
'

&

$

%

AN INTERNAL DSL FOR BUILDING

FASTFLOW SKELETONS USING A C++

FLUENT INTERFACE

Guy Tremblay and Marco Aldinucci

Juin 2015

Département d’informatique

Université du Québec à Montréal

Rapport de recherche Latece 2015-1

AN INTERNAL DSL FOR BUILDING FASTFLOW
SKELETONS USING A C++ FLUENT INTERFACE

Guy Tremblay
Département d’informatique
UQAM
Montréal, Qc, Canada

Marco Aldinucci
Dipartimento di Informatica
Università degli Studi di Torino
Torino, Italia

Laboratoire de recherche sur les technologies du commerce électronique

Département d’informatique

Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville

Montréal, QC, Canada

H3C 3P8

http://www.latece.uqam.ca

Juin 2015

Rapport de recherche Latece 2015-1

http://www.latece.uqam.ca

The work described in this report was performed while Prof. Tremblay
was in sabbatical at the Università degli Studi di Torino, during Winter
and Spring 2015. Prof. Tremblay thus wishes to acknowledge the warm
welcome he received from Prof. Aldinucci and his students.

Summary

This report motivates and describes a new API for building FastFlow skeleton objects—
i.e., pipelines, farms, DAGs, etc. It is targeted to FastFlow researchers, so the basic
concepts of the FastFlow framework are not explained. For details on the FastFlow
approach, see for instance M. Torquati’s tutorial [8].

i

Contents

1 Introduction 1
1.1 Aim and scope of this report . 1
1.2 The motivation: Building FastFlow skeleton objects is not easy 2
1.3 An alternative approach: Constructors 4
1.4 Another alternative approach: Skeleton builders and fluent interface . 5

2 Various kinds of DSLs: Pros and cons in the FastFlow context 6
2.1 What is a Domain-Specific Language 6
2.2 Internal DSL vs. External DSL . 7
2.3 Fluent interface API as internal DSL 8
2.4 Brief comparison of various approaches for FastFlow configuration DSL 9
2.5 An example illustrating a skeleton builder fluent interface: Use and

implementation . 11

3 The domain of FastFlow skeletons: A (partial) meta-model 14
3.1 Feature models are not expressive enough 14
3.2 UML meta-model as abstract syntax 14

4 The proposed approach: A C++ skeleton builders fluent interface 17
4.1 The notation . 18
4.2 Pipeline . 19
4.3 Farm . 21
4.4 DAG . 22

5 Conclusion 24

ii

List of Figures

1.1 A farm composed of pipelined workers with feedback: Graphical rep-
resentation. 2

2.1 External vs. internal DSL. 8

3.1 A simplified (partial) meta-model for FastFlow skeletons: Additional
details showing the recursive nature of composite objects. 15

3.2 Model vs. Meta-model (taken from [2]). 15

iii

Chapter 1

Introduction

1.1 Aim and scope of this report

The goal of this report is to motivate, describe, and explain a new API for building
FastFlow skeleton objects—i.e., pipelines, farms, DAGs, etc.

This report is targeted to FastFlow researchers, so the basic concepts of the Fast-
Flow framework are not explained. For details on the FastFlow approach, see for
instance M. Torquati’s tutorial [8].

The report aims to provide an informal specification for an internal DSL, in C++,
for the configuration of FastFlow skeleton objects. It could be used, for example, as a
starting point for a student implementation project: the specification is described in-
formally, inspired by a Ruby implementation done by the first author. However, this
API is defined in such a way that a C++ implementation should be relatively straigth-
forward. In fact, many of the proposed elements have already been implemented in
C++, although in an ad hoc manner.

Internal DSL for FastFlow 2

1.2 The motivation: Building FastFlow skeleton

objects is not easy

Figure 1.1: A farm composed of pipelined workers with feedback: Graphical repre-
sentation.

In the current FastFlow implementation, building FastFlow skeleton objects—i.e.,
instantiating skeletons—is done in a largely imperative manner. Figure 1.1 shows a
graphical representation of a farm with two workers and a feedback loop, where each
worker in turn is a pipeline consisting of two stages (the figure is taken from one of
the test file included in the fastflow source code distribution). Building such a farm
is currently done using code similar to the one shown in FastFlow example 1 (p. 3).

Internal DSL for FastFlow 3

FastFlow example 1 A farm composed of (two-stages) pipelined workers with feed-
back: Current C++ implementation.
class Emitter: public ff_node { ... }
class Stage1: public ff_node { ... }
class Stage2: public ff_node { ... }

{
...

ff_farm<> farm;

farm.add_emitter(new Emitter);

std::vector<ff_node *> w;

for(int i = 0; i < nworkers;++i) {
ff_pipeline* pipe = new ff_pipeline;

pipe->add_stage(new Stage1);

pipe->add_stage(new Stage2);

w.push_back(pipe);

}
farm.add_workers(w);

farm.wrap_around();

farm.run();

...

}

Some remarks:

• The imperative approach makes it difficult to have a clear view of the structure
of the farm with inner pipelines.

• Adding a sequence of workers is done by explicitly builing (and imperatively
using a loop) a vector of workers (using push back) and then passing this vector
as argument to the appropriate farm operation (add workers).

• Even for such a simple farm/pipeline definition, various auxiliary variables have
to be declared and used.

Internal DSL for FastFlow 4

1.3 An alternative approach: Constructors

One possible solution to the imperative-style is to use constructors. For example, here
is an existing function definition for an ff farm constructor taken from the FastFlow
library:

ff_farm(std::vector<ff_node*>& W,

ff_node *const Emitter = NULL,

ff_node *const Collector = NULL,

bool input_ch = false)

Using default values for optional arguments makes it possible to construct ob-
jects having various mandatory vs. optional properties. Furthermore, using function
overloading, multiple constructors with different argument types can also be defined.

However, some drawbacks of such constructors are the followings:

• When there are many arguments/attributes, the positional order of the param-
eters is crucial, although not easy to remember, which may lead to errors. For
example, since both the Emitter and Collector arguments are of the same
types, passing them in the wrong order—new ff farm(workers, co, em)—
would clearly not produce the correct result, but would not even generate any
compile-time error.

• Default values can be used for some optional arguments. However, simple de-
fault values may not be enough when there are many arguments with non-trivial
combinations.

Internal DSL for FastFlow 5

1.4 Another alternative approach: Skeleton builders

and fluent interface

class Emitter: public ff_node { ... }
class Stage1: public ff_node { ... }
class Stage2: public ff_node { ... }

{
...

Build.farm().

emitter(new Emitter).

workers([]{ return Build.pipeline()

| new Stage1()

| new Stage2(); },
nworkers).

wrap_around().

done().

run();

...

}

Fluent interface example 1: A farm composed of pipelined workers with feedback:
A skeleton builder implementation using a C++ fluent interface.

Fluent interface example 1 shows an alternative way, using a more declarative
style, of building the farm/pipeline from Figure 1.1. This solution uses an expres-
sion builder—more precisely, in this case, a skeleton builder—based on a C++ fluent
interface. Such builders are used to construct complex objects, managing and encap-
sulating the required rules and constraints for those objects.

In the following sections, we present what exactly is meant by a “fluent interface”.
We also discuss why this approach is proposed for building FastFlow skeleton objects,
instead of using, for example, an independent external DSL.

Chapter 2

Various kinds of DSLs: Pros and
cons in the FastFlow context

2.1 What is a Domain-Specific Language

Let us briefly recall some key notions related with Domain-Specific Languages (DSLs).1

According to Fowler [4], a DSL is “A computer programming language of limited
expressiveness focused on a particular domain.” This implies the following:

• A DSL is a programming language, i.e., a language used by humans to program
computers.

• A DSL may have limited expressiveness in the sense that it may not necessarily
be Turing-complete—by contrast with a GPL (General Purpose Language) like
C, Java, Ruby, etc.

• A DSL is tied to a specific application domain—a specific problem area—so it
(generally) uses concepts from that application domain.

According to Voelter, DSLs are targeted to different uses, among which (emphasis
is ours):

• Application domain DSLs:

“[These] DSLs describe the core business logic of an application system
independent of its technical implementation. These DSLs are intended
to be used by domain experts, usually non-programmers. This leads to
more stringent requirements regarding notation, ease of use and tool sup-
port.” [10]

• Utility DSLs:

1For more details and examples, see the following presentation: http://www.labunix.uqam.ca/

~tremblay/dsl.pdf.

http://www.labunix.uqam.ca/~tremblay/dsl.pdf
http://www.labunix.uqam.ca/~tremblay/dsl.pdf

Internal DSL for FastFlow 7

“One use of DSLs is simply as utilities for developers. A developer, or a
small team of developers, creates a small DSL that automates a specific,
usually well-bounded aspect of software development. The overall develop-
ment process is not based on DSLs, it’s a few developers being creative
and simplifying their own lives.” [10]

Languages and tools such as SQL, HTML, make, ant, rake, rspec are examples
of utility DSLs, whose users are strictly software developers, not “non-technical busi-
ness” users. A DSL for FastFlow most definitely will fall into this category.

2.2 Internal DSL vs. External DSL

Another important distinction is the one between external and internal DSL—see also
Figure 2.1:

• External DSL: The DSL is distinct from the language used to develop the ap-
plication, so an independent parser/interpreter must be built—using tools such
as lexer/parser generator (e.g., lex/yacc, flex/bison, antlr) or language work-
benches (e.g., Eclipse’s xText2).

• Internal DSL: The DSL is a “sub-language” of the language used to develop
the application, i.e., it “uses” the infrastructure of an existing programming
language (called the host language). In other words, it is implemented “on top
of” an existing programming language, so it must obey the constraints (syntax,
semantics) of the host language.

2http://eclipse.org/xtext/

http://eclipse.org/xtext/

Internal DSL for FastFlow 8

Figure 2.1: External vs. internal DSL.

2.3 Fluent interface API as internal DSL

As mentioned earlier, a utility DSL is used by programmers to address a specific aspect
of software development. Such a DSL is thus, in essence, an API—an Application
Programming Interface.

Fowler distinguishes between an internal DSL and a regular API as follows:

“[By contrast with a regular API], an internal DSL should have the feel of
putting together whole sentences, rather than a sequence of disconnected com-
mands.” [4]

For such an API, Fowler and Evans (quoted in Wikipedia) coined the term fluent
interface:

“A fluent interface is a way of implementing an object oriented API in a way
that aims to provide for more readable code.”3

Fowler further describes a fluent interface as follows:

“APIs are usually designed to provide a set of self-standing methods on objects.
Ideally, these methods can be understood individually. I call this style of API
a command-query API [. . .]. DSLs require a different kind of API, what I

3http://en.wikipedia.org/wiki/Fluent_interface

http://en.wikipedia.org/wiki/Fluent_interface

Internal DSL for FastFlow 9

call a fluent interface, which is designed with the goal of readability of a whole
expression. Fluent interfaces lead to methods that make little sense individually,
and often violate the rules for good command-query APIs.” [4]

A key pattern described by Fowler for providing a fluent interface is the Expression
Builder:4

Expression Builder An object, or family of objects, that provides a fluent in-
terface over a normal command-query API.

In many languages, including those with little support for meta-programming, a
typical technique used to define such builders is method chaining:5

Method Chaining Make modifier methods return the host object [(i.e., self,
this, etc.], so that multiple modifiers can be invoked in a single expression.

2.4 Brief comparison of various approaches for Fast-

Flow configuration DSL

From the discussions that took place during Winter and Spring 2015, two of the key
requirements that were identified for FastFlow were the following:

• Performance is crucial.

• The use of C++ for task processing nodes is a must.

In this section, we briefly present and compare some approaches that we examined
to define a DSL for skeleton configuration in FastFlow, keeping in mind those two
requirements.

Internal Ruby DSL

The work that initially inspired the interest for a FastFlow DSL was, in part, the
Ruby implementation of FastFlow developed by the first author.6 Not all of Fast-
Flow was implemented, although most of the core concepts were. Because of Ruby’s
expressiveness and flexible syntax, this led to simple and elegant FastFlow programs.

So, one of the first approach that we examined was to define an internal Ruby
DSL that would express the configuration of FastFlow skeleton objects.

The key issue with this approach was finding a way to make two different worlds
work together: the Ruby world—in which the configuration would be described—and
the C++ world—in which the code for the effective computation would be written,
compiled and executed.

4http://martinfowler.com/dslCatalog/expressionBuilder.html
5http://martinfowler.com/dslCatalog/methodChaining.html
6http://www.labunix.uqam.ca/~tremblay/seminaire-ruby-ff.pdf

http://martinfowler.com/dslCatalog/expressionBuilder.html
http://martinfowler.com/dslCatalog/methodChaining.html
http://www.labunix.uqam.ca/~tremblay/seminaire-ruby-ff.pdf

Internal DSL for FastFlow 10

In Ruby, it is possible to define “extensions,” thus allowing Ruby to use external
libraries written in other languages. For the C language, this is done using various
header files provided by the Ruby environement—the original Ruby implementation,
called MRI, is written in C. This can also be done using various gems (e.g., the
FFI gem = Foreign Function Interface) that provide a high-level interface to external
languages. One such gem, Rice, is in fact specifically targeted to C++.

However, a key constraint for these extensions is that the C/C++ library that needs
to be called from within Ruby has to be provided as a dynamic library.7 But the C++

elements that need to be integrated together to perform the real computation must
be compiled by the C++ compiler.

So, having a Ruby DSL to configure the skeletons would have required a process
somewhat along the following lines:

• The user writes the code for the computation (FastFlow task processing node)
in C++ and compiles them.

• The user writes his skeleton configuration code in Ruby. He executes this config-
uration script, whose task is to create the skeleton objects using the appropriate
Ruby/C++ library extensions.

• The user links all the object code together and executes the resulting program.

The last part could also have been executed from the Ruby script. However,
dealing with such heterogeneous multi-language levels generally makes it quite difficult
to identify the source of errors—compile-time or run-time errors work.

External DSL

A purely external DSL would have suffered from the same problems as an internal
Ruby DSL mentioned previously. Furthermore, it would also have made it necessary
to define and build a full-fledge parser along with an interpreter.

Internal C++ DSL

Given the two key requirements mentioned earlier, using an internal DSL in C++

seemed the best approach. Although meta-programming is possible in C++—using
template meta-programming [1, 9]—, such an approach is far from trivial. A more
straigthforward approach, easier to understand and implement, is the use of a fluent
interface. Such an approach makes it possible to remain exclusively within the C++

7Although it might be possible to use a static library, Rice specifically discourages it.

Internal DSL for FastFlow 11

realm, avoiding dealing with multiple languages—Babel tower problems.

2.5 An example illustrating a skeleton builder flu-

ent interface: Use and implementation

Fluent interface example 1 is used to illustrate the concepts introduced in the previous
sub-sections. Here is the key part of that example:

Build.farm().

emitter(new Emitter).

workers([]{ return Build.pipeline()

| new Stage1()

| new Stage2(); },
nworkers).

wrap_around().

done().

run();

The call to Build.farm() returns a FarmBuilder object. This object is used to
incrementally construct a farm object, using methods such as emitter(), workers(),
wrap around(), etc. Once all the object properties have been specified, the farm can
be effectively constructed using the done() method. Whereas the previous methods
all returned the FarmBuilder object being built, this last method returns a “real”
Farm object, which can then be run().

Fluent interface example 2 presents a (short) excerpt of the Ruby implementation
of the FarmBuilder class. Here are some remarks to explain how expression building
with method chaining works:8

• The FarmBuilder object keeps track, through instance variables,9 of the various
elements or properties of the farm being built.

• A method such as emitter() “takes note” of a single property, in this case, the
emitter to be used. This method is thus a setter, i.e., it is a command that mod-
ifies the internal state of the FarmBuilder object. In a typical command–query
API,10 that command would not return anything. Here, to be used through
a fluent interface, emitter() instead returns self, the current FarmBuilder

object. Returning self then allows subsequent calls to the object’s methods to
be chained together—thus the name “method chaining.”

8In typical Ruby style, returns are generally omitted when not absolutely required. Here,
returns have been used explicitly to ease the understanding of the code for C++readers. Similarly,
in Ruby, empty parentheses are usually omitted, but in this case they have added as in C++.

9In Ruby, instance variables are prefixed with “@”, to distinguish them from local variables.
10In a command–query API, a good practice suggested by various authors [7], a method is either

a command—it modifies the state of an object without returning anything—or a query—it observes
the state of an object, without modifying it, and returns some value.

Internal DSL for FastFlow 12

class FarmBuilder

def initialize

@emitter = nil

@workers = []

@collector = nil

@wrap_around = false

@no_collector = false

end

def emitter(e)

@emitter = e

return self

end

def collector(c)

@collector = c

return self

end

...

def done()

col = (@no_collector && @wrap_around) ? :none : @collector

f = Farm.create(@emitter, @workers, col)

f = f.wrap_around() if @wrap_around

return f

end

end

Fluent interface example 2: Excerpt from Ruby FarmBuilder implementation.

Internal DSL for FastFlow 13

• The done() method is the one that effectively builds the required object. It
is this method that “knows” about the lower-level API used to allocate and
construct objects—e.g., it knows the correct and appropriate order to be used
for the “real” constructor.

• In the example above, the done() method has a simple and näıve implemen-
tation. However, a more realistic implementation might do various validations,
e.g., ensure that the specified properties are valid when combined together, that
all required properties have been specified, etc.

• Using a fluent interface with method chaining, it is even possible to impose
constraints on the order in which some methods have to be called, e.g., method
bar can be called only if immediately preceded by a call to method foo. All
such rules can be implemented in the appropriate Builder object, by adding
additional properties in the object.

Chapter 3

The domain of FastFlow skeletons:
A (partial) meta-model

Before defining a DSL, it is necessary to better identify the domain concepts that
need to be expressed by the DSL. In our case, we want to define configurations of
FastFlow skeleton objects.

3.1 Feature models are not expressive enough

One possible approach to define the various alternatives that compose a software
product is to use feature models. Such models indicate the elements that are manda-
tory vs. optional, or sets of optional elements that are inclusive (or) or mutually
exclusive (xor).1

However, feature models aim at defining products with a finite sets of features—
i.e., finite sets of configurations. Thus, feature models generally do not support—at
least in their basic, better known form—recursive definitions. But, FastFlow skeleton
objects can in fact be recursively defined composite objects: a pipeline could be
composed of various stages, and a stage might well be a pipeline itself or a farm, and
a farm’s workers could themselves be pipelines, etc. Thus, the number of possible
configurations is not finite, so feature models do not seem appropriate.

3.2 UML meta-model as abstract syntax

The UML diagram of Figure 3.1 is a simplified and partial meta-model for skeletons.
Whereas a specific skeleton configuration can be represented by an UML object model
(with specific instances), the overall structure and family of skeletons can be repre-
sented by a meta-model. A specific model (a specific skeleton instance) then conforms
to the meta-model (the “syntax”)—see Figure 3.2.

1http://en.wikipedia.org/wiki/Feature_model

http://en.wikipedia.org/wiki/Feature_model

Internal DSL for FastFlow 15

Figure 3.1: A simplified (partial) meta-model for FastFlow skeletons: Additional
details showing the recursive nature of composite objects.

Figure 3.2: Model vs. Meta-model (taken from [2]).

Internal DSL for FastFlow 16

More precisely, the metamodel specifies the abstract syntax of the configura-
tion language. It is a representation of all the models—i.e., in our case, all the
configurations—that can be expressed.

When defining a programming language, it is customary to define both its abstract
syntax as well as its concrete syntax:

Abstract syntax is used to give a high-level description of programs being com-
piled [. . .]. The abstract syntax specifies the [syntax] tree’s structure specified
in terms of categories such as “statement”, “expression” and “identifier.” This
is independent of the source syntax (concrete syntax) of the language being
compiled[. . .].

http://dictionary.reference.com/browse/abstract+syntax

However, in what follows, we are aiming to describe a fluent interface for FastFlow
in C++. The concrete (source) syntax is thus already well specified—already “cast in
stone,” since the concrete syntax is C++’s syntax! This is why, in the following section,
we directly describe the concrete syntax of the proposed fluent interface withouth
providing an abstract syntax.

http://dictionary.reference.com/browse/abstract+syntax

Chapter 4

The proposed approach: A C++
skeleton builders fluent interface

We now present the proposed fluent interface for building FastFlow skeleton objects.
As mentioned earlier, we present the concrete syntax. This concrete syntax is based
on the Ruby syntax used to implement the core elements of FastFlow.1

The API is defined in such a way that it should be easily translatable to C++,
using basic templates (without complex template meta-programming), function over-
loading, default values for arguments, etc. This should be possible because many
Ruby features—e.g., dynamic dispatch based on types, keyword parameters, optional
parentheses in function calls, etc.—have been avoided while defining this fluent inter-
face.

1http://www.labunix.uqam.ca/~tremblay/seminaire-ruby-ff.pdf

http://www.labunix.uqam.ca/~tremblay/seminaire-ruby-ff.pdf

Internal DSL for FastFlow 18

4.1 The notation

Here are the key elements of the notation used in the following to define the concrete
syntax of the C++ fluent interface:

• ’foo’: A terminal symbol, i.e., a piece of text that must appear “as such,” i.e.,
textually.

• foo: A non-terminal symbol, whose definition is given afterwards, usually by
indicating the possible types allowed for such values—in italics, e.g., ff node |

lambda—or the allowed constant values—in upper case, e.g., ALL | ONE.

• [element]?: The indicated element is optional, but if it appears it must neces-
sarily appear at this specific position.

• {element}?: The indicated element is optional, and it can appear anywhere in
the sequences of method calls.

• [element]+: The indicated element can occur one or more times, and must
necessarily appear at this specific position.

• {element}+: The indicated element can occur one or more times, and can
appear anywhere in the sequences of method calls.

• [element]?: The indicated element can occur 0, 1 or more times, and must
necessarily appear at this specific position.

• {element}?: The indicated element can occur 0, 1 or more times, and can
appear anywhere in the sequences of method calls.

• elem1 | elem2: One of elem1 or elem2 must appear.

• {element}: The indicated element must necessarily appear at this final posi-
tion.

Internal DSL for FastFlow 19

4.2 Pipeline

PipelineBuilder, whose result produces a pipeline object (an ff node), obeys
Protocol 1.

’PipelineBuilder’

’.new()’

{ ’.buffer(’ size ’)’ }?
{ ’.window(’ size ’)’ }?
{ ’.with(’ stage ’)’

[’.buffer(’ size ’)’]?

[’.window(’ size ’)’]?

}?
{ ’.with(’ task_lambda [’,’ nb_instances]? ’)’

[’.buffer(’ size ’)’]?

[’.window(’ size ’)’]?

}?
{ ’.wrap_around()’ }?
{ ’.done()’ | ’|’ stage }

stage: ff_node | task_lambda

size: int

nb_instances: int

Protocol 1: Protocol for PipelineBuilder.

Notes:

• Possible aliases for ’with’: ’followed by’, ’stage’, ’<<’.

• A call to buffer() at the “top-level” is used to specify the default buffer size,
i.e., for the connections that have no explicit buffer size specified. (A size of 0
denotes an unbounded buffer.)

A call to buffer() immediately after a with() specifies the buffer size to be
used between the preceding stage and the stage being added—thus, such a call
should not appear immediately after the first stage.

• Idem for window(), except this is used to specify the window size accessible for
reading.

So, given a call to window(k) and a reference node representing the node that
is connected to that buffer, the following elements will then be accessible:

– node->peek(0)

This is a synonym for the task* received as argument.

Internal DSL for FastFlow 20

– node->peek(j) for j = 1, . . . , k − 1.

In this case, if the returned value is NULL, then it means no appropriate
element has still been received in the buffer—i.e., peek is non-blocking.

Possible aliases for ’peek’: ’buffer’, ’input’, ’data’.

• A task lambda is a lambda that receives a task* and a ff node* as argu-
ments. It can then be used to instantiate a ff node, whose svc method will be
task lambda.

• A call such as “with(a lambda, k)” create a serie of parallel stages, i.e., a
simple farm stage with k workers.

• The use of done() could be omitted if the resulting pipeline object is not used in
another pipeline but is run directly. In other words, given pb a PipelineBuilder,
“pb.done().run()” could be simplified as “pb.run()”. This would simply re-
quire pb.run() to be implemented as “done().run()”. A similar remark holds
for the other types of builders.

Internal DSL for FastFlow 21

4.3 Farm

FarmBuilder, whose result produces a farm object (an ff node), obeys Protocol 2.

’FarmBuilder’

’.new()’

{ ’.emitter(’ emitter ’)’ }?
{ ’.collector(’ collector ’)’ | ’.no_collector()’ }?
{ ’.worker(’ worker ’)’ }?
{ ’.workers(’ worker [’,’ worker]+ ’)’ }?
{ ’.workers(’ workers ’)’ }?
{ ’.workers(’ worker_generator ’,’ nb_instances ’)’ }?
{ ’.wrap_around()’ }?
{ ’.done()’ }

emitter: ff_node | lambda

collector: ff_node | lambda

worker: ff_node | task lambda

worker_generator: lambda that creates a ff_node object (0 arg)

| task lambda (2 args)

workers: std::vector<ff_node*>

stage: ff_node | task_lambda

nb_instances: int

Protocol 2: Protocol for FarmBuilder.

Internal DSL for FastFlow 22

4.4 DAG

DAGBuilder, whose result produces a DAG object (an ff node), obeys Protocol 3.

’DAGBuilder’

’.new()’

{ ’.node(’ node_name ’,’ node ’)’ }+
{ ’.connect(’ node_name ’)’

[’.to(’ node_name [’,’ node_name]+ ’)’

[’.send_to(’ policy ’)’]?

[’.buffer(’ size ’)’]?

[’.window(’ size ’)’]?

]+

[’.from(’ node_name [’,’ node_name]+ ’)’

[’.receive_from(’ policy ’)’]?

[’.buffer(’ size ’)’]?

[’.window(’ size ’)’]?

]+

}+
{ ’.done()’ }

policy: ALL | ANY

size: int

node_name: string

node: ff_node | task_lambda

Protocol 3: Protocol for DAGBuilder.

Notes:

• Given a node foo connected to nodes f1 and f2 then:2

– A call to send to(ALL) will ensure that every value returned by foo will
be sent to both connected nodes.

– A call to send to(ANY) will ensure that a value returned by foo will be sent
to a single one of the connected nodes, in a (pseudo)round-robin fashion.

• Given a node foo connected from nodes f1 and f2, then:

– A call to receive from(ALL) will ensure that foo will be activated only
when both connected nodes have sent a value.

– A call to receive from(ANY) will ensure that foo is activated as soon as
one of the connected nodes has sent a value.

2This is explained using two nodes. Of course, this should be generalized to multiple nodes.

Internal DSL for FastFlow 23

More complex activation policy could also be specified by using overloaded
functions that receive as argument a lambda expression (with appropriate ar-
guments) that performs the appropriate input/output port selection policy.

Chapter 5

Conclusion

Much work remains to be done to implement, in C++, the proposed fluent interface.
Although a “proof of concept” has been done, through an implementation in Ruby
and a (very!) partial implementation in C++, not all features of FastFlow have been
handled. Some of these omitted aspects are, for instance, the load balancer in the
emitter, the eos notification, etc.

If/when this new Application Programming Interface is implemented, it would be
interesting to examine the possibility of making ff node a purely opaque type. In
other words, at the skeleton configuration-level, the user (i.e., the application pro-
grammer) should not have to deal sometimes with ff node objects, sometimes with
ff node*, depending on the context. This would incur a small additional overhead—
always having to deal with a pointer for such objects—, but this overhead would be
rather small and would only be incurred at configuration-time.

Bibliography

[1] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-
Wesley Professional, 2004.

[2] J. Bézevin, “Model engineering for software modernization,” in The 11th IEEE
Working Conf. on Reverse Engineering, (Delft, NE), Nov. 2004.

[3] M. Fowler, “A pedagogical framework for domain-specific languages,” IEEE Soft-
ware, vol. 26, pp. 13–14, July 2009.

[4] M. Fowler, Domain-Specific Languages. Addison-Wesley, 2011.

[5] D. Ghosh, DSLs in Action. Manning, 2011.

[6] M. Mernik, J. Heering, and A. Sloane, “When and how to develop domain-specific
languages,” ACM Comput. Surv., vol. 37, no. 4, pp. 316–344, 2005.

[7] B. Meyer, Object-Oriented Software Construction (Second edition). Prentice-
Hall, 1997.

[8] M. Torquati, “Parallel programming using FastFlow,” tech. rep., Computer Sci-
ence Department, University of Pisa, August 2014.

[9] T. Veldhuizen, “C++ gems,” ch. Using C++ Template Metaprograms, pp. 459–
473, SIGS Publications, Inc., 1996.

[10] M. Voelter, DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. Createspace, 2013. dslbook.org.

dslbook.org

	Introduction
	Aim and scope of this report
	The motivation: Building FastFlow skeleton objects is not easy
	An alternative approach: Constructors
	Another alternative approach: Skeleton builders and fluent interface

	Various kinds of DSLs: Pros and cons in the FastFlow context
	What is a Domain-Specific Language
	Internal DSL vs. External DSL
	Fluent interface API as internal DSL
	Brief comparison of various approaches for FastFlow configuration DSL
	An example illustrating a skeleton builder fluent interface: Use and implementation

	The domain of FastFlow skeletons: A (partial) meta-model
	Feature models are not expressive enough
	UML meta-model as abstract syntax

	The proposed approach: A C++ skeleton builders fluent interface
	The notation
	Pipeline
	Farm
	DAG

	Conclusion

