
Semi-Automatic Marking of Java Programs Using JUnit
Guy Tremblay

Dépt. d’informatique, UQAM
C.P. 8888, Succ. Centre-ville

Montréal, QC, H3C 3P8, Canada

Éric Labont́e
Dépt. d’info., Ćegep du Vieux-Montŕeal

255, rue Ontario Est
Montréal, QC, H2X 1X6, Canada

ABSTRACT

Marking programming assignments in introductory pro-
gramming courses involves a lot of work: each program
must be tested, the source code must be read and evaluated
(structure and style), etc. With the large classes encoun-
tered nowadays, the feedback provided to students through
marking is thus generally rather limited, and often late and
outdated.

Tools providing support for marking programming
assignments do exist, ranging from support for adminis-
trative aspects (submission and management) through au-
tomation of program testing or support for source code
evaluation based on metrics. Tools that support program
testing generally rely on comparison oftextualoutput, re-
quiring students to spend much effort dealing with details
of input/output.

In this paper, we introduce a tool that provides sup-
port for submission and testing of assignments. It aims
at reducing the workload associated with the marking task
and, more importantly, at providingtimely feedback to the
students, including feedbackbeforethe final submission.
Furthermore, testing of the programsdoes notrely on test-
ing program textual output but instead on the use of an
appropriate testing framework (viz., JUnit). Such a frame-
work allows testing to be done on the key features of the
software unit, that is, the underlying domain model rather
than some (textual) presentation.

Keywords: Technology in Education, Automatic Mark-
ing, Introductory Programming, Testing.

1. INTRODUCTION

Marking computer programs in introductory programming
courses is, and always has been, a lot of work, as it in-
volves dealing with many aspects. First and foremost, the
program must be tested to ensure that it exhibits the cor-
rect behavior. In addition, the text of the program (source
code) and its accompanying documentation must be read
in order to evaluate the program structure and style and to
ensure that the appropriate standards have been adhered to.

With the large classes encountered nowadays in most
universities and colleges, marking is generally done with
the help of teaching assistants. These assistants may be
graduate students or, in certain cases, advanced undergrad-
uate students. The feedback they provide to the students

may thus be somewhat limited and, more importantly, may
come too late in the learning process of the students, as
the whole marking process for classes with a large num-
ber of students is rather lengthy. For instance, when a stu-
dent finally receives her graded assignment, the topic dealt
by this assignment is already “outdated”, so less signifi-
cant for the student. Furthermore, if the student made an
important mistake, it’s too late to make any correction. In
other words, the typical approach to marking programming
assignments requires a lot of effort from the instructors
and/or teaching assistants, yet provide littletimely feed-
back to the students.

Tools that provide various forms of support for mark-
ing programming assignments do exist, some of which will
be presented in more detail in Section 2. Such tools may
provide support for dealing with the administrative aspects
(submission and management of assignments) as well as
support for other tasks associated with marking program-
ming assignments, ranging from script-based execution of
test cases [14, 13] to metrics-based evaluation [11, 18].

In the present paper, we introduce a tool, called
OCETJ [16], that provides support for the submission of
programming assignments as well as for their testing. One
of its key goals is to reduce the workload associated with
the marking task. In addition, it aims at providing timely
feedback to the students, including feedbackbeforethe fi-
nal submission deadline.

Underlying pedagogical approach

The design of OCETJ has been influenced by the spe-
cific educational context, namely, the teaching ofintro-
ductorycourses in object-based programming.1 We claim
that some of the pedagogical principles underlying such
courses should be the following:

• In a first programming course, the emphasis should
be on programming-in-the-small. This means stu-
dents should mostly be required to implement specific
modules (viz., classes), for which the instructor pro-
vides the appropriate specification (viz., interfaces),
not large-scale programs.

• The students should be introduced early to the key
practice of separating the presentation code from

1We say “object-based”, as opposed to “object-oriented”, because al-
though the notions of object, class, even interface, are introduced early in
the course, inheritanceis not.

the application logic. In other words, the empha-
sis should be on developing classes implementing
some appropriate domain model, not on writing de-
tailed I/O routines or developing graphical user in-
terfaces. This does not mean, however, that appro-
priate viewsshould not be available. Instead, these
views should be providedby the instructor, allowing
the resulting programs to go beyond the IPO style (In-
put/Process/Output) generally associated with plain,
textual, console I/O, as is often the case in introduc-
tory courses.

• The important role of unit testing in developing qual-
ity software should be stressed. For instance, the use
of a test-first approach, as recently promoted by pro-
ponents of eXtreme Programming [2, 4], should be in-
troduced early. As it will be shown in Section 3, using
an appropriate unit-testing framework supports such
an approach and, furthermore, alleviates the “what
should themain program be?” problem often associ-
ated with an early introduction of objects.

Outline of paper
The paper is organized as follows. First, in Section 2, a
number of existing tools for dealing with programming as-
signments are presented. In Section 3, the key features of
JUnit, the popular unit test framework developed for Java,
are presented. The next section then presents OCETJ, our
own tool, followed by a brief conclusion.

2. TOOLS FOR MARKING
PROGRAMMING ASSIGNMENTS

A wide variety of tools that provide support for dealing
with programming assignments have been developed over
the years. The major features of these tools can be classi-
fied into three categories:

1. Management of assignments: Tools in this category
support the various administrative tasks that must be
handled by the instructors and teaching assistants: re-
ceiving the students’ submissions, keeping track of
marks, sending feedback (grade, marking report) to
the students when the assignments have been marked,
etc. [7, 14].

2. Evaluation of correctness: The usual way to assess the
correctness of programs is, of course, through testing.
A key goal should be to automate as much as possible
the testing process, which can become quite tedious
given a large number of programs to test.

Different tools support various forms of testing. For
instance, assuming the programs use textual I/O, test-
ing can be as direct as using a strict textual compari-
son (for example, using “diff -bB ” in Unix). As-
sessing the correctness of a program output can also

be more subtle. For example, theexpectedoutput can
be described using a context-free grammar; the output
produced by a program can then be parsed to ensure
it complies with the grammar specification [14].

3. Evaluation of quality: The “quality” of a program is
definitely an elusive notion. Program quality can be
evaluated, among other things, by examining the pro-
gram structure (e.g., using appropriate source code
complexity measures, including coupling and cohe-
sion) or the programming style (e.g., proper indenta-
tion, use of symbolic constants, choice of identifiers,
presence of internal documentation). Some of these
properties can be evaluated from the source code with
the help of static program analysis, based upon appro-
priate design metrics [11, 18].

These three categories, of course, are neither all en-
compassing, nor mutually exclusive, so a given tool can
exhibit features from many categories. For example, in the
late 80’s, the TRY system [21] allowed students to submit
their programs, and then allowed instructors to test the sub-
mitted programs, tests which evaluated the program out-
puts on a purely textual basis (modulo blank spaces and
lines).

The ASSYST [14, 13] system allows students to sub-
mit their assignments by email. The instructor later tests
and marks the submitted programs, and then sends back an
evaluation report to the students. Marking is done through
partially automated testing (based on a context-free gram-
mar specification of the expected output) as well as by
using a number of metrics to evaluate the quality of the
source code, the efficiency of the resulting program, as
well as the effectiveness of the tests developed by the stu-
dents to test their own programs.

The BOSS system [19, 15] supports both submission
and testing of programs. Testing is based, again, essen-
tially on comparing textual output.

Curator [12] is a more recent offering that relies on
modern web technology. It can be used for various kinds
of assignments, not only for programs. Automatic testing
of programs is supported, though again it is based on a
strict textual comparison.

There are two major disadvantages with testing based
on textual comparison of program output. First of all, this
generally makes the testing process quitestrict (not to say
nitty-picky). For instance, the student documentation for
Curator clearly indicates that “It is important that your out-
put file not contains any extra lines or omit any line.”

More importantly, such an approach requires putting
a lot of emphasis on producing program output through
console I/O, clearly a secondary aspect for an object-based
approach that attempts to separate presentation from appli-
cation logic. As it will be shown in more detail in Sec-
tion 3, unit testing, especially in the context of an object-
based approach to programming, does need not to (nor
should it) rely on producing traces or textual program out-
put.

The OCETJ tool described in Section 4 supports both
the submission of assignments by the students and their au-
tomatic testing, but not (yet) the evaluation of their quality.
It aims also at providing early feedback to students by al-
lowing them to performtentative(i.e., non-final) submis-
sions in order to know whether their programs appear to
work correctly on a subset of the test cases. More impor-
tantly, and this is its key characteristic, it precludes test-
ing through textual output. In order to better understand
this feature, we first introduce the JUnit framework for unit
testing.

3. THE JUNIT TESTING FRAMEWORK

Although the importance of testing in developing correct
programs has always been recognized, proponents of ag-
ile methods — among whicheXtreme Programming(XP)
is the most well-known approach — have recently empha-
sized the beneficial role of unit testing and test automa-
tion [2, 20]. For instance, XP’s proponents advocate the
use of atest-firstapproach (also called “Test-Driven Devel-
opment” [4]), i.e., the discipline of writing automated test
casesbeforewriting the code, summarized in the follow-
ing motto: “Never write a line of functional code without a
broken test case” [3].

Test automation, which allows for the automatic ex-
ecution and verification of large number of test cases, is
neither new nor specific to agile methods [8]. What is new
to XP and agile methods is the tight integration of test au-
tomation with a test-first approach to code development.
This allows testing to be done both early and often. Thus,
frequent regression testing can be performed, ensuring that
the software works correctly whenever changes are made,
whether these changes result from the addition of new code
to handle additional features, the modification of existing
code to fix bugs, or from refactoring done on the existing
code to improve its quality and maintainability [9, 4].

For such an approach to software construction to be
feasible, appropriate tools for automating the testing pro-
cess must be available. One well-known such tool is JU-
nit [5], a unit testing framework for Java, which we briefly
explain in the following paragraphs.

Suppose the class presented in Figure 1, a simple
class defining bank account objects, is to be tested. Note
that thewithdraw method contains an error (a “+” has
been used instead of a “- ”, a typical copy-paste error); for
simplicity, also note that amounts are simplyint egers. A
JUnit class for testing the key methods of theAccount
class (for simplicity, exceptions are ignored) is presented in
Figure 2. ThesetUp method is used to initialize a number
of global variables, which can subsequently be used by the
various test cases. Each of the following methods, whose
names all start with “test ”, then represents a specifictest
case. These various test cases generally useassertE-
quals to check whether the result returned by the method
being tested (second argument ofassertEquals) is the

class Account {
private Customer cstm;
private int bal;

public Account(Customer c, int initBal)
{ cstm = c; bal = initBal; }

public int balance()
{ return(bal); }

public Customer customer()
{ return(cstm); }

public void deposit(int amount)
{ bal += amount; }

public void withdraw(int amount)
{ bal += amount; }

}

Figure 1. Account class to be tested (with an error in
methodwithdraw)

expected one (first argument). Other variants ofassert
methods do exist, for example,assertTrue , assert-
NotNull .

A key and common feature of all theseassert
methods is that they generate no outputunlessthe expected
condition isnot satisfied. Whenever this occurs, anAs-
sertionFailedError is thrown. In the context of the
test framework, this exception is then caught and an appro-
priate error message is written to the test log.2

A collection of test cases is called atest suite. Each
test class must define its associated test suite by imple-
menting asuite() method. This can be done by ex-
plicitly allocating aTestSuite object and then adding
the various test cases as done in the followingsuite()
method:
public static Test suite() {

TestSuite suite = new TestSuite();
suite.addTest(new AccountTest("testGetCustomer"));
suite.addTest(new AccountTest("testNewAccount"));
suite.addTest(new AccountTest("testTransfer"));
return(suite);

}

A much simpler approach can be used, however, as
illustrated by methodsuite() in Figure 2. In this case,
the TestSuite constructor is called with an argument
indicating the name of the test class. All methods from
that class whose name start with “test ” then get included
in the test suite, which is made possible through Java’sre-
flectionmechanism. This method of generating a test suite
from a collection of test cases explains why the names of
the various test cases are usually chosen to be of the form
“ testSomeFeature ”.

2This exception can also be caught by the code within the test case, for
example, to generate a more specific and detailed error message, which is
done by making a call to thefail method.

public class AccountTest extends TestCase {
private Customer c1, c2;
private Account acc1;

public AccountTest(String name) {
super(name);

}

protected void setUp() {
c1 = new Customer("Tremblay");
c2 = new Customer("Labonte");
acc1 = new Account(c1, 100);

}

public void testGetCustomer() {
assertEquals(c1, acc1.customer());

}

public void testNewAccount() {
Account acc = new Account(c2, 200);
assertTrue(acc.customer() == c2 &&

acc.balance() == 200);
}

public void testTransfer() {
int initBal = acc1.balance();
acc1.deposit (50);
acc1.withdraw(50);
assertEquals(initBal, acc1.balance());

}

public static Test suite() {
return new TestSuite(AccountTest.class);

}

public static void main(String[] args) {
junit.textui.TestRunner.run(suite());

}
}

Figure 2.AccountTest class for testingAccount

The resulting test suite can be executed as shown in
methodmain of Figure 2. Whenever this test program is
run, each of the test cases in the associated test suite (all
methods starting with “test ”) will then be executed (in
arbitrary order). In this example, the use of thetextui
variant ofTestRunner indicates the use of a command
line interface, so that output similar to the following would
be produced:

There was 1 failure:
1) testTransfer(AccountTest)

junit.framework.AssertionFailedError:
expected:<100> but was:<200>

at AccountTest.testTransfer(AccountTest.java:31)
at AccountTest.main(AccountTest.java:39)

FAILURES!!!
Tests run: 3, Failures: 1, Errors: 0

Graphical interface test runners (e.g.,swingui , awtui)
are also available.

The use of unit test frameworks — variants
do exist for other programming languages, see
www.xprogramming.com — and the integration of
a disciplined test practice into introductory programming
courses will probably become more prevalent in the
coming years. The use of JUnit in an introductory course
at the university level has already been reported [1] and the
second author of the present paper started experimenting
with the use of JUnit in a second year Java course (within
a technical college degree) in the fall of 2002. Our goal in
the present paper, however, is not to discuss the use of a
testing framework in an introductory programming course
per se. Rather, our goal is to show how this tool can be
used to help automate the testing process associated with
the marking of large number of programming assignments,
which we explain in more detail in the next section.

Before proceeding further, however, let us note that
our pedagogical approach (programming-in-the-small, lit-
tle emphasis on presentation and I/O) combined with the
use of the JUnit framework implies that the code submit-
ted by students will contain various classes implementa-
tion, but no main program. More precisely, one possible
main program will be defined by the test classes defined
by the instructor. Of course, other main programs can also
be made available to the students, that is, differentviews
of the same domain model can be provided, for example, a
command line view or a simple graphical user interface.

4. OCETJ: A TOOL FOR
SEMI-AUTOMATIC MARKING OF

JAVA PROGRAMS

The OCETJ tool (Outil de Correction et d’́Evaluation de
Travaux Java= marking and evaluation tool for Java as-
signments) was developed with two major goals in mind:
i) provide support for instructors (and teaching assistants)
for marking programming assignments;ii) provide early
feedback to students. In this section, we first describe
the core functionalities of OCETJ, followed by a brief
overview of its implementation.

Core functionalities of OCETJ

A use case diagram [17] identifying the primary actors
(users) of OCETJ along with the key use cases is presented
in Figure 3. Three types of actors use the system:Instruc-
tors, Students, andTeaching Assistants.

In order to enforce proper security, each actor must
first Registerinto the system before he/she can use any of
the other functionalities. Registration ensures that a proper
ID and password are created for each new user.

The first step in handling a given programming as-
signment for a specific course is for theInstructor to Cre-

Assistant
Teaching

Instructor

Student

Test students’ submissions

Submit preliminary version

Register

Submit final assignment

Create assignment specification

Figure 3. Use case diagrams for core functionalities of
OCETJ

ate an assignment specification. 3 The two interesting at-
tributes of such a specification are its public and private
test suites, described in more detail below. Other attributes,
such as the final submission date, the number of tentative
submissions allowed, etc., must also be specified.

In OCETJ, it is thepublic test suite specified by the
instructor for a given assignment that is used to provide
students with early feedback. More precisely, aStudent
can first use OCETJ toSubmit a preliminary versionof
his solution to a programming assignment. The system
then tests the student’s submission on the public test suite
specified by the instructor, and appropriate results are sent
back to the student indicating which test cases have suc-
ceeded/failed. The detailed content of these public test
suites can either be kept private, providing only students
with the (meaningfully chosen) names of the failed test
cases, or can be made available to the students — this
would be especially useful in the early part of an introduc-
tory course, to help students identify which part of their
code does not work properly. Once the student is satisfied
with his solution, he can thenSubmit a final assignment,
solution which is then saved in order to be subsequently
marked.

Providing early feedback through public test cases
should, hopefully, help students improve their solutions
and ensure that their submitted solutionsminimallybehave
correctly. One possibledanger is that students rely too
much on these tests, without properly defining their own
test suite. This problem can be alleviated by having the
instructor specify a limit on the maximum number of ten-
tative submissions allowed for any given student. With a
more sophisticated tool, the students tests classes them-
selves could be evaluated, as done by the ASSYST sys-

3Of course, once created, such an assignment specification can also
be modified and, later, deleted. For simplicity, such basic use cases have
been omitted from the diagram.

tem [13].
Finally, when the final submission date has been

reached, theTeaching Assistant(which could be the in-
structor himself) canTest the students’ submissions. Dur-
ing this latter phase, the system, using theprivatetest suite,
automatically testseachof the submitted solutions, gener-
ating reports saved in a database for subsequent use by the
instructor or teaching assistant. Of course, the private test
suite will generally be much more complete than the pub-
lic one, testing not only the core behavior of the expected
solution, but testing also more complex or limit conditions
and behavior.

It is important to stress that the test results do not, by
themselves, determine the final mark, but rather are to be
used subsequently in conjunction along with other criteria
to guide the teaching assistant in the final grading process.
Thus, OCETJ attempts tofacilitate the marking process,
not to replace the instructor or teaching assistant.

Implementation of OCETJ

OCTEJ has been designed as a web application and imple-
mented using various Java technology.

The users access the system using web browsers.
The web pages and scripts are generated and implemented
using Javaservlets[6] (running on a Linux apache web
server). A servlet is a Java program that runs on a web
server and plays a role similar to a CGI script: it receives
an HTML request from a client web-browser, parses the
request, calls some appropriate methods in the application
layer, and finally, using the results received from the ap-
plication, generates a response (HTML) to be displayed by
the client browser.

The application logicper seis implemented (mostly)
using simple transaction scripts [10] written in Java (but
see below for a special case). Persistent information is
managed using two distinct mechanisms. Special directo-
ries accessed through a (Novell) local network are used for
the instructors’ public and private test suites as well as for
the students’ assignments. The data created and managed
directly by OCTEJ (e.g., registered users, assignment spec-
ification attributes, test results) is handled with an Oracle
database, accessed using JDBC (Java DataBase Connec-
tivity). The JDBC API allows a Java program to contain
embedded SQL operations, making it possible to create ta-
bles, add records, make queries, etc.

The testing of the various students’ final submission
is not done purely within the Java framework. As ex-
plained earlier, an executable program is obtained by com-
bining the code submitted by a student together with the
test class defined by the instructor, where the latter contains
the main program. Testing any given student submission
thus requires compiling the code submitted by the student,
and then running a Java program composed of the instruc-
tor’s test class together with the student’s compiled code.
Furthermore, this process must be repeated,independently,
for each student. Thus, the compilation and testing of the
various students’ submission has been implemented using
a number of batch (.bat) files that somewhat go through

the following process:

1. Copy the student’s code to some private directory;

2. Compile the student’s code withjavac ;

3. Run the resulting program withjava ;

The batch files’ execution is triggered, from within
the Java virtual machine running when the servlet is acti-
vated, by forking aProcess using theexec method of
the Runtime class. Note that after each instance is run,
the number and name of the tests that failed, if any, are
saved in the database; these results can subsequently be
used by the instructor or teaching assistant for grading the
student’s submission.

Even though OCETJ has been designed as a web-
like application, its current implementation, for technical
and security reasons, only runs on a campus-wide intranet.
Thus, the students submit their programs, not by email, but
by saving them to a special (protected,write-once) direc-
tory which can be accessed only by the instructor (or by
OCETJ). Future work will involve deploying OCETJ as a
pure web application.

5. CONCLUSION

Providing timely feedback to students and reducing the
workload associated with testing and marking large num-
ber of programming assignments have been the initial mo-
tivations behind the development of the OCETJ tool. Two
key pedagogical concerns are also addressed by the use of
the JUnit framework, namely, the need to emphasize, early
in the curriculum, the importance of separating the appli-
cation logic from the details of the presentation (avoiding
the typical emphasis on textual I/O) and the key role of unit
tests for correct program development.

OCTEJ is currently being used for the first time this
term, in a second year Java course (technical college de-
gree), although only in a limited way (no submission of
preliminary versions by students). The complete imple-
mentation should be available to the students next fall.

For future work, we plan to re-implement OCETJ as
a pure web application, allowing it to be used in a more
general context than its current one. We also plan to ex-
amine how various design and source code metrics could
be used to providequality metrics, thus providing further
objective input to help the instructor or teaching assistant
determine the final students’ grade. Again, the goal will
not be to fully automate the evaluation and marking pro-
cess, but instead to provide strong support to help reduce
the marking workload.

6. ACKNOWLEDGMENTS

The second author would like to thank his colleagues from
the D́ept. d’informatique (Ćegep du Vieux-Montŕeal) for
their help and support, as well as Ms. B. Thuot (techni-
cienne en informatique) for her precious technical help.

Thanks also to L.H. Bouchard et B. Lefebvre (professors,
Dépt. d’informatique, UQAM) for their comments on a
first draft of this paper.

7. REFERENCES
[1] E.G. Barricanal, M.-A.S. Urb́an, I.A. Cuevas, and P.D.

Pérez. An experience in integrating automated unit testing
practice in an introductory programming course.SIGCSE
Bulletin, 34(4):125–128, 2002.

[2] K. Beck. Extreme Programming Explained — Embrace
Change. Addison-Wesley, Reading, MA, 2000.

[3] K. Beck. Aim, fire. IEEE Software, 18(6):87–89, 2001.

[4] K. Beck. Test-Driven Development: By Example. Addison-
Wesley, 2003.

[5] K. Beck and E. Gamma. Test infected: Programmers love
writing tests.Java Report, 3(7):37–50, 1998.

[6] D.R. Callaway. Inside servlets: Server-side programming
for the Java plaform. Addison-Wesley, Reading, MA, 2001.

[7] K.M. Dawson-Howe. Automatic submission and admin-
istration of programming assignments.SIGCSE Bulletin,
28(2):40–42, 1996.

[8] M. Fewster. Software Test Automation. Addison-Wesley,
1999.

[9] M. Fowler. Refactoring — Improving the Design of Existing
Code. Addison-Wesley, Reading, MA, 1999.

[10] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, Boston, MA, 2003.

[11] S.-L. Hung, L.-F. Kwok, and R. Chan. Automatic program-
ming assessment.Computers & Education, 20(2):183–190,
1993.

[12] Virginia Polytechnic Institute and State University. Cu-
rator: an electronic submission management environment.
http://ei.cs.vt.edu/˜eags/Curator.html .

[13] D. Jackson. A semi-automated approach to online assess-
ment.SIGCSE Bulletin, 32(3):164–167, 2000.

[14] D. Jackson and M. Usher. Grading student programs using
ASSYST.SIGCSE Bulletin, 29(1):335–339, 1997.

[15] M. Joy, P.-S. Chan, and M. Luck. Networked submission
and assessment. In1st Annual Conference of the LTSN Cen-
tre for Information and Computer Science, pages 335–339,
Newtonwabbey, OK, August 2000.

[16] É. Labont́e. Outil de correction semi-automatique de pro-
grammes Java. Master’s thesis, Dépt. d’Informatique,
UQAM, déc. 2002.

[17] C. Larman.Applying UML and Patterns — An Introduction
to Object-Oriented Analysis and Design (Second Edition).
Prentice-Hall, 2002.

[18] R.J. Leach. Using metrics to evaluate student programs.
SIGCSE Bulletin, 27(2):41–48, 1995.

[19] M. Luck and M. Joy. A secure on-line submission system.
Software — Practice and Experience, 29(8):721–740, 1999.

[20] R.C. Martin. Agile Software Development — Principles,
Patterns, and Practices. Prentice-Hall, Upper Saddle River,
NJ, 2003.

[21] K.A. Reek. The TRY system — or — how to avoid testing
student programs.SIGCSE Bulletin, 21(1):112–116, 1989.

