
Extending a Marking Tool with Simple Support for Testing

Guy Tremblay, Louise Laforest and Aziz Salah
Dept. d’informatique, UQAM
C.P. 8888, Succ. Centre-Ville

Montreal, QC, Canada, H3C 3P8
{tremblay.guy,laforest.louise,salah.aziz}@uqam.ca

ABSTRACT
Oto is a customizable and extensible marking tool which
aims at providing timely feedback to students. Based on
simple test cases description formats, Oto also includes op-
erations that help students easily test—even “mark”—their
own programs.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction

General Terms: Languages

Keywords: Educational Software, Automated Marking,
Testing

1. INTRODUCTION
Various tools providing support for marking programs are

available [2], including Oto [4], a customizable and extensible

marking tool which can provide feedback to students even
before the final submission.

Oto has recently been improved to simplify testing, by
instructors and students, using simple test cases description
formats, each targeting a specific type of assignment.

2. COURSE LABORATORIES
Our introductory programming course, in Java, uses an

“imperative-first implementation” [3] and includes weekly
(closed) laboratories. The laboratories progress as follows:

1. Filter programs—perform textual I/O on standard
streams.

2. Programs providing method “libraries”—i.e., classes
defining public and static methods (procedural abstrac-
tion).

3. Simple object classes (procedural and data abstrac-
tion).

Defining large sets of tests cases, whether they are textual
(filter programs) or JUnit [1] (static or instance methods)
tests, can be long and tedious. Moreover, defining JUnit
tests is beyond the scope of novice students’ knowledge.

Copyright is held by the author/owner(s).
ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United Kingdom.
ACM 978-1-59593-610-3/07/0006.

3. TEST CASES DESCRIPTIONS
To simplify the specification of test cases, three different

formats have been defined:

• Tests for filter programs: Described by data to be read
on standard input and result expected on standard
output.

• Tests for class methods: Described by method calls
followed by expected (scalar or array) results. Example:

int minimum(int, int, int)
===
minimum(0, 1, 2)

0
===
minimum(3, 2, 3)

2

• Tests for simple classes: Described by sequences of
method calls followed by expected results.

The first format generates text files (then processed by
a script) where the obtained and expected results are com-
pared using diff. The other two formats generate JUnit
test cases [1], including signature checking test cases (im-
plemented using reflection).

4. CONCLUSION
Using the above test cases description formats, Oto now

provides a number of high-level commands, both for in-
structors and students, dedicated to testing. These com-
mands greatly simplify the instructors’ task of defining test
cases. More importantly, they allow students to test their
own programs, without any knowledge of JUnit or testing
scripts. Thus, students can be introduced early to testing
(first semester).

5. REFERENCES
[1] K. Beck and E. Gamma. Test infected: Programmers love

writing tests. Java Report, 3(7):37–50, 1998.

[2] D. Douce, D. Livingstone, and J. Orwell. Automatic test-based
assessment of programming: A review. Journal on Educational

Resources in Computing, 5(3), Article No. 4, Sept. 2005.

[3] IEEE and ACM. Computing curricula 2001. Technical report,
IEEE and ACM, 2001.

[4] G. Tremblay, F. Guérin, and A. Pons. A generic and extensible
tool for marking programming assignments. In IASTED Intl
Conf. on Educ. and Tech., pages 55–60, 2005.

