
Extending FastFlow with a DSL :
Why and how ?

A look at some alternative approaches

Guy Tremblay
Professeur

Département d’informatique

UQAM
http://www.labunix.uqam.ca/~tremblay

30 mars 2015

http://www.labunix.uqam.ca/~tremblay

First element of context : FastFlow

The core patterns
can be expressed in
Ruby in a clean and
simple way

The high-level patterns
could be expressed in
Ruby in a clean and
simple way

First element of context : FastFlow

Facts :

The core patterns
can be expressed in
Ruby in a clean and
simple way

The high-level patterns
could be expressed in
Ruby in a clean and
simple way

First element of context : FastFlow

Facts :

The core patterns
can be expressed in
Ruby in a clean and
simple way

The high-level patterns
could be expressed in
Ruby in a clean and
simple way

Second element of context : DSL

Domain-specific language :
A computer programming language of
orangelimited expressiveness focused on a
particular domain.

Source: M. Fowler, 2011

Two elements of context : FastFlow + DSL = ?

Key questions :
What kinds of parallel
applications can
FastFlow currently deal
with ?
What other kinds of
parallel applications
could an extended
Fastflow deal with ?

What kinds of parallel applications ?

High performance computing

= [The] use of super computers and parallel processing
techniques for solving complex computational
problems [. . .] through computer modeling, simulation
and analysis.
Source: http://www.techopedia.com/definition/4595/high-performance-computing-hpc

Scientific workflows
= A means by which scientists can model, design, execute,

debug, re-configure and re-run their analysis and
visualization pipelines.
Source: http://en.wikipedia.org/wiki/Scientific_workflow_system

http://www.techopedia.com/definition/4595/high-performance-computing-hpc
http://en.wikipedia.org/wiki/Scientific_workflow_system

HPC applications vs. scientific workflows

Similarities
Large number of partially independent tasks

⇒ Need some form of coordination
⇒ Both often seen as DAG of tasks

Differences
Tasks in workflows can be “very large”

A task can be a whole (HPC) application
A task may deal with files or databases, (remote) data
analysis/mining services, Web services, etc.

Presentation outline

Presentation outline

I remain neutral with respect to the kind of application —
emphasis on similarities

I examine different approaches from two domains
Coordination languages for parallel programming
Scientific workflows

Key goal = discussion and brainstorming
How do FastFlow differ from these approaches ?
Can some approaches be interesting in the FastFlow
context ?

Explicit construction of DAG

GUI : Graphical User Interfaces

Armadillo : a workflow engine for bio-pipelines

Source: “Armadillo 1.1 : An Original Workflow Platform for Designing and Conducting Phylogenetic Analysis and

Simulations”, Lord, Leclerc, Boc, Diallo & Makarenkov, PLOS one, 2012

Armadillo : a workflow engine for bio-pipelines (bis)

Source: “Armadillo 1.1 : An Original Workflow Platform for Designing and Conducting Phylogenetic Analysis and

Simulations”, Lord, Leclerc, Boc, Diallo & Makarenkov, PLOS one, 2012

Kepler : An engine for scientific workflows that
provides various kinds of (complex) tasks

Source: “Scientific Workflow Management and the Kepler System”, Ludascher & al., 2005

Kepler : An example with an SDF Director

Source: “Scientific Workflow Management and the Kepler System”, Ludascher & al., 2005

Kepler : The semantics of the workflow computation is
customizable using directors

The director defines how actors are executed and how
they communicate with one another.

Source: “Scientific Workflow Management and the Kepler System”, Ludascher & al., 2005

Kepler : Directors define and implement Models of
Computation

Model of Computation (MoC)
A model of computation (MoC) is a formal abstraction of
execution in a computer. [. . .] Directors are responsible for
implementing particular MoCs, and thus define “orchestration
semantics” for workflows.
Source: “Heterogeneous composition of models of computation, Goderis & al., 2009

Kepler provides various (pre-defined) MoCs, but the user can
define new ones

Process Network

Static or Dynamic Dataflow

Continuous Time

Discrete Events

Synchronous/Reactive

Finite State Machines

Kepler : Abstract actor semantics

Action methods that must be implemented by actors :

preinitialize
initialize

prefire check for firing readiness
fire read/write tokens

should not change state
postfire can update state

wrapup

Protocol :

Source: “Scientific Workflow Management and the Kepler System”, Ludascher et al., 2005

ADL : Architecture Description
Languages

ADL = Architecture Description Language

An ADL is used to specify the structure of a system
separately from its algorithmic aspects.
Source: http ://c2.com/cgi/wiki ?ArchitectureDescriptionLanguage

An ADL should allow a description of a software
architecture in terms of components, connectors and
configurations.
Source: http ://www.igi-global.com/dictionary/architecture-description-language-adl/1423

A lot of ADLs have been proposed : 28 pages for a list
of currently known ADLs with short descriptions !

Coordination

Coordination is concerned with managing the
communication which is necessary due to the
distributed nature of a system [. . .] as well as with all
aspects of the composition of concurrent systems.
Source: “Coordination models and languages for parallel programming”, Ciancarini & Kielmann,

1999

Coordination is the process of building programs by
gluing together active pieces.
Source: “Coordination languages and their significance”, Carriero & Gelernter, 1992

Architecture description vs. coordination languages :
It depends a lot on the viewpoint or background

Configuration and architectural description languages
share the same principles with coordination
languages. They view a system as comprising
components and interconnections, and aim at
separating structural description of components from
component behaviour.
Source: “Coordination models and languages”, Papadopoulos & Arbab, 1998.

An example in Darwin (process-oriented style) :
The architecture, i.e., the structure

component supervisor(int w) {
provide result <port, double>;
require worker <component, int, int, int>;

}

component worker(int id, int nw, int intervals) {
require <port, double>;

}

component calc_pi(int nw) {
inst#antiate
supervisor(nw);

bind
worker.result -- S.result;
S.worker -- dyn worker;

}

Source: “Coordination models and languages”, Papadopoulos & Arbab, 1998.

An example in Darwin (cont.) :
The components, i.e., the processes

worker(int id, int nw, int intervals) {
... Compute local value in area ...
result.send(area);

}

supervisor(int nw) {
for(int i = 0; i < nw; i++) {

worker.inst(i, nb, intervals);
}

double area = 0.0;
for(int i = 0; i < nw; i++) {

double tmp;
result.in(tmp);
area += tmp;

}

printf("pi = %f\n", area);
}

Source: “Coordination models and languages”, Papadopoulos & Arbab, 1998.

An example in Rapide (process-oriented style) :
The architecture

architecture ProdCons() return SomeType is
Prod: Producer(100);
Cons: Consumer;

connect
(?n in Integer)
Prod.Send(?n) => Cons.Receive(?n);
Cons.Ack(?n) => Prof.Reply(?n);

end architecture ProdCons

Source: “Coordination models and languages”, Papadopoulos & Arbab, 1998.

An example in Rapide (cont.) :
The components

type Producer(max: Positive) is interface
action out Send(n: Integer);
action in Reply(n: Integer);

behavior
Start => Send(0);
(?x in Integer) Reply(?x) where?x < max => Send(?x+1);

end Producer;

type Consumer is interface
action out Receive(n: Integer);
action in Ack(n: Integer);

behavior
(?x in Integer) Receive(?x) => Ack(?x);

end Consumer;

Source: “Coordination models and languages”, Papadopoulos & Arbab, 1998.

An example in Manifold : Processes deal with
streams. . . but also with events

Source: “An overview of Manifold and its implementation, Arbab, Herman & Spilling, 1993.

An example in Manifold : Events are used for dynamic
reconfiguration

port in input;
port out output;
{
process A is A_Type;
process B is B_Type;
process C is C_Type;

start: (activate A, activate B, activate C); do begin.

begin: (A → B, output → C, input → output).

e1: (B → input, B → C, C → A, A → B, output → a,
input → output).

e2: (C → B).
}

Source: “An overview of Manifold and its implementation, Arbab, Herman & Spilling, 1993.

Textual pseudo-graphical
languages

Leaf : A bio-pipeline workflow language that uses a
textual DSL for graphically expressing DAG

Source: “Bioinformatics pipelines in Python with Leaf”, Napolitano, Mariani-Costantini & Tagliaferri, 2013

Leaf : A bio-pipeline workflow language that uses a
textual DSL for graphically expressing DAG

Source: “Bioinformatics pipelines in Python with Leaf”, Napolitano, Mariani-Costantini & Tagliaferri, 2013

An example in Leaf

Source: “Bioinformatics pipelines in Python with Leaf”, Napolitano, Mariani-Costantini & Tagliaferri, 2013

Another example in Leaf

Source: “Bioinformatics pipelines in Python with Leaf”, Napolitano, Mariani-Costantini & Tagliaferri, 2013

Dryad : Another workflow language with textual DSL
for expressing DAG (algebra-like operations)

Source: “Dryad : Distributed data-parallel programs from sequential building blocks”, Isard et al., 2007

Implicit construction of DAG

Imperative scripting languages

Swift : A language for scientific workflows consisting of
two elements : specification of datasets + processing

XDTM
XML description of the (often complex) datasets

SwiftScript
Imperative scripting language that builds on XDTM

An example in SwiftScript : The calls to external
applications are made explicit (with appropriate files)

(Run resliced) reslice_wf (Run r) {
Run yR = reorientRun(r , "y", "n");
Run roR = reorientRun(yR , "x", "n");
...

}

(Run or) reorientRun(Run ir, string dirct, string ovw) {
foreach Volume iv, i in ir.v {

or.v[i] = reorient(iv, dirct, ovw);
}

}

(Volume ov) reorient(Volume iv, string dirct, string ovw) {
app { reorient @filename(iv.hdr)

@filename(ov.hdr)
dirct
ovw; }

}

Source: “Swift : Fast, Reliable, Loosely Coupled Parallel Computation”, Zhao et al., 2007

Skeleton-based languages

SuperPAS (Parallel Architectural Skeletons) : Allows
user-defined skeletons

Assertion (fact ?)
“Most existing [skeleton frameworks] support a limited and fixed
set of patterns that are hard-coded into those systems.”
Source: “A model for designing and implementing parallel applications using extensible architectural skeletons”,

Akon, Goswami & Li, 2005

SuperPAS proposes a Skeleton Description Language (SDL)

“Using the SDL, a skeleton designer can design and implement
a new skeleton without understanding the low level details of
the system and its implementation.”
Source: Ibid.

Key characteristics of SuperPAS SDL

Provides a set of multidimensional grids

Each node of a grid is a virtual processor

Each multidimensional virtual processor grid is equipped
with its own communication primitives (peer-to-peer,
collective, synchronization-only, etc.)

The topology of an abstract skeleton is embedded in an
appropriate multidimensional grid, possibly with null
processors

Example : Wavefront computation, for example, used
in dynamic programming algorithm

Source: http://parallel.vub.ac.be/education/parsys/practicum.html

http://parallel.vub.ac.be/education/parsys/practicum.html

Wavefront skeleton example in SuperPAS

integer size;
skeleton Wavefront(2) {

LOCAL = {
void init() {

for(int i = 0; i < GetDimension(); i++)
SetDimensionLimit(i, size);

}

bool non_null(const Location &loc) {
return loc[1] <= loc[0]; // col. num. <= row num.

}
}

Wavefront skeleton example in SuperPAS (cont.)

PUBLIC = {
void SendRight(Msg &m) {

Location loc = GetLocation();
loc[1] = loc[1] + 1;
SendPeer(loc, m);

}

void RecvRight(Msg &m) {
...

}

bool IsAtDiagonal() {
return loc[0] == loc[1];

}

...
}

Rules and dependencies

Make is used for compilation and file manipulation
tasks

The global ordering of tasks is implicit : it is expressed through
rules that describe the required (local) dependencies

$ cat hello.c
#include <stdio.h>
int main() {
printf("Hello, World!\n");

}

$ cat Makefile
hello: hello.c

gcc -o hello hello.c

clean:
rm -f hello hello.o

$ make
gcc -o hello hello.c

$./hello
Hello, World!

$ make clean
rm -f hello hello.o

Source: http://hyperpolyglot.org/build

http://hyperpolyglot.org/build

Rake is similar to make, but is defined as an internal
Ruby DSL

$ cat Rakefile
task :default => "hello"

file "hello" => ["hello.c"] do
sh "gcc -o hello hello.c"

end

task :clean do
rm_f "hello hello.o"

end

$ rake
gcc -o hello hello.c

$./hello
Hello, World!

$ rake clean
rm -f hello hello.o

Source: http://hyperpolyglot.org/build

http://hyperpolyglot.org/build

A limitation of make : It cannot easily handle dynamic
workflow definition

[With makefiles], it is difficult to describe the “multiple
instances with a priori runtime knowledge” pattern
[i.e., when] the number of instances is unknown before
the workflow is started, but becomes known at some
stage during runtime.
Source: “Agile parallel bioinformatics workflow management using Pwrake”, Mishima et al., 2011.

A limitation of Rake : It can be run in parallel, but with
little control over the parallelism

The original Rake has the MultiTask class for
parallel execution of prerequisite tasks in Ruby
threads. [However,] Rake has no mechanism for
controlling the number of threads nor thread pooling,
[nor] for invoking processes on remote hosts.
Source: “Pwrake : A parallel and distributed flexible workflow management tool for wide-area data

intensive computing”, Tanaka & Tatebe, 2010

Furthermore :
Rake uses Ruby threads, which are not really parallel in
MRI Ruby (uses a GIL = Global Interpreter Lock) — but
threads are really parallel in JRuby (JVM threads)

Pwrake : A distributed parallel workflow extension of
Rake

Source: “Pwrake : A parallel and distributed flexible workflow management tool for wide-area data intensive

computing”, Tanaka & Tatebe, 2010

An example in Pwrake : A task can (and sometimes
must) be explicitly invoked

SRCFITS = FileList["#{INPUT_DIR}/*.fits"]

file("pimages.tbl") do
OUTFITS = SRCFITS.map do |img|

out = img.sub /^(.*?)([^\/]+).fits/, ’p/\2.p.fits’
file(out => [img, HDR]) do |t|

t.rsh "mProjectPP #{img} #{out} #{HDR}"
end
out

end
pw_multitask("Proj" => OUTFITS).invoke
sh "mImgtbl p pimages.tbl"

end

Shared-medium coordination
languages

Linda : The first approach to explicitly introduce the
idea of coordination language

Source: http://www.mcs.anl.gov/~itf/dbpp/text/node44.html

Provides a unique global tuple space with flat tuples

http://www.mcs.anl.gov/~itf/dbpp/text/node44.html

An example in Linda : A small number of coordination
operations are provided within a standard language

int main(int argc, char* argv[]) {
int nbWorkers = atoi(argv[1]);

for(int j=0; j < nbWorkers; j++)
eval("worker", hello(j));

for(int j=0; j < nbWorkers; j++)
in("done");

}

int hello(int i) {
printf("Hello world from %d.\n", i);
out("done");

}

Source: http://web.archive.org/web/20090925185219/http:

//phi.sinica.edu.tw/instruct/workshop/html/linda/linda.html

http://web.archive.org/web/20090925185219/http://phi.sinica.edu.tw/instruct/workshop/html/linda/linda.html
http://web.archive.org/web/20090925185219/http://phi.sinica.edu.tw/instruct/workshop/html/linda/linda.html

An example in Linda : Conditional communication can
be performed through pattern-matching of tuples

int nbWorkers = ...

for(int j=0; j < nbWorkers; j++)
eval("worker", worker);

out("barrier", 0);
...

int worker {
... do something ...

// Barrier-synchronization.
int nb;
in ("barrier",?nb);
out("barrier", nb+1);
rd ("barrier", nbWorkers);
...

}

JavaSpaces : A Linda implementation in Java with
multiple structured-tuple spaces

Source: http://fr.slideshare.net/shengt/linda-andtuplespace-changed

http://fr.slideshare.net/shengt/linda-andtuplespace-changed

Concurrent Collections (CnC) :
Origins and key concepts

Origins of CnC

• Dataflow architectures⇒ implicit parallelism (1975)
...

• Linda⇒ tuples and tuple space (1985)
...

• TStreams⇒ tagged streams (2004)
⇒ Intel Concurrent Collections (2009)

Concurrent Collections (CnC) :
Origins and key concepts

Origins of CnC

• TStreams⇒ tagged streams (2004)
⇒ Intel Concurrent Collections (2009)

TStream’s tagged streams were renamed collections

A stream describes a collection of data objects produced
by one computation and used by another (typical !)

No FIFO ordering on the stream’s values – the values are
tagged ≈ key–value access (≈ tuple space)

A stream is monotonic : An item, once inserted, is never
removed (atypical !)

CnC’s basic premise = Domain experts should not
worry about parallelism constructs

Domain experts can identify the intrinsic data dependences and
control dependences in an application, without worrying about
what parallel constructs should be used so satisfy those
dependences.

Source: “Dataflow Programming with Intel Concurrent Collections”, V. Sarkar, 2011

Source: “The Concurrent Collections (CnC) Parallel Programming Model—Foundations and Implementation

Challenges”, Knobe & Sarkar, 2009

What the domain expert must do is express the
semantic ordering constraints

Data dependences Control dependences

Implicit parallelism
Parallelism is implicit, based on the resulting CnC graph.

An example to illustrate data collections and data
dependencies : Filtering substrings

Input
Set of strings

Output
Set of substrings from input that. . .

is a maximal block of identical characters
is of even length

Example

Input = ["22334", "1119999"]
Output = ["22", "33", "9999"]

An execution in FastFlow :
Initial state

An execution in FastFlow :
Some time later

An execution in FastFlow :
Some time a bit later

An execution in FastFlow :
Final state

An execution in CnC (data collections only) :
Initial state

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

An execution in CnC (data collections only) :
Some time later

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

An execution in CnC (data collections only) :
Some time a bit later

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

An execution in CnC (data collections only) :
Final state

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

But, in CnC, a step requires an appropriate control tag
to execute — to create instances of the step

Note : Steps are supposed to be purely functional⇒
reexecution of a step is idempotent

But, in CnC, a step requires an appropriate control tag
to execute — to create instances of the step

Note : Steps are supposed to be purely functional⇒
reexecution of a step is idempotent

But, in CnC, a step requires an appropriate control tag
to execute — to create instances of the step

Note : Steps are supposed to be purely functional⇒
reexecution of a step is idempotent

But, in CnC, a step requires an appropriate control tag
to execute — to create instances of the step

Note : Steps are supposed to be purely functional⇒
reexecution of a step is idempotent

But, in CnC, a step requires an appropriate control tag
to execute — to create instances of the step

Note : Steps are supposed to be purely functional⇒
reexecution of a step is idempotent

So :
control tag ≈ id of dynamic instance of a macro-dataflow node

An execution in CnC (data and control collections) :
Initial state

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

<bar: tg> = item in tag (control) collection bar with tag tg.

An execution in CnC (data and control collections) :
Some time later

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

<bar: tg> = item in tag (control) collection bar with tag tg.

An execution in CnC (data and control collections) :
Some time a bit later

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

<bar: tg> = item in tag (control) collection bar with tag tg.

An execution in CnC (data and control collections) :
Final state

Note :

[Foo tg: val] = item in data collection Foo with tag (key) tg
and associated value val.

<bar: tg> = item in tag (control) collection bar with tag tg.

FastFlow vs. CnC : For simple pipelines, they are
similar and control tags seem superfluous

Assertion
For simple pipelines, there is a one-to-one correspondence
between tags and data items.

FastFlow vs. CnC : For simple pipelines, they are
similar and control tags seem superfluous

Assertion
For simple pipelines, there is a one-to-one correspondence
between tags and data items.

FastFlow vs. CnC : For simple pipelines, they are
similar and control tags seem superfluous

Assertion
For simple pipelines, there is a one-to-one correspondence
between tags and data items.

FastFlow vs. CnC : An example to illustrate the
difference

Input
Set of strings

Output
Set of substrings from input that. . .

is a maximal block of identical characters
is the same length as preceding block in same string

Example

Input = ["22334", "1119999"]
Output = ["33"]

A possible FastFlow solution : filter process is not
functional — it requires an internal state

Given "22334" as input. . .

Another possible FastFlow solution : filter process
is now functional, but tasks are more complex

Given "22334" as input. . .

A possible CnC solution : All steps are functional

Given "22334" as input. . .

def filter same length(<fsl: i.j>) =
output [Blk i.j] if length [Blk i.j] == length [Blk i.j-1]

FastFlow vs. CnC : CnC can express memoized
recursive non-strict definition

Example (Fibonacci in a non-strict functional language)
fibo(n) = fibos[n]

where
fibos[0] = 1
fibos[1] = 1
fibos[i] = fibos[i-1] + fibos[i-2], 2 <= i <= n

FastFlow vs. CnC : CnC can express memoized
recursive non-strict definition

Example (Fibonacci in CnC)

FastFlow vs. CnC : CnC can express memoized
recursive non-strict definition

Example (Fibonacci in CnC)

FastFlow vs. CnC : CnC can express memoized
recursive non-strict definition

Example (Fibonacci step for CnC version, in pseudocode)
def fibo(<fibo: n>)

case n
when 0
Fibo.get(0)

when 1
Fibo.get(1)

else
r = Fibo.get(n-1) + Fibo.get(n-2)
Fibo.put(n, r)

end
end

FastFlow vs. CnC : In general, there may be no direct
correspondance between control tags and data items

FastFlow vs. CnC : In general, there may be no direct
correspondance between control tags and data items

FastFlow vs. CnC : Fastflow core skeletons graphs
deal with resources (threads), CnC graphs do not

Comparison of some approaches

Some questions to compare the
different approaches

A number of comparison criteria

How is the DAG specified ?

Explicitly
Explicit links between nodes : GUI, ADL
Graph algebra

Implicitly
Imperative scripting languages
Skeleton languages
Rules and dependencies
Shared-medium coordination language

A key feature of “recent” languages or approaches is
that they support some form of dynamic tasks

Languages proposed by DARPA HPCS program

Chapel
Fortress
X10

Older languages. . . or newer versions of existing languages

Cilk
OpenMP 3.0
Habanero Java

Other languages

CnC — Concurrent Collections

When is the DAG specified ?

Statically
GUI
ADLs (some)
Graph algebra
Scripting languages (some)
Skeleton languages
Coordination languages (some)

Dynamically
Scripting languages (some)
Skeleton languages (some)
Rules and dependencies
Coordination languages and Concurrent collections

How do tasks/nodes communicate with one another ?

Privately
⇒
1→ 1

Publicly
⇒
n↔ m
n→ 1

How do tasks/nodes communicate with one another ?

Privately
⇒
1→ 1

Channel-
based

Publicly
⇒
n↔ m
n→ 1

Shared-
medium

But. . . not all “channel”-based approaches lead to
private communication

Channels in Go (Ruby-style)
c = channel!(Integer)

go! do
0.upto(10) { |i| c << i }
puts c.receive # ∈ {1,2,10,20}

end

go! do
0.upto(10) { |i| c << 10*i }
puts c.receive # ∈ {1,2,10,20}

end

The channel is explicit with a public name
⇒ available for use by any process (for reading or writing)

And some approaches that have channels
(somewhere !) are part private/part public

Scala actors
class PingActor extends Actor {

def receive = {
case Start(ponger) => { ponger! Ping }
case Pong => { println("Pong!"); sender! Ping }

}
}

class PongActor extends Actor {
def receive = {

case Ping => { println("Ping!"); sender! Pong }
}

}
...
pinger! Start(ponger)

Actors

An Actor is like an object
instance executed by a
single thread. Instead of
direct calls to methods,
messages are put into the
Actor’s “mailbox” (queue).
The actor single threaded
reads and processes
messages from the queue
sequentially.
Source: http://java-is-the-new-c.

blogspot.it/2014/01/

comparision-of-different-concurrency.

html

http://java-is-the-new-c.blogspot.it/2014/01/comparision-of-different-concurrency.html
http://java-is-the-new-c.blogspot.it/2014/01/comparision-of-different-concurrency.html
http://java-is-the-new-c.blogspot.it/2014/01/comparision-of-different-concurrency.html
http://java-is-the-new-c.blogspot.it/2014/01/comparision-of-different-concurrency.html

And some approaches that have channels
(somewhere !) are part private/part public

Scala actors
class PingActor extends Actor {

def receive = {
case Start(ponger) => { ponger! Ping }
case Pong => { println("Pong!"); sender! Ping }

}
}

class PongActor extends Actor {
def receive = {

case Ping => { println("Ping!"); sender! Pong }
}

}
...
pinger! Start(ponger)

An actor owns a mailbox (with an implicit channel) : any
process can send to it, but only the owner can read from it —
the actor’s name is explicit and public, not its channel !

How does the communication medium behave : in the
private case ?

How does the communication medium behave : in the
private case ?

How does the communication medium behave : in the
public case ?

How does the communication medium behave : in the
public case ?

How does the communication medium behave : in the
public case ?

How many ports do nodes have and how are those
ports identified ?

1/1

N/1 vs. 1/M

N/M

How many ports do nodes have and how are those
ports identified ?

1/1

N/1 vs. 1/M

N/M

How many ports do nodes have and how are those
ports identified ?

1/1

N/1 vs. 1/M

N/M

How is orchestration specified ?

Hard-coded in the framework
Most of the approaches

Under user control
Kepler

Some possible directions for
FastFlow ?

Some possible directions ?

Support for dynamicity ?
Dynamic (macro) dataflow ?
Concurrent collections ?

Task-based approach (might be similar to CnC) ?

User-defined evolving skeletons ?
User-defined orchestration ?

Better support for explicit DAG ?
More general port interface ?

More general communication medium ?
Higher level abstraction than FIFO queue ?

	Explicit construction of DAG
	Implicit construction of DAG

