
Introducing Students to Professional Software
Construction: A “Software Construction and Maintenance”

Course and its Maintenance Corpus

Guy Tremblay, Bruno Malenfant, Aziz Salah and Pablo Zentilli
Dept. d’informatique, UQAM
C.P. 8888, Succ. Centre-Ville

Montreal, QC, Canada, H3C 3P8
{tremblay.guy,malenfant.bruno,salah.aziz}@uqam.ca

ABSTRACT
It is widely accepted that there is more to software construc-
tion than basic programming skills [13, 11, 15, 16]. Profes-
sional software construction involves not only understanding
some theoretical concepts, but also mastering appropriate
tools and practices. In this paper, we present an under-
graduate course in Software Construction and Maintenance,
developed with the goal of introducing students to those key
concepts, tools and practices.

We first outline the content of that course, explaining how
it fits within our undergraduate program. We then present a
key element of that course—namely, its maintenance corpus
along with its testing frameworks—used to concretely intro-
duce students to various tools and practices, e.g., automatic
test execution, build and configuration management, source
code documentation, use of assertions, etc.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms: Design

Keywords: Software Engineering, Testing, Maintenance

1. INTRODUCTION
Developing software in a professional manner requires not

only knowing programming languages, but also mastering
appropriate practices and tools [13, 11, 15], including those
related with testing [11, 4, 16]. However, software construc-
tion related topics appear to be somewhat neglected in gen-
eral software engineering books [18, 20], a fact which can
also be noticed in the Guide to the SWEBOK related chap-
ter’s references [16].

For numerous years, official software engineering has been
mostly concerned with documentation and process, largely

Copyright is held by the author/owner(s).
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
ACM 978-1-59593-610-3/07/0006.

emphasizing pre-construction phases (i.e., requirements anal-
ysis, specification and design), which has been reflected in
most software engineering curriculum. For instance, our
undergraduate program at UQAM is titled “Informatique
et génie logiciel” (Computer science and software engineer-
ing).1 As early as 1991, students had to take four (4) manda-
tory SE courses: Requirements analysis and modeling, De-
sign, Project management, and Requirements analysis and
modeling project. Since 1999, students must also take a
Formal specification course [25]. Of course, students also
take various CS/SE-related courses, e.g., discrete mathe-
matics and statistics, data structures, operating systems,
networks and distributed applications, database design and
implementation, information systems, ethics and profession-
alism, etc. But except for the two introductory program-
ming courses, there was, until recently, no course addressing
software construction per se [16].

Over the last few years, with the emergence of the agile
movement [3, 7], it is becoming accepted that using disci-
pline in SE also means being concerned with good software
construction practices. In the fall 2004, when revisions were
made to UQAM’s SE program, we decided to introduce a
new course where students would be introduced early to
some of the key practices associated with a disciplined ap-
proach to software construction [13, 11, 15]. In this pa-
per, we present the Software Construction and Maintenance
course that we developed for this purpose.

Outline of paper. Section 2 outlines the content of our
Software Construction and Maintenance course. Section 3
presents a key element of this course, namely, the mainte-
nance corpus used to concretely introduce students to var-
ious software construction practices and tools. Section 4
presents the two testing frameworks used within this main-
tenance corpus. Finally, Section 5 discusses how this course
compares to other courses and how it relates to SEEK knowl-
edge units [22].

1Before 2002, it was titled “Informatique de gestion” (Computer
science and information systems), but its content was the same,
only the name changed.

2. A “SOFTWARE CONSTRUCTION AND
MAINTENANCE” COURSE

2.1 Course Outline
We designed our Software Construction and Maintenance

course—taken during the third semester of a seven (resp.
ten) semester regular (resp. Co-op) program—to act as a
bridge between the basic programming knowledge developed
in the (two) introductory programming courses and the ab-
stract notions introduced in more advanced software en-
gineering courses—more precisely, the design and project
management courses. Our goal was to use a bottom-up
approach where, for example, testing techniques and tools
would be introduced and used by students in a first course,
and then later discussed more abstractly (e.g., high-level test
planning) in subsequent software SE courses.

Because the first two programming courses as well as the
subsequent data structures course use object-oriented lan-
guages (Java and C++), we choose to use C, so students would
be exposed to the imperative and procedural paradigm. Choos-
ing C had the additional benefit that when students take the
subsequent operating systems course, also in C, they know
enough about the language to delve more deeply into pro-
gramming with (Posix) threads [8], which was not possible
before.

Here is the outline of the course:

1. Introduction to the C programming language.

2. Introduction to the use of Linux/Unix (basic shell com-
mands, gcc, make, shell scripts [14]).

3. Basic software design concepts: Types of modules and
components; abstraction (procedural, data, control);
cohesion and coupling; encapsulation and information
hiding; filters and pipelines.

4. Programming style, error handling, documentation tools
(DOC++).

5. Debugging strategies and tools (gdb [14]).

6. Defensive programming, role and use of assertions (assert
macro).

7. Tests: Black/white box tests, unit (module) vs. system-
level tests. Test coverage and structural complexity.
Testing scripts and frameworks (see Section 4).

8. Strategies, techniques and tools for performance eval-
uation and optimization (gprof [14]).

9. Configuration management (CVS [23]).

10. Software evolution and maintenance—of course, with
the emphasis on code maintenance.

Few lecture hours are dedicated to maintenance. Instead,
as described below, students are introduced to maintenance
in a practical and concrete way.

2.2 The Place of Maintenance
Only discussing maintenance and related concepts would

have been insufficient. Rather, we wanted students to un-
derstand what maintenance is really about. . . by practicing
maintenance. Thus, the last practical assignment is a main-
tenance assignment—examples appear in Section 3.3.

Having students perform maintenance work requires hav-
ing some software to maintain, complex enough for the main-
tenance task not to be trivial, yet simple enough that second
year students can perform the required task. Thus, we de-
cided to develop our own maintenance corpus (Section 3).

Having our own maintenance corpus makes it possible
to introduce concretely key practices and tools, not only
by teaching about those notions during lectures, but also
by having students use such tools and practices. In other
words, students must also learn about those topics by read-
ing and understanding software (documentation and source
code) developed using such practices and tools.

3. THE MAINTENANCE CORPUS
Our maintenance corpus needs to be at the appropriate

level, i.e., neither too simple nor too complex (e.g., some
real open-source software). To attain the correct level of
complexity, we started. . . from some software developed by
a group of four undergraduate students as part of a course
project.2

3.1 Software for Managing a Personal Library
Our maintenance corpus software’s goal is to manage the

personal library of the first author, who wanted to keep track
of the various books he was lending to colleagues and stu-
dents. The key functionalities are the following, described
using command-line calls—all identifiers have been manually
translated in English, as our software is written in French:

• Borrow a book:

% books borrow Zentilli zentilli_pablo@yahoo.fr
"Code complete" McConnell

• Return a book:

% books return "Code complete"

• Identify all books borrowed by some person:

% books borrowed Zentilli

• Identify the person who borrowed some book, then
send an email asking that the book be returned:

% books borrower "Code complete"
% books recall-book "Code complete"

• Send an email to each and every borrower, asking that
the borrowed books be returned:

% books recall-all-books

3.2 Improving the Initial Software
The initial software written by the four students (in C)

was, indeed, usable. However, it was badly written, unstruc-
tured, with no comments, a lot of (cut-and-pasted) dupli-
cated code, no tests, some unimplemented operations, etc.

Asking our students to modify directly that software would
have made their job quite difficult. Furthermore, it would
not have shown them any of the good practices associated
with professional software construction, since none had been
used. . . For instance, in the initial version, absolutely no
tests had been defined. Since we wanted students to modify

2This course is not part of our bachelor program. Instead, it is
part of a one year “CS Certificate,” so students in that course
have somewhat limited programming knowledge and skills.

and improve the existing program and always ensure it be-
have correctly, our first step was thus to develop system-level
regression tests. Once this was done, additional modifica-
tions and improvements were made, not to make the pro-
gram perfect, but rather to show, in various places, the cor-
rect use of key software design, construction and test prac-
tices. Overall, the following modifications were performed
before the first “public” release:

• Support was provided for the automatic execution of
system-level tests (for regression testing purpose, as
described in Section 4.1).

• The source code was put under revision control, using
CVS [23].

• The source code was minimally restructured (decom-
posed into a few modules) and an appropriate makefile

was defined to automate the build process.

• Most header files were documented with DOC++
3—DOC++

uses special comments, à la JavaDoc, to document mod-
ule interfaces, including (informal) pre/post-conditions.

• Assertions (mostly for pre-conditions) were added in
some modules.

• Unit tests (using MiniCUnit: see Section 4.2) were (par-
tially) defined for some modules.

3.3 Programming Assignments Using the Main-
tenance Corpus

The maintenance corpus is used in the final assignment.
Students are provided with a document explaining the code
improvement process described above, the resulting software
structure, as well as the various tools not formally discussed
in lectures4. On-line documentation (DOC++) is also provided,
along with source code.

So far, the maintenance corpus has been used three times:

• Winter 2006: Students had to add a new find oper-
ation. More precisely, a preliminary version of that
command was already available, but was implemented
as a shell script, as it had not been included in the ini-
tial software release. The goal was thus to implement
it like the other commands, in C, which required:

– Modifying some system-level tests.

– Writing new C code and modifying the main pro-
gram.

– Developing some unit tests.

– Documenting the modified header files with DOC++.

• Summer 2006: Students had to improve the existing
code, without changing its overall behavior, which re-
quired:

– Removing magic constants and introducing ap-
propriate symbolic constants.

– Removing useless initializations.

– Localizing the variables—variables were always
declared at the top-level of functions.

3
http://docpp.sourceforge.net

4
http://www.info2.uqam.ca/~tremblay/INF3135/Biblio

– Simplifying the error messages generation by defin-
ing additional error message routines.

– Modifying the main program to use a table-driven
dispatcher instead of a long, linear, if instruction.

• Fall 2006: Students had to modify the recall-all-books

command so that the email sent to borrowers explicitly
indicate the borrowed books list—initially, the email
simply indicated that some books had been borrowed,
without saying which. This required modifying the
system-level tests as well as modifying some existing
code. Other modifications also had to be made:

– Reimplementing one routine unit tests, so that
those tests use the MiniCUnit test framework in-
stead of simple asserts—failure of the latter sim-
ply aborts program execution, thus producing an
incomplete execution report (see Section 4.2).

– Adding (MiniCUnit) unit tests for a routine which
had no such test.

Other planned assignments are the following:

• Similar to the first assignment mentioned above, re-
implement an existing command (list) which will re-
quire modifying existing system-level tests, adding new
ones, and modifying/adding code.

• Add a new return-books command allowing to specify
multiple returned books.

• Add a new recall-books command allowing, with ap-
propriate options, either to require from a borrower
that multiple books be returned or that all borrowed
books be returned.

• Allow various commands taking title arguments to ac-
cept incomplete or partially specified string, for exam-
ple, using regular expressions—in the current version,
all such titles must match exactly.

A recurring theme in all those assignments is the need for
testing, system-level testing as well as unit testing, a topic
we now discuss.

4. THE TEST FRAMEWORKS
Tests can be performed at various levels [21, 6], for in-

stance, unit tests (for independent modules and compo-
nents), integration tests (for combination of modules and
subsystems), system tests (for the whole system).

Various test frameworks have been developed, JUnit, pop-
ularized by proponents of eXtreme Programming [3], being
the most well-known [5]. Such frameworks are now being
used in various undergraduate courses [2, 10, 17].

Test execution frameworks are characterized, among other
things, by the use of assertions to describe tests, by the fact
that results are emitted (mostly) only when errors are de-
tected, and by the support they provide to the (structured)
organization of tests—for example, a hierarchy consisting of
test methods, test cases, test suites.

For our corpus maintenance, we choose to develop our own
test frameworks.

4.1 System-Level Testing of C Programs
The book management software described in Section 3

must manage persistent data. To make it simpler for stu-
dents, persistent data is stored in textual databases. Per-
forming system-level tests thus requires being able to com-
pare both the results emitted on stdout and the textual mod-
ifications made to the database.

For this purpose, we wrote a C-shell script that works as
follows. First, the script requires that each test case be
specified using four (4) different text files—a complete test
suite is composed of many different test cases:

• test-X.commands: A series of commands to be executed
for this specific test case.

• test-X.before: The state of the database before exe-
cution of the test case.

• test-X.results: The output results expected from ex-
ecution of the test case commands.

• test-X.after: The expected state of the database after
the test case commands have been executed.

For each test case, for example X, the following operations
are then performed :

• Define the current state of the database to be as de-
scribed by test-X.before.

• Execute the commands in test-X.commands and save
the results emitted on standard output in a temporary
file test-X.obtained.

• Using diff, compare test-X.results and test-X.obt-

ained and signal significant differences—by default,
comparisons are performed leniently, i.e., differences
pertaining to white spaces or letter case are ignored,
although other comparison modes can be specified.

• Still using diff, compare test-X.after with the current
content of the database and signal differences.

The final global output of the test script then indicates the
total number of test cases that were executed as well as the
number of test cases where differences were noted and, if
any, whether differences were noted for the emitted results
or database updates.

This testing approach can be generalized to other types of
data. For instance, we recently added a log file that records
the various recall emails sent to borrowers. Thus, two ad-
ditional text files are now required to describe a test case:
one describes the content of the log file before execution
of the test case commands, the other describes its content
afterwards.

Interestingly, the various C-shell scripts used for automat-
ing execution of system-level tests are also useful examples
of shell scripts, a topic also covered in the course (use of
Unix/Linux).

4.2 Unit Testing of C Modules
Our unit test framework, called MiniCUnit, was inspired

by MinUnit
5 , which defines a few macros and uses various

variables to keep track of the number of tests executed, as-
sertions evaluated, etc. MinUnit is quite minimal and, also,

5
http://www.jera.com/techinfo/jtns/jtn002.html

fragile, since test cases execution aborts as soon as an er-
roneous assertion is encountered. MiniCUnit, on the other
hand, is more robust: at compile-time, through the use
of C functions and a more limited use of macros, and at
execution-time, since test cases execution can proceed even
when a failed assertion is encountered.

#include "MiniCUnit.h"

static TestSuite suite1();

int main(int argc, char *argv[])
{
executeTestSuite(suite1);

printf("%s", testsSummary());
return 0;

}

// Various test cases definitions.
TEST_CASE(test1)
...
END_TEST_CASE
.
.
.

TEST_CASE(testK)
...
END_TEST_CASE

// Test suite definition.
TEST_SUITE(suite1)
addTestCase(test1);
...
addTestCase(testK);

END_TEST_SUITE

Figure 1: Typical structure of a test program using
MiniCUnit.

Figure 1 outlines a typical test program using MiniCUnit.
The final execution summary, obtained from testsSummary(),
has the following form:
*** Summary: 1 suites executed;

6 tests executed, 0 failed tests;
13 assertions evaluated, 0 failed assertions

Various forms of assertions are provided—e.g., assertTrue,
assertFalse, assertEqualStrings, assertEqualInts. Each re-
quires a string argument, used in case of failure. For ex-
ample, suppose the following assertEqualStrings is the 5th
assertion in test case test2 within test suite suite1:

assertEqualStrings("dog", "cat", "Bad mix");

Result for suite1 execution would then include the following:

1) "suite1"::"test2"
#5: ’Bad mix ("dog", "cat")’

5. CONCLUSION
In this paper, we presented a new Software Construction

and Maintenance course which aims at introducing students
to some of the key concepts, practices and tools of profes-
sional software construction. We also presented a key com-
ponent of this course, namely, its maintenance corpus along
with its associated test frameworks.

As we showed in Section 3, this corpus, on which stu-
dents must perform concrete maintenance tasks, introduces

students to various good practices and to the proper use of
software construction tools, e.g., source code revision control
(CVS), automatic build management (make) and execution of
(system-level as well as unit) tests, semi-formal documenta-
tion of module interfaces (DOC++), use of assertions (assert).

Other courses discussing software construction and main-
tenance have been proposed. For instance, Postema et al. [19],
as we do, discuss the practical aspect that should be present
in a course addressing maintenance, whereas Austin and
Samadzadeh [1] put more emphasis on the topic of software
comprehension. Various courses related with testing have
also been proposed [9, 12, 24].

As for “software construction” courses, a recent search on
the Web6 showed that most courses supposedly dealing with
software construction fall into one of two categories:

• General SE overview courses, i.e., courses discussing
software development in “general” (life cycle, require-
ments and design modeling, project management, etc.).

• Programming courses, i.e., courses dealing almost ex-
clusively with (OO) programming-related concepts.

Only a small number of courses appear to have an ori-
entation similar to our course, that is, attempt to address
the various aspects of software construction (style, design,
contracts, tests, configuration, tools) and maintenance, all
within a single (early) course—a similarity which can also
be noticed through the key references [13, 11, 15] provided
in those courses’ outlines.

More precisely, our course addresses the following SEEK
Knowledge Units [22], thus showing its breadth when com-
pared with “programming” courses:

• CMP.ct Construction technologies (1, 2, 5, 6, 7, 16)

• CMP.tl Construction tools (1, 3, 4, 5)

• PRF.com Communication skills (1)

• MAA.md Modeling foundations (2)

• DES.con Design concepts (1, 4)

• DES.str Design strategies (1)

• DES.ste Design support tools and evaluation (2)

• VAV.tst Testing (1, 2, 4, 5, 8, 10, 11)

• EVO.pro Evolution processes (1)

• EVO.ac Evolution activities (1, 2, 6)

• MGT.cm Software configuration management (1, 3, 4)

So far, feedback from students on this Software Construc-
tion and Maintenance course has been very positive: in a re-
cent (oral) survey where over 100 students were interviewed,
it scored among the top third best-evaluated courses. More
precisely, on a 5 points scale—where 5 is the best score
and 1 is the worst—, the course obtained an average score
of 4.39 for its “quality” and an average score of 4.24 for
its “usefulness”—how useful the students think what they
learned in the course will be.

As future work, we plan to extend our maintenance corpus
to incorporate additional tools:

• C-style checking tool, to identify potential places where
the source code style could be improved.

• Source code static analysis tools, e.g., data flow anal-
ysis as performed by Uno

7, to improve the semantic
quality of the code.

6Note that we did not find any paper discussing explicitly soft-
ware construction, as it is now understood [16].
7
http://www.spinroot.com/uno

• Test coverage tool, e.g., gcov, to measure and improve
the quality of tests, both system-level and unit tests.

Our hope is that, after taking this Software Construction
and Maintenance course, students will come to appreciate
how the use of tools can help them perform their job in a
more professional manner, appreciating also the role testing
tools can play in developing and maintaining software.

6. ACKNOWLEDGMENTS
Thanks to E. Chieze, I. Maffezzini and the anonymous

referees for their feedback and suggestions.

7. REFERENCES
[1] M. A. Austin and M. H. Samadzadeh. Software

comprehension/maintenance: an introductory course. In
ICSEng 2005, pages 414–419, 2005.

[2] E. Barriocanal, M.-A. Urbán, I. Cuevas, and P. Pérez. An
experience in integrating automated unit testing practice in an
introductory programming course. SIGCSE Bulletin,
34(4):125–128, 2002.

[3] K. Beck. Extreme Programming Explained—Embrace
Change. Addison-Wesley, 2000.

[4] K. Beck. Test-Driven Development—By Example.
Addison-Wesley, 2003.

[5] K. Beck and E. Gamma. Test infected: Programmers love
writing tests. Java Report, 3(7):37–50, 1998.

[6] A. Bertolino and E. Marchetti (Ass. Eds.). Software testing. In
Guide to the SWEBOK (2004 Vers.), pages 5.1–5.16. IEEE
Comp. Soc. Press, 2004.

[7] B. Boehm and R. Turner. Balancing Agility and
Discipline—A Guide for the Perplexed. Addison-Wesley, 2004.

[8] D. Butenhof. Programming with POSIX Threads.
Addison-Wesley, 1997.

[9] H. B. Christensen. Systematic testing should not be a topic in
the computer science curriculum! SIGCSE Bulletin,
35(3):7–10, 2003.

[10] M. Goldwasser. A gimmick to integrate software testing
throughout the curriculum. SIGCSE Bulletin, 34(1):271–275,
2002.

[11] A. Hunt and D. Thomas. The Pragmatic Programmer—From
journeyman to master. Addison-Wesley, 2000.

[12] F. Kazemian and T. Howles. A software testing course for
computer science majors. SIGCSE Bull., 37(4):50–53, 2005.

[13] B. Kernighan and R. Pike. The Practice of Programming.
Addison-Wesley, 1999.

[14] M. Loukides and A. Oram. Programming with GNU Software.
O’Reilly, 1997.

[15] S. McConnell. Code Complete—A Practical Handbook of
Soft. Constr. (Second Ed.). Microsoft Press, 2004.

[16] S. McConnell, T. Bollinger, P. Gabrini, and L. Martin (Ass.
Eds.). Software construction. In Guide to the SWEBOK
(2004 Vers.), pages 4.1–4.10. IEEE Comp. Soc. Press, 2004.

[17] R. Noonan and R. Prosl. Unit testing frameworks. SIGCSE
Bulletin, 34(2):232–236, 2002.

[18] S. Pfleeger. Software Engineering—A Rigorous and Practical
Approach (Second Ed.). International Thomson Computer
Press, 2001.

[19] M. Postema, J. Miller, and M. Dick. Including practical
software evolution in soft. eng. education. In 14th Conf. on
Soft. Eng. Educ. and Tr., pages 127–135, 2001.

[20] R. Pressman. Software Engineering—A Practitioner’s
Approach (Fifth Ed.). McGraw-Hill, Inc., 2001.

[21] P. Robillard and P. Kruchten. Software Engineering Process
with the UPEDU. Addison-Wesley, 2003.

[22] The Joint Task Force on Computing Curricula. Software
Engineering 2004—Curriculum guidelines for undergraduate
degree progams in soft. eng. Aug. 2004.

[23] D. Thomas and A. Hunt. Pragmatic Version Control Using
CVS. The Pragmatic Bookshelf, 2004.

[24] A. Tinkham and C. Kaner. Experience teaching a course in
programmer testing. In Agile Conf. 2005, pages 298–305, 2005.

[25] G. Tremblay. An undergraduate course in formal methods:
“Description is our business”. SIGCSE Bulletin,
30(1):166–170, 1998.

