
On the tamability of the Location Consistency memory model

Charles Wallace
Computer Science Dept.
Michigan Technological

University
Houghton, MI, USA

Guy Tremblay
Dépt. d’informatique

Université du Québecà
Montréal

Montréal, QC, Canada

José N. Amaral
Computing Science Dept.

University of Alberta
Edmonton, AB, Canada

Abstract

Gao and Sarkar have proposedLocation Consistency
(LC), the weakest memory model described in the literature
to date for shared memory architectures. The advantage of
LC is that it does not require invalidation/update messages
across processors, thus dispensing with cache snooping or
directories. Gao and Sarkar have argued that, although LC
is strictly weaker thanRelease Consistency(RC), it is equiv-
alent to RC for all programs that aredata-race free. How-
ever the LC specification is silent about which reorderings
of consistency related operations and program statements
are allowed. In this paper we argue that under permissive
reordering rules, LC is not equivalent to RC, even for data
race free programs. On the other hand, if strict reorder-
ing rules are followed, then LC is equivalent to RC for data
race free programs but the distinction between LC and RC
is greatly diminished and many of the advantages of LC are
lost.
Key words:Multiprocessors, Shared Memory, Weak Mem-
ory Models

1 Introduction

On a shared memory multiprocessor machine, a
memory consistency modelis a contract between pro-
grams and the underlying machine architecture. This
contract constrains the order in which memory opera-
tions appear to be performed with respect to one an-
other, i.e., the order in which the operations become
visible to processors [6]. By constraining the order of
operations, a memory consistency model determines
which values can be returned by each read operation.

The implementation of a memory consistency model
in a machine with caches requires acache protocolthat
invalidates or updates cached values when these values
can no longer be returned to read operations.

The most common memory consistency model,se-
quential consistency(SC) [12], ensures that memory
operations performed by the various processors arese-
rialized (i.e., seen in the same order by all processors).
This serialization results in a model that is similar to
the familiar uniprocessor model. Under SC there is al-
ways a unique most recent write to a location and all
other values stored in the system for that location must
be either invalidated or updated. Thus, a major draw-
back of SC on a multiprocessor machine is the high
level of interprocessor communication required by the
cache protocol.

Because of the requirement that all write memory
operations be serialized into a single total order, the SC
model is quite restrictive and is thus said to be astrong
memory model. Weakermemory models have been
proposed to relax the requirements imposed by SC.
Examples includerelease consistency[9], lazy release
consistency[11], entry consistency[4], DAG consis-
tency [5], and commit, reconcile and fences(CRF)
[17]. Relaxed memory models place fewer constraints
on the memory system than SC, which permits more
parallelism and requires less interprocessor commu-
nication but complicates reasoning about program be-
havior.

All these models, SC as well as relaxed models,
have thecoherenceproperty. In a coherent memory
model, all writes become visible to other processors,
and all the writes (by any processes)to any given lo-
cation are seen in the same order by all processors.



In 1994, Gao and Sarkar proposed theLocation Con-
sistency (LC) memory model[7], one of the weakest
memory models proposed to date. LC is unusual in
that it does not ensure coherence.1 Under LC, memory
operations performed by multiple processors need not
be seen in the same order by all processors. Further-
more, because LC allows the coexistence of multiple
legal values for the same location, there is no need to
invalidate or updateremotecached values; instead, LC
only requires (local)self-invalidation. Hence the LC
model has the potential to reduce consistency-related
interprocessor traffic.

In a previous paper [18], we used theAbstract State
Machinemethodology [3] to give formal operational
semantics for both the LC memory model and the asso-
ciated cache protocol proposed by Gao and Sarkar [8].
Using these formal models, we were able to prove that
the cache protocol does satisfy the memory model and,
also, that the cache protocol is strictly stronger than the
abstract memory model — in other words, the protocol
does not allow certain behavior allowed by the model.

Gao and Sarkar claim that LC has the following
“Equivalence Property”: “the LC model is equivalent
to the RC [Release Consistency] model for all pro-
gram executions that are free of data races (access
anomalies)” [7]. Since previous work has shown that
RC is equivalent to Sequential Consistency (SC) for
such programs [9], Gao and Sarkar conclude that pro-
grams without data races, when executed under the LC
model, will always produce SC behavior. Since Gao
and Sarkar’s model is relatively informal, so is their
proof of this property. As we will see, whether this
property of LC holds depends strongly on the order-
ing constraints associated with synchronization oper-
ations. In this present paper, we argue that if the full
flexibility of the LC model is allowed, then the Equiv-
alence Propertydoes not hold.

2 Synchronization and Operation Ordering
in SC and RC

The LC memory model can be described using a
simple programming model with four types of opera-

1However, it is not unique in this regard:PRAM (Pipelined
RAM) consistency[13] also does not require coherence. The
closely relatedProcessor Consistencymodel [10] adds the coher-
ence condition.

tion on memory locations:read , write , acquire ,
and release . Since in LC the content of a mem-
ory location is seen as a partially ordered set of values
[8, 18], the semantics of these operations can be de-
scribed as follows:

� A read retrieves one of the (legal) values asso-
ciated with a location.

� A write adds a value to the set of values asso-
ciated with the location. In any real system, the
number of places available to store the values is
finite. Therefore, a possible side effect is that a
value previously associated with a given location
may no longer be available.

� An acquire grantsexclusiveownership of a lo-
cation to a processor.2 The exclusive ownership
of a location thus imposes a sequential order on
processor operations associated with that loca-
tion. When acquiring a location, in order to gain
access to the most recent value of that location as
imposed by the sequential order, a processor also
updates its own state by discarding any old value
it has stored for the location (self-invalidation).

� A release operation takes exclusive ownership
away from a processor. Any processor attempting
to acquire a location currently owned by another
processor must wait until the location is released
by its current owner. If the releasing processor
has written to the location, the release operation
has the additional effect of making the value of its
most recent write available to other processors. In
this way, a processor that subsequently acquires
the location will have access to the value of the
global “most recent write”.

Note that theacquire andrelease operations
are assumed to come in pairs,i.e., a processor must
gain ownership of a location through anacquire
before releasing that location. It is alsoexclusively
throughrelease /acquire pairs that the effect of
a remote write is guaranteed to be made visible to a
processor, as the acquiring processor is sure to see the
value written by the releasing processor.

2In LC, contrary to SC, a processor without ownership of a
location can performread or write operations on that location,
although their effect may not be globally visible.



A key motivation behind weak memory models,
such as LC, is to relax the strict sequential order spec-
ified by a program and allow reordering of program
instructions in order to improve parallelism. Such re-
ordering can be done at compile-time (e.g., compiler
optimizations and code reordering) or at run-time (e.g.,
dynamic instruction dispatching and execution).

Gao and Sarkar’s description of the Location Con-
sistency memory model does not explicitly specify
which reordering operations are allowed with respect
to acquire andrelease operations. To illustrate
that this is an important issue, let us consider two
possible assumptions for what kinds of reorderings
aroundacquire andrelease operations could be
allowed.

First, let us examine the program excerpt in Fig. 1.
Under the SC model of execution, after all the state-
ments in the figure are executed, it is not possible for
the locationsa andb to have the valuesa=0 andb=0 .
If a=0 , then the read ofy by processor 1 must precede
the write of y by processor 2. SC requires that the
sequential “program order” of instructions by a single
processor be maintained. Here, program order dictates
that processor 1’s write ofx precedes its read ofy , and
processor 2’s write ofy precedes its read ofx . It fol-
lows that processor 1’s write tox must have preceded
processor 2’s read ofx , and thereforeb must be as-
signed the value1.

On the other hand, under the LC model,a=0 and
b=0 is indeed possible: for a given processor, the two
instructions can be reordered, since they pertain todis-
tinct locations. In fact, a similar result would be pos-
sible under RC. In RC, operations may be reordered
if they are not synchronization operations. Given that
such reordering are possible, the resulta=0 andb=0
is then also possible.

A result that is not SC-compliant is possible for RC
because the program contains adata racebetween the
instructionsx = 1 in Processor 1 andb = x in Pro-
cessor 2 (and similarty fory anda). Informally, a data
race exists between two operationso1 ando2 if the fol-
lowing properties hold foro1 ando2 in a sequentially
consistent execution where program order is obeyed
[1]:

� Operationso1 ando2 access the same memory lo-
cation and one of them is awrite .

� Operationso1 ando2 are not ordered by the pro-
gram order relation nor by any intervening syn-
chronization operations.

� One ofo1 or o2 is a data operation, i.e., is not a
synchronization operation.

Under RC, data races can be removed from a pro-
gram by inserting appropriate synchronization oper-
ations, as shown in Fig. 2. Since data operations
from distinct processors are now separated by synchro-
nization operations, the program becomes free of data
races — this program is also said to be “properly syn-
chronized”. The resultx=0 and y=0 now becomes
impossible, sinceacquire and release opera-
tions in the RC model are always sequentially ordered
and, most importantly, sincerelease andacquire
operations impose additional ordering constraints on
the other operations [6]. More precisely, in RC, a
release operation ensures thatall previous oper-
ations have completed before the release completes,
e.g., arelease will complete only when all previ-
ouswrite s have been made visible to other proces-
sors. Similarly, anacquire preventsall subsequent
operations from proceeding until after theacquire
has been performed (including having obtained the as-
sociated lock).

In the LC model, as described in [8] and formal-
ized in [18], operations applying to a given location
are assumed to have no ordering constraints relative to
operations onother locations. This raises certain diffi-
culties regarding the notions of data race and properly
synchronized program, which we examine in the next
section.

3 Strict vs. Relaxed Interpretation of LC
Synchronization Operations

Under the data race definition informally presented
above, the program excerpt in Fig. 3 is data-race
free because all conflicting data operations are now
separated by synchronization operations. However,
whether the execution under the LC model produces
a result equivalent to RC and thus, since the pro-
gram is properly synchronized, equivalent to SC de-
pends on the exact interpretation of theacquire and
release operations.



Processor 1 Processor 2
Initial state: x = y = 0

x = 1; y = 1;
a = y; b = x;

Figure 1. A program which, under RC or LC, is not SC

Processor 1 Processor 2
Initial state: x = y = 0

acquire(lock); acquire(lock);
x = 1; y = 1;
a = y; b = x;
release(lock); release(lock);

Figure 2. A properly synchronized RC program which is SC

There are two possible interpretations for the se-
mantics ofacquire andrelease operations:

1. A relaxed interpretation: In the spirit of LC,
where operations related to distinct locations
are considered totally independent, only oper-
ations related with the acquired/released loca-
tions are constrained by theblocking properties
of acquire /release .

2. A strict interpretation: In the style of RC,
operations related with any locations are con-
strained by anacquire or release opera-
tion, regardless of the location on which the
acquire /release is acting.

In our formal specification of LC [18], faithful to
the original paper [8] and as confirmed in private dis-
cussion with one of the authors, the relaxed interpre-
tation was assumed. However, based on this relaxed
interpretation, although the program in Fig. 3 can be
considered “properly synchronized” and free of data
races, it can still produce a result not allowed by SC:
a=0 and b=0 is indeed possible since the the se-
quence of three operations ony (resp.x ) on Proces-
sor 1 (resp. 2) can be moved before the operations on
x (resp.y ).

Under this relaxed interpretation, however, properly
synchronized programs do obey the weaker condition
of coherence. A memory system is coherent if “all
writes to the same location are serialized in some or-
der and are performed in that order with respect to any

processor” [9]. In other words, all writes to a location
are seen in the same order by all processors. Under
LC, if each memory access to a locationl is enclosed
between an appropriate pair ofacquire /release
operations, the program will then be properly synchro-
nized in relation tol and a total order will be imposed
on the accesses tol, leading to coherence.

On the other hand, if the strict interpretation of syn-
chronization operations is taken, then the behavior of
the resulting program would be equivalent to a prop-
erly synchronized RC program and thus to SC. How-
ever, this strict interpretation would require some sig-
nificant changes to the LC model, since operations per-
taining to distinct locations could now be related with
one another. This more strict interpretation would thus
preclude some of the reordering opportunities offered
by LC’s initial weak approach to reordering. Further-
more, synchronization operations become costly under
this interpretation: anacquire or release on one
location may require remote cache invalidations or up-
dates for other locations.

The fact that the behavior ofacquire and
release in the RC model differs from the one in
LC based on the relaxed interpretation can also be con-
firmed by the work of Shen et al. [17], who present def-
initions of RC-styleacquire andrelease in terms
of their CRF model. For example, in their model, an
Acquire(s) from RC can be defined as follows:

Acquire(s) = Lock(s);
PostFenceR(s);
Reconcile(*)



Processor 1 Processor 2
Initial state: x = y = 0

acquire(x); acquire(y);
x = 1; y = 1;
release(x); release(y);
acquire(y); acquire(x);
a = y; b = x;
release(y); release(x);

Figure 3. A properly synchronized LC program which is not SC

The key element in this definition is the
PostFenceR(s) operation, which constrains
execution so that all reads of locations that “[pre-
cedes] the fence [must] be completed before any
memory access [. . . ] following the fence can be
performed” [17].

4 Beyond simpleacquire /release

When considering what kinds of dependencies (or
ordering constraints) theacquire andrelease op-
erations impose in a program, the dual-purpose role
of these operations — lock/unlock and fence — be-
comes evident. In their LC paper, Gao and Sarkar in-
troduced an “optimization” that they claim to be appli-
cable only to the LC cache protocol. For that optimiza-
tion, they use alock /unlock pair to protect critical
sections, and introduce arefresh , a writeback ,
and async writeback operations to implement the
consistency related operations. Arefresh(x) op-
eration performs a cache invalidation ofx , as does
the acquire operation. Awriteback(x) oper-
ation triggers a writeback to main memory, with a
synchronization signal returned upon its completion.
A sync writeback completes only after all such
synchronization signals, from the same critical region,
have been received.

It seems that the separation of the purposes of
acquire /release is not only desirable as an op-
timization for the cache protocol, but is also required
in the memory model itself in order to provide clear
semantics and clearer rules for code motion. This sep-
aration of functions leads to the following constraints
on reordering:

� No operation should be allowed to move across

a lock or unlock operation because allowing
such moves would be equivalent to moving code
into or out of critical sections, a clear violation of
programmer’s intent.

� The only code motion restrictions onrefresh ,
writeback , andsync writeback should be
related to operations that reference the same loca-
tion.

A remaining interesting question is what should be
the granularity of alock operation. Under the relaxed
interpretation of LC, per-location lock operations are
insufficient if stricter SC-like consistency is desired.
On the other hand, a single global lock, requiring
invalidations and writebacks of all locations, seems
contrary to the spirit of LC.3 A possible compromise
would involve defining lock operations onsetsof loca-
tions. For any setS of locations, anacquire(S) op-
eration would not complete until exclusive ownership
of all locations inS were obtained. In addition, cache
entries for each location would also be invalidated.
Likewise, a release(S) operation would involve
writebacks to all locations inS and releases of the
associated locks. In this way, the programmer could
select particular locations requiring synchronization,
thereby avoiding synchronization of all locations. In
the worst case, if the locations requiring synchroniza-
tion cannot be determined, a globalacquire(*) and
release(*) could be performed. Two questions

3It should be noted, however, that the memory model for Java
proposed by Manson and Pugh [15] uses exactly this interpreta-
tion of LC for its semantics of non-volatile variables. While this
does constrain LC greatly, the lack of a coherence condition on
unsynchronized operations does present a potential performance
benefit.



arise with regard to this approach: (1) how easy it
would be for programmers to choose the correct set
of locations for each synchronization; (2) how feasible
it would be to implement these atomic multi-location
synchronization operations in hardware.

5 Conclusion

Location Consistency (LC) is an interesting weak
memory model for multiprocessor machine, since
the implementation of its cache protocol can be
done efficiently (no need for invalidation/update mes-
sages across processors). However, there are still
a number of issues to be addressed before it can
be used as the basis for high-level languages mem-
ory model, for instance: What are the legal reorder-
ing associated with LC’s synchronization operations?
Are acquire /release sufficient as synchroniza-
tion operations and what should their granularity be?

Our goal for future research is to continue investi-
gating the properties of LC and, among other things,
the advantages and drawbacks of workingwithoutco-
herence. Clearly, getting a new memory model right
is no easy task — see all the difficulties encountered
in defining Java’s memory model [16, 14, 15]. Inves-
tigating how LC, or variants of it, could be used for
defining Java’s memory model is thus also one of our
key reseach direction.

References

[1] Adve, S., Hill, M.D., Miller, B.P., Netzer,
R.H.B.: “Detecting data races on weak memory
systems”; Proc. ISCA (1991), 234–243.

[2] Adve, S.V., Gharachorloo, K.: “Shared memory
consistency models: a tutorial”; Research Re-
port 95/7, Digital Western Research Laboratory
(1995).

[3] ASM home page;
http://www.eecs.umich.edu/gasm/ .

[4] Bershad, B., Zekauskas, M., Sawdon, W.: “The
Midway distributed shared memory system”;
Proc. IEEE COMPCON (1993), 528–537.

[5] Blumofe, R.D., Frigo, M., Joerg, C.F., Leis-
erson, C.E., Randall, K.H.: “An analysis of

DAG-consistent distributed shared-memory al-
gorithms”; Proc. ACM SPAA (1996), 297–308.

[6] Culler, D.E., Singh, J.P., Gupta, A.: “Parallel
computer architecture: a hardware/software ap-
proach”; Morgan Kaufmann (1999).

[7] Gao, G.R. and Sarkar, V.: “Location consistency:
Stepping beyond the barriers of memory co-
herence and serializability.”; ACAPS Technical
Memo 78, School of Computer Science, McGill
University (1994).

[8] Gao, G.R., V. Sarkar: “Location consistency
— A new memory model and cache consis-
tency protocol”; IEEE Trans. on Computers 49,
8 (2000), 798–813.

[9] Gharachorloo, K., Lenoski, D., Laudon, J., Gib-
bons, P., Gupta, A., Hennessy, J.: “Memory con-
sistency and event ordering in scalable shared-
memory multiprocessors”; Proc. ISCA (1990),
15–26. Also in Computer Architecture News 18,
2 (1990).

[10] Goodman, J.R.: “Cache consistency and sequen-
tial consistency”, Technical report 1006, Com-
puter Science Dept., University of Wisconsin–
Madison (1989).

[11] Keleher, P., Cox, A.L., Zwaenepoel, W.: “Lazy
release consistency for software distributed
shared memory”. Proc. ISCA (1992), 13–21.
Also in Computer Architecture News 20, 2
(1992).

[12] Lamport, L.: “How to make a multiprocessor
computer that correctly executes multiprocess
programs”; IEEE Trans. on Computers C-28, 9
(1979), 690–691.

[13] Lipton, R.J., Sandberg, J.S.: “PRAM: A scalable
shared memory”; Technical Report CS-TR-180-
88, Princeton University (1988).

[14] Maessen, J.-W., Arvind, Shen, X.: “Improving
the Java memory model using CRF”; Proc. OOP-
SLA (2000), 1–12.

[15] Manson, J., Pugh, W.: “Multithreaded semantics
for Java”; CS Technical Report 4215, University
of Maryland (2001).



[16] Pugh, W.: “Fixing the Java memory model”. In
ACM 1999 Java Grande Conference (1999), 89-
98.

[17] Shen, X., Arvind, Rudolph, L.: “Commit-
reconcile & fences (CRF): a new memory model
for architects and compiler writers”; Proc. ISCA
(1999), 150–161.

[18] Wallace, C., Tremblay, G., Amaral, J.N.: “An
Abstract State Machine specification and ver-
ification of the Location Consistency memory
model and cache protocol”; Journal of Universal
Computer Science 7, 11 (2001), 1088–1112.


