are grounded. If possi-
ble, basic compositions with other concepts ( collected on the actual and previous
turns) are grounded. All the ground atoms are collected in the STM. Learning
and inference computations are performed using Alchemy [Kok et al. (2005)].

Test results are represented in Table 2. User goals in 15 dialogues were com-
pletely detected. For the others some goals were not detected. Reasons are also
shown in Table 2. The main reason for not detecting goals was the absence of
context-dependent relations. From the results, a strategy for scheduling verifica-
tion of complex relations can be derived.

Table 2: Goal retrieval as a function of the number of user turns (total of 1108 goals).

# Goals found # Goals not found (last turn)
Turn 4 244 (22%) Missing basic concepts 197
Turn 6 302 (27%) Missing compositions 53

Last turn 855 (77%) Undetermined cases 3

5 Conclusion

In this paper, a first step for using probabilistic logic in SLU is introduced. This
step is necessary for retrieving unexpressed or undetected concepts and their re-
lations and for dealing with coreference .

MLNs appear to be an efficient model, providing inferences even from incom-
plete or inconsistent data. Furthermore, they can deal with cases for which Condi-
tional Random Fields and Bayesian Networks are not applicable [Richardson and
Domingos (2006)].

Preliminary results on user goal inference have shown that the approach is
viable and have suggested future research work, like detecting situations in which
additional information has to be elicited in order to make possible the assertion of
predicates necessary to infer conditions for performing system actions.
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