
'

&

$

%

DOCUMENTATION GENERATORS SUPPORT FOR

PROGRAM COMPREHENSION: WHERE ARE WE?

Alexandre Terrasa, Jean Private and Guy Tremblay

Décembre 2015

Département d’informatique

Université du Québec à Montréal

Rapport de recherche Latece 2015-2



DOCUMENTATION GENERATORS SUPPORT FOR PROGRAM
COMPREHENSION: WHERE ARE WE?

Alexandre Terrasa
Département
d’informatique
UQAM
Montréal, Qc, Canada

Jean Privat
Département
d’informatique
UQAM
Montréal, Qc, Canada

Guy Tremblay
Département
d’informatique
UQAM
Montréal, Qc, Canada

Laboratoire de recherche sur les technologies du commerce électronique

Département d’informatique

Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville

Montréal, QC, Canada

H3C 3P8

http://www.latece.uqam.ca

Décembre 2015

Rapport de recherche Latece 2015-2

http://www.latece.uqam.ca


This work was partially supported by Research Discovery grants from the
Natural Sciences and Engineering Research Council of Canada.



Summary

Documentation generators like Javadoc are a common way to auto-document software.
These tools generate API documentation by extracting annotated comments from source
code. This kind of documentation is thus relatively easy to produce and can more easily be
synchronized with source code.

However, previous studies have shown that such tools are a poor support for program
comprehension and maintenance, and thus are generally criticized by both the documenta-
tion writers and readers for their pedagogical effectiveness [15, 16, 62].

In the current paper, we present a survey of existing auto-documentation systems, ap-
proaches and tools. First, we identify five key issues that must be addressed by auto-
documenting systems to support program comprehension: lack of structure of the docu-
mentation, lack of abstraction levels, lack of support for examples, elusive information, and
stale documentation. Then, we analyze 22 auto-documentation systems available for various
programming languages. We group their features under the five categories of issues they
try to address. Finally, we compare these tools based on their ability to support program
comprehension for readers and their facility to produce documentation for writers.

The results of our comparison show that only two tools, Doxygen and Sphinx, propose
features addressing each category of issues. Yet, even these two tools could benefit from ad-
ditional features included in other competing tools or proposed in the literature that address
those same issues. Thus, much work remains to be done to obtain a better documentation
generator, and our survey is a first step in that direction, establishing a roadmap toward
an improved, fully state-of-the-art, documentation generator tool.

i



Documentation Generators Support for Program Comprehension 1

1 Introduction

Program comprehension is essential for code usage and maintenance. When available, doc-
umentation is the first support used by programmers to obtain information from existing
systems.

In 1995, Friendly [27] published a tool that could generate API documentation in HTML
format from Java source code and comments. This was the birth of the—now famous—
Javadoc. Since then, documentation generators have become common tools in software
engineering and are being used in standard build processes. For instance, the build automa-
tion tools for Java, Ant [2] and Maven [3], both include a step dedicated to the generation
of documentation with Javadoc.

Over the past twenty years, documentation generators have made it possible to pro-
duce documentation with minimum effort. But are those tools in fact helpful for program
comprehension? The objective of the current paper is to answer that question.

The main contributions of this paper are twofold:

• We identify some key issues that documentation generators must overcome to support
program comprehension, namely, generated documents often lack structure, abstrac-
tion levels, and examples, provide insufficient search features and can be incorrect or
missing.

• We perform a comprehensive analysis of 22 mainstream tools and numerous ap-
proaches proposed in the literature based on these issues. We discuss each solution,
keeping in mind the final document quality for readers and the amount of effort re-
quired by writers.

The rest of the current paper is organized as follows. Section 2 presents the issues
related to documentation generators regarding program comprehension. Each of the next
five sections is then dedicated to one of these specific issues: 3. Lack of structure; 4. Lack
of abstraction levels; 5. Lack of examples; 6. Elusive information; 7. Stale documentation.
These five sections are all organized in a similar fashion: First, the section introduces
the issue; Then, common approaches used by documentation generators to solve the issue
are presented, where each specific feature that tries to solve the issue appears in its own
subsection. Section 8 summarizes the comparison and discusses documentation generator
support for program comprehension. Finally, Section 9 concludes our survey and proposes
some future work.

2 Survey Overview

This section identifies the key issues related with program comprehension that will be used,
in our survey, to compare the documentation generator tools, that is, how do the various
tools address those issues. It also lists the tools that will be analyzed and compared.

2.1 Common Issues of Documentation Regarding Program Comprehen-
sion

de Souza et al. [15] surveyed a group of software maintainers, with the goal of establishing
the importance they gave to various documentation artifacts for maintenance. Their results



Documentation Generators Support for Program Comprehension 2

showed that software maintainers want and expect to need source code and comments,
abstractions (data models, class diagrams, use-cases, etc.), acceptance test plans and unit-
tests, user manual and design explanations. However, de Souza et al.’s survey also showed
that, in practice, maintainers only rely on source code: No other source of information
can effectively be used as those sources are most often non-existent or outdated. The only
textual documentation available is scattered in the comments. Sometimes, maintainers can
find some usage examples from non-functional prototypes.

Forward and Lethbrige [25] present another survey about the relevance of software ar-
tifacts. They asked developers about document attributes that contribute to documenta-
tion’s effectiveness. The most important attributes identified were the content (the doc-
ument’s information), up-to-dateness and availability, use of examples, organization (sec-
tions/subsections), use of diagrams.

Both studies considered all software documentation elements, including specifications,
design documents and other documentation artifacts.

Naisan and Ibrahim [54] made a comparison between Universal Report and Doxygen
from a reverse-engineering point of view. However, their comparison was limited to cri-
teria such as supported languages, parser extensibility and diagrams generation. Also for
reverse-engineering, Vestdam andNørmark [78] compared Javadoc and Doxygen against re-
documenting approaches and internal documentation tools.

Apart from these papers, we found no previous study about documentation generators
support for program comprehension.

Based on these studies, we chose to compare documentation generators according to
how they address those issues that pertain to program comprehension:

1. lack of structure;

2. lack of abstraction levels;

3. lack of examples;

4. elusive information;

5. stale documentation.

In what follows, we analyze existing documentation generators to identify which features
can be used to address these issues. We also look at the scientific literature to find other
solutions, not necessarily available in any of the existing tools, for addressing these issues.

2.2 The State of the Art in Auto-Documenting Systems

Table 1 shows the tools we analyze in the present paper. Most of these documentation
generators are designed for a specific programming language, except for Doxygen, Natural
Docs and Universal Report that can deal with numerous languages.

We collected this list of tools from various sources, for instance the Wikipedia page
that lists and compares such tools.1 We also used the TIOBE index2 to identify the most
popular programming languages and look at their documentation generators. However, we
restricted ourselves to tools satisfying the following conditions:

1http://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid=

626977449
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

http://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid=626977449
http://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid=626977449
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html


Documentation Generators Support for Program Comprehension 3

Language Tool Reference

Clojure Audodoc [24]
Codox [59]

C# SandCastle [51]

Go Godoc [70]

Haskell Haddock [46]

Java Javadoc [27]

JavaScript YuiDoc [84]
JSDoc [39]
Doxx [60]
Docco [6]

Nit Nitdoc [69]

Objective-C AppleDoc [28]

Perl perldoc [1]

Python Sphinx [29]

PHP PhD DocBook [71]
phpDocumentor [52]
ApiGen [79]

Ruby RDoc [72]
YARD [65]

Scala Scaladoc [19]

12 languages Doxygen [76]

19 languages Natural Docs [74]

26 languages Universal Report [73]

Table 1: Tools analyzed in our study.

1. it is a documentation generator — which excludes a tool such as Pandoc;

2. it targets programming languages — which excludes a tool such as SQL Documentor;

3. it has a working website, documentation, and installable executable — which excludes
a tool such as Autoduck.

Unlike the lists mentioned above, the present paper does not compare the tools based
on specific technical features, but rather on how they can support and improve program
comprehension based on the issues mentioned earlier.

3 Lack of Structure

Documentation structure based on sections and subsections is considered a key attribute for
a good documentation by readers [25]. However, the documentation typically produced by
generators is usually simply an index. This index contains the elements extracted from the
software like packages, classes and methods. Documentation organization is thus based on
code structure. Methods are grouped by classes, classes are grouped by packages. Elements
are generally sorted based on a lexicographic order of the identifiers.



Documentation Generators Support for Program Comprehension 4

On one hand, the index structure provides fast access to the information, which is quite
useful for expert users who know what they are looking for. On the other hand, the index
structure does not help the beginner in his learning process. There is no logical order of
reading, no starting point. The reader has to choose a page and start reading hoping to
find what he is looking for.

If the index is not an optimal solution, then auto-documentation systems need to produce
a richer structure that provides support for fluid and pedagogic reading sprinkled with use-
cases and examples. This is the purpose of user manuals and programming guides.

3.1 Documentation as a User Manual

A user manual describes how to use the software through sections organized to improve the
understanding of the API and its content. Unlike an index, a user manual’s structure is
more flexible and enhances the expressiveness of the writer [43, 62]. API elements can be
presented in a logical order, based on use-cases and concerns instead of a fixed order linked
to the structure of the code. Documentations from MSDN [50], PerlDoc [1] or PHP.net [9]
are built as manuals.

Extracting a manual from code is not a new idea. In the early 1980s, Knuth [43]
proposed Literate programming, where fragments of programs are defined inside the program
documentation. A tool (called tangle) is then used to extract and assemble program
fragments into an executable. Another tool (called weave) formats the documentation,
generates an index, and presents all of it in a nice-looking paper format. Thereby, literate
programming can help the programmer to provide a human readable view of a program
that can be read as a manual.

Nowadays, it is common practice for software developers to use external supports like
wikis, websites or README files to document use-cases or design decisions that can be
presented in an index [63]. Manuals are generally written by hand, sometimes using a
word processor. Handwritten manuals are time consuming for both initial production and
maintenance.

Doxygen proposes three grouping mechanisms3 to manage the documentation structure:
(i) Modules: to group multiple entities (files, namespaces, classes, methods, etc.) within
the same page; (ii) Subpaging : to group information into a same section within a page;
(iii) member groups: to build groups of properties inside a class.

Haddock allows the writer to filter and sort the index lists using export lists4. Members
from a module or a type can be manually listed to override the default index generation.
This feature allows the writer to choose both the content and the order of lists. Named
chunks5 can be used to include arbitrary documentation blocks inside the index list.

Using PhD DocBook, one can create chapters within a book.6 Chapters are used to
structure documentation and produce a HTML output decorated with summaries and links.

SandCastle has topic files7 written in XML/MAML. Topics files can be used to group
documentation elements under a single conceptual concern.

3http://www.stack.nl/~dimitri/doxygen/manual/grouping.html
4http://www.haskell.org/haddock/doc/html/ch03s04.html
5http://www.haskell.org/haddock/doc/html/ch03s05.html
6http://www.docbook.org/tdg5/en/html/ch02.html
7http://www.ewoodruff.us/mamlguide/html/c69a248a-bd94-47b2-90d7-5442e9cb567a.htm

http://www.stack.nl/~dimitri/doxygen/manual/grouping.html
http://www.haskell.org/haddock/doc/html/ch03s04.html
http://www.haskell.org/haddock/doc/html/ch03s05.html
http://www.docbook.org/tdg5/en/html/ch02.html
http://www.ewoodruff.us/mamlguide/html/c69a248a-bd94-47b2-90d7-5442e9cb567a.htm


Documentation Generators Support for Program Comprehension 5

Sphinx works with file inclusions and TOCtrees.8 Documentation pages are structured
by including multiple documentation files. For each page, a table of contents can be gener-
ated based on the included files. phpDocumentor can do the same with the Scrybe plugin.9

Almost all tools support the inclusion of external files. This method is convenient for
documenting design decisions, configuration settings or anything that is not directly tied
to a source file. However, these files are not synchronized with the source code which does
not solve the maintenance problem.

3.2 Reading Suggestions

Reading suggestions (aka. “see also”) provide further topics that can interest the reader
based on a context. This context can be the current page or the task of the reader. A
basic example would be to suggest reading the remove method to someone reading the
documentation for add.

Most tools provide a way to manually suggest related pages for each documentation
element using links. For example, Doxygen uses the \relatesalso directive, APIGen,
Javadoc and YARD use @see, and YUIDoc provides @cross-links. In SandCastle, topics
can be linked to another topics making a cross-referenced manual using the <seealso>

XML tag.
This manual approach offers flexibility to the writer who can think of every possible

interesting topics related to a documentation element. Furthermore, because links are
reified under specific directives, they can be checked at generation time. Doing so, tools
like APIGen or Javadoc can detect outdated links and warn the writer.

On the negative side, such a solution is tedious for the initial writer who has to insert
directives in every piece of documentation. Since code naturally evolves, this method adds
an extra burden on the maintainer who has to keep adding new links to relevant information
into existing documentation.

Both Robillard [61] and Warr and Robillard [82] present an automatic suggestion system
based on program topology and structural dependencies between model elements. These
approaches permit automatic selection and ranking of elements from documentation that
might be interesting for the reader depending on an entry set. The entry set can be derived
from the current page viewed by the reader, or can be based on the reader’s task.

Stylos et al. [67] uses static analysis on a large corpus of clients to identify the services
used most often in an API and then build a suggestion list by ranked popularity. Even if
these are not reading suggestions per se, this approach can be used to propose a reading
order.

4 Lack of Abstraction Levels

Robillard and DeLine [62] show that clients require a high level of abstraction to understand
the content and goals of an API. Based on the reader’s experience, various abstraction levels
are needed [75]. Newcomers do not need to see all the details. They would like to have
enough information so that they can build a mental model of the system, and zoom on the
specific details they are interested in.

8http://sphinx-doc.org/markup/toctree.html
9http://phpdocumentor.github.io/Scrybe/internals/table_of_contents.html

http://sphinx-doc.org/markup/toctree.html
http://phpdocumentor.github.io/Scrybe/internals/table_of_contents.html


Documentation Generators Support for Program Comprehension 6

Because the generated documentation structure is constrained by the software code
structure, it can only provide the same level of abstraction as the code (or a little more). It
cannot give a global view of the software code and its concerns [78]. Grouping methods by
super-class, as done by Javadoc, does not give an overview of all the services available for a
type [20]. Furthermore, the Java code’s structure cannot represent cross-cutting concerns
that can be either scattered (one concern among multiple classes) or tangled (multiple
concerns into one class) [41].

This section discusses the features that can provide a higher level view of a program
than the one given by its source code. Such features help the user and the maintainer to
understand quickly the content of a software.

4.1 Lists and Trees

Lists and trees are the most used abstractions in documentation generators. Lists are used
to group sets of similar entities like classes or methods in a linear order, making it easier
to understand the overall structure. Trees can represent hierarchical entities, for instance,
the classes contained in a package. Both lists and trees offer a succinct presentation of an
entity generally limited to a short summary, and links are then used to access the entity’s
full description.

Most tools generate a list of all the entities available in the model with no other filter
than private/public. ScalaDoc and YUIDoc let the reader filter the content of the list on
various properties (e.g., kind, visibility, inheritance, name). This is helpful when you know
what you are looking for, but can produce a lot of noise for newcomers. Furthermore, this
kind of feature needs much micro-management and is not persistent across pages. Only
Haddock allows the writer to manually set the content using export lists.

All tools list the elements following a lexicographic ordering of the identifiers. ScalaDoc
allows the reader to switch from lexicographic order to linear extension based on inheritance.
With Doxygen, the writer can disable the automatic sorting of elements to follow the code
order.10

Outside of documentation generators, some approaches can be found to filter and rank
model entities automatically. Denier and Gueheneuc [17] for example propose MENDEL, a
set of metrics to extract interesting classes from a model.

4.2 Diagrams and Figures

Diagrams and other visual representations present informations in a simplified, yet struc-
tured way. They help the reader to quickly understand the content of a documentation,
although they should also be supported by text to be more efficient [35].

Doxygen is well equipped for graphs and diagrams generation.11 It provides support
for class inheritance, module dependencies and directory structure, call graphs as well as
collaboration and class diagrams. Each representation can be used for navigating through
the elements, using links.

Nitdoc, phpDocumentor and ScalaDoc can also produce class diagrams. Sphinx and
YARD can do the same with plugins. Godoc only provides module dependencies graphs.

10http://www.stack.nl/~dimitri/doxygen/manual/config.html
11http://www.stack.nl/~dimitri/doxygen/manual/diagrams.html

http://www.stack.nl/~dimitri/doxygen/manual/config.html
http://www.stack.nl/~dimitri/doxygen/manual/diagrams.html


Documentation Generators Support for Program Comprehension 7

Automatically generated diagrams suffer from the same drawbacks as automatic lists:
The content is not filtered so the figures that are generated can be hard to read or even
hard to display in some browsers because of their size and content.12

From a reader’s point of view, only Godoc allows the reader to filter the dependency
graphs, for instance, by specifying whether to display dependencies from the standard li-
brary. Sphinx provides a set of filters that can be applied by the writer to select the members
to be displayed in lists using the automodule, autoclass and autoexception directives.13

Here again, metrics can be used to filter an automatic output, as done by Denier and
Gueheneuc [17]. Ducasse and Lanza [21] go further by proposing their own visualization
called Class Blueprint. Blueprints help the reader understand the internal structure of a
class with a high level of abstraction before going deeper into the documentation. Zhang [88]
uses static analysis to weight call-graphs based on a control flow analysis. This can filter
the call-graph content on the most often used methods.

The MCT approach [34] allows the writer to include videos and other multimedia support
to code comments. Even though it provides a good support for understanding and an
expressive way to comment code, video seems to be a lot harder to maintain up-to-date
than text.

4.3 Source Code

Most tools make it possible for the writer to include the original source code in the documen-
tation. Source code can then be used as a resource when the documentation is insufficient.
This can also provide some support for maintainers who want to see how a software is
implemented.

Code is the lowest level source of information that can be used. However, maintain-
ers often try to avoid reading the source code, relying instead on more abstract software
representations [63]. So, documentation generators must also provide features to help such
higher-level understanding. Besides syntax highlighting and hyper-linking between code
and documentation, only three tools support the reader in his comprehension of the code.

Godoc makes use of the Go Playground14 to let the user edit and run pieces of code
directly in the browser. The Playground tool is rather basic but supports code formatting
and code sharing through URLs, whereas syntax highlighting is not supported.

Inspired by the Elucidative Programming approach [78], Docco displays the code side
by side with the documentation extracted from comments and external sources.15

Universal Report presents the code as a navigable callgraph.16

Making the code more understandable for readers and maintainers is a long pursued
objective. With literate programming, Knuth [43] encourages the programmer to write
programs in a self-explanatory fashion, containing information on the design that will help
the reader understand the source code.

12Doxygen’s documentation in fact gives a warning about this: http://www.stack.nl/~dimitri/doxygen/
manual/diagrams.html. Also, an example of unreadable graph can be found in the live demo of phpDocu-
mentor: http://demo.phpdoc.org/Responsive/graph_class.html

13http://sphinx-doc.org/ext/autodoc.html
14http://play.golang.org/p/4ND1rp68e5
15http://derickbailey.github.io/backbone.marionette/docs/backbone.marionette.html
16http://www.omegacomputer.com/flowchart.jpg

http://www.stack.nl/~dimitri/doxygen/manual/diagrams.html
http://www.stack.nl/~dimitri/doxygen/manual/diagrams.html
http://demo.phpdoc.org/Responsive/graph_class.html
http://sphinx-doc.org/ext/autodoc.html
http://play.golang.org/p/4ND1rp68e5
http://derickbailey.github.io/backbone.marionette/docs/backbone.marionette.html
http://www.omegacomputer.com/flowchart.jpg


Documentation Generators Support for Program Comprehension 8

More recently, Oney and Brandt [56] proposes the use of codelets, interactive code ex-
amples that can be exchanged between writers and readers. Using a DSL (Domain Specific
Language), a codelet makes it possible for the reader to customize an example once pasted
into an IDE.

Wang et al. [81] use heuristics based on code structure and identifiers to locate mean-
ingful blocks in the code. This can help the reader detect sets of sequential instructions that
work together.

4.4 Code Summarization

Presenting a library’s source code is one thing, but when it comes to understanding thou-
sands of lines of code, the reader needs better tools. To begin comprehending a large
program, the reader needs to see “the big picture” first. What are the main goals of this
source code? The high level mechanisms involved? A possible solution to this problem can
be found in code summarization.

According to Moreno et al. [53], code summaries are indicative—they provide a brief
description of some code’s content—abstractive—they highlight information that is not
directly visible in the source code—and generic—they only cover the key information, not
the details.

Code summarization represents a powerful add-on to documentation generators as it can
abstract large amount of source code in a few lines and help the reader quickly select the
information he should look with more details, depending on the task at hand. We found no
evidence of this kind of features in the documentation generators studied, but the scientific
literature provides some interesting tools worth investigating.

For instance, Ying and Robillard [85] show that machine learning can be used to auto-
matically generate summaries for small pieces of Java code, such as examples. Sridhara et
al. [66], and then McBurney and McMillan [47], were able to generate summaries for Java
methods using natural language processing and heuristics. At a higher level of abstraction,
Moreno et al. [53] can generate a summary for Java classes also using natural language
processing.

5 Lack of Examples

When exploring a new software, it is generally useful for developers to look at examples [25,
10, 18]. When no examples are provided by the documentation, the reader depends on the
Internet to find examples linked to its use-case [56]. He then has to select the appropriate
examples himself, adapt them to his needs and ensure that they match the same version of
the API as the one he is using. Looking for examples can thus be a time consuming task.

Some software writers provide examples directly in the API documentation by adding
code examples in the comments. With most of the tools, those examples are not checked
as they are neither compiled nor tested. If the software API changes, nothing can warn the
writer that he forgot to update the examples. Thus, there is a risk of desynchronization
with the source code. When trying the example, the reader must find the problem, and
then apply a patch himself. This is, indeed, a hard way to learn!

Readers need examples to understand documentation and code. So, writers have to
create good examples and insert them in the documentation at the right point to help



Documentation Generators Support for Program Comprehension 9

comprehension. But how can documentation generators help the writer to create such good
examples? And what are good examples?

We define good examples as having the following characteristics:

1. minimal: they show only what is needed;

In a study of the StackOverflow Q&A site, Nasehi, Sillito et al. [55] show that the
best rated examples are short. In another study, Oney and Brandt [56] define the best
length of an example as being between 5 and 20 lines of code. Short examples are
also a main objective of Ying and Robillard [86] when they use code summarization
techniques to produce examples.

2. explanatory: they show a use case, a behavior, or a good practice;

Explanatory examples are another feature of good examples identified in Nasehi, Sillito
et al.’s survey [55]. The best rated examples tend to explain a single concept, are
divided in intelligible steps, and are adapted to the question’s context. This is also
one of the goal pursued Oney and Brandt’s Codelets [56]: interactive examples that
can be adapted to the reader’s domain.

3. maintainable: they can be easily kept up-to-date with the source code and the
documentation;

Robillard and Deline, in their survey [62], state that “code examples are assessed in
terms of how authoritative and credible they are.” Examples that provide evidence
they are up-to-date are best received.

4. executable: they can be executed by the reader without modification or fix.

5.1 Reified Examples

Doxygen, Godoc, JSDoc, SandCastle, ScalaDoc, YARD, and YUIDoc provide a special
directive to tag examples, Once tagged, examples can be formatted or grouped within
special index pages. AppleDoc (markdown), Nitdoc (markdown), Perldoc (perlpod) and
Sphinx (reStructured Text) rely on the documentation format to display code in comments.
In this case, the examples are only highlighted, i.e., no further processing is performed.

5.2 Examples Checking

Examples should be executed and automatically verified. Like code, testing examples is the
only way to keep them up-to-date. We found three tools that provide automatic example
checking: Godoc, Sphinx and Nitdoc.

With Godoc, examples are written in external files that are automatically linked to the
documentation thanks to a strict naming convention.17 In the code examples, expected out-
put is specified using the “Output:” directive so examples can be automatically checked.
Like any other pieces of code, examples can be played in the browser using the Go Play-
ground.

With Sphinx, examples are embedded into code comments, and the output of each
example is described using assertion as in unit tests. A tool called Dexy18 is used to

17https://godoc.org/github.com/fluhus/godoc-tricks
18http://dexy.it/

https://godoc.org/github.com/fluhus/godoc-tricks
http://dexy.it/


Documentation Generators Support for Program Comprehension 10

extract code from comments, then run and test them. The same is possible in Nitdoc with
DocUnits.19

These latter two tools make it possible to maintain executable examples synchronized
with the source code, and thus encourage the developer to write documentation and ex-
amples. Indeed, by writing examples, the developer also writes unit tests. The Sphinx
approach works particularly well with Test Driven Development [8] where the developer
alternates frequently between writing unit tests and code.

5.3 Automatic Examples Generation

Examples can also be extracted from existing source code [25]. Unit tests contain numerous
examples that meet our criteria for good examples, as they are executable, minimal and
maintainable. Source code of software clients is also a good source of examples, as they can
provide executable and up-to-date examples.

Although none of the studied tools can automatically produce examples from existing
source code, some approaches have been proposed in the literature.

Zhong et al. [89] use data mining to extract call sequence examples from clients found
in open source code repositories. Kim [42] and Grechanik et al. [31, 32] propose a search
engine that can mine examples from the web.

Zhang et al. [87] use a database to store all the calls made to an API in a public code
base. Using queries, they can then extract examples of arguments used in method calls.
Even though this approach is designed to be embedded in an IDE, it could also be adapted to
the needs of documentation, with the goal of explaining how to call a method or instantiate
a class.

For Buse and Weimer [10], the extraction of examples from existing source code produces
examples that are too complex and hard to read. Instead, they propose to fully generate
the examples using static analysis, and show that their approach can generate minimal
examples that are, in more than 80% of cases, as good as handwritten examples.

Once the source code of the example is generated, code summarization techniques (see
Sect. 4.4) can then be used to produce the documentation of the example. However, to the
best of our knowledge, no such approach has yet been proposed in the literature.

6 Elusive Information

One of the very first challenges encountered by a developer who needs to use a new library
is to find its documentation [15, 25, 63]. It can be hard to distinguish between difficult to
find and non-existent documentation. So, a developer might lose a precious amount of time
learning that difference.

When the documentation is accessible, the reader needs to find the information he is
looking for. Indexes provide a simple access, based on identifier lists. Using an index
effectively requires the reader to know the name of what he is searching. One problem is
that, sometimes, writers and readers may not use the same lexicon to talk about the same
things [30].

Even if the reader knows what to search and where to find it, considering its current
location in the index, he may have to follow a long path through the documentation to

19http://nitlanguage.org/tools/nitunit/

http://nitlanguage.org/tools/nitunit/


Documentation Generators Support for Program Comprehension 11

reach his goal [22]. HTML browsers by default have no search capabilities that work across
multiple pages.

When the documentation is unclear or incomplete, the reader may instead decide to
look at the code, if the source code is indeed available. In that case, the reader will have
to locate the appropriate piece of code possibly within hundreds or thousands of source
files [7].

Whether it be for searching text from documentation, source code or examples, search
engines provide a quick access to the information [38]. Indeed, Freitas et al. [26] show
that search engines are efficient tools to discover and understand a new library. So the
documentation generator needs to help supporting such a feature.

6.1 Client-Side Search Engines

According to the Doxygen documentation,20 client side search engines are the easiest way to
enable searching. These engines, implemented using JavaScript, run entirely in the reader’s
browser so they can be packaged with the source code. They also provide live searching,
i.e., search results are presented and adapted as one types.

Still, according to Doxygen, this method has some drawbacks: It is limited to searching
for symbols only, does not provide full text search capabilities, and does not scale well to
large projects (searching then becomes slow).

Along with Doxygen, ApiGen, Perldoc, NaturalDocs, Nitdoc, ScalaDoc, Sphinx, and
YUIDoc all provide client side search engines.

6.2 Server-Side Search Engines

When the documentation is hosted online, server side search engines can be used. Server
side engines are more efficient than JavaScript ones and scale better on medium to large
projects. They also provide full text search within documentation pages.

ApiGen provides a connector to the Google Custom Search Engine.21 Doxygen and
Sphinx provide server side search engines with basic features but raw data can be generated
to be used by external tools like Xapian,22 an open source search engine library. Godoc
provides a server side search engine capable of full text and code search.23.

In recent years, search from source code became a popular study field among researchers.
For instance, Chen and Rajlich [14] propose an approach that analyzes dependencies be-
tween code elements to extract high level concepts from source code; the reader can then
use these concepts in search queries. Marcus et al. [45] use latent semantic indexing to
achieve the same goal, whereas Poshyvanyk et al. [58] use formal concept analysis and Kim
et al. [42] borrow tools from artificial intelligence.

Holmes et al. [38] show that source code search engines are generally based on a complex
query language that needs specific inputs from the reader who already needs to know the
software. Thus, some studies focus on the possibility to express source code with natural
language [31, 26, 45, 12].

20http://www.stack.nl/~dimitri/doxygen/manual/searching.html
21https://www.google.com/cse/
22http://xapian.org/
23http://godoc.org/golang.org/x/tools/cmd/godoc

http://www.stack.nl/~dimitri/doxygen/manual/searching.html
https://www.google.com/cse/
http://xapian.org/
http://godoc.org/golang.org/x/tools/cmd/godoc


Documentation Generators Support for Program Comprehension 12

Search engines can be used to find examples too. For instance, Krinke [44] analyzes a
program’s dependencies to suggest similar pieces of code from a search query. In this case,
the main issue is how to present extracted code to the reader in an understandable format.
Some approaches try to automate code presentation using the search query [33, 49, 48, 13,
37].

7 Stale Documentation

We group outdated, imprecise, incomplete and missing documentation under the stale doc-
umentation issue. Even when the documentation is generated from the source code, textual
elements written in comments are not checked. Textual documentation can refer to code
elements like identifiers or namespaces. They can also contain internal references or external
links.

For example, suppose a developer writes about a class X in a comment. And then,
several months later, a second developer renames this class as Y. So, what happens to the
comment? It is up to the reader to guess the name substitution to apply when reading
the documentation. Even if IDEs provide some basic search and replace features to update
comments when performing refactoring tasks, there is a risk of outdated documentation [4].

7.1 Documentation Checking

Some tools provide warnings about missing documentation at generation. Doxygen24, Nit-
doc25 and SandCastle26 warn about missing comments on public entities. YARD, using
YardStick27, also enforces examples on public methods. Javadoc, using the -Xdoclint op-
tion, validates the comments content by checking missing documentation, tag mismatch
with respect to method signature, and improper punctuation.28 Scaladoc does the same us-
ing ScalaStyle29 and Perldoc with PodChecker30. Warnings about missing elements provide
a good reminder for forgotten documentation but can produce much noise for entities that
do not need to be documented. No tool seems to provide more advanced documentation
checking.

In the literature, some approaches have been proposed to automatically check the doc-
umentation beyond missing comments. Hens et al. [36], for instance, automatically extract
questions asked on external support to compose a Frequently Asked Question page directly
linked to the documentation. Campbell et al. [11] and Wang and Godfrey [80] use Stack-
Overflow and topic analysis to detect poorly documented parts of a library: If a particular
method or class engenders a large amount of discussion, then its documentation needs to
be improved.

Arnaoudova [4] defines metrics that can detect linguistic anti-patterns in code such as
term dispersion in the lexicon used in the code and the documentation, or incoherence

24http://www.stack.nl/~dimitri/doxygen/manual/config.html
25http://nitlanguage.org/tools/nitdoc/
26https://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.

net-programmers-guide-to-documenting-your-code
27https://github.com/dkubb/yardstick/wiki/Rules
28http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html
29https://github.com/scalastyle/scalastyle/wiki/Scalastyle-proposed-rules-(Scaladoc-Comments)
30http://perldoc.perl.org/Pod/Checker.html

http://www.stack.nl/~dimitri/doxygen/manual/config.html
http://nitlanguage.org/tools/nitdoc/
https://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code
https://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code
https://github.com/dkubb/yardstick/wiki/Rules
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html
https://github.com/scalastyle/scalastyle/wiki/Scalastyle-proposed-rules-(Scaladoc-Comments)
http://perldoc.perl.org/Pod/Checker.html


Documentation Generators Support for Program Comprehension 13

between comments and actual code behavior. Those metrics can then be used to check
the consistency between the terms used in the documentation and those used in the source
code.

Tan and Marinov [68] also check the concordance between code comment and code
behavior using Natural Language Processing analysis. More precisely, they analyze English
text in Javadoc comments to infer a set of likely properties for a method; they then generate
a set of random tests to check the inferred properties and detect inconsistencies.

Rubio-Gonzalez and Liblit [64] use static analysis on source code to determine every
possible exceptions that can be raised by a piece of code. They then compare this list
to the documentation and check whether all error codes are documented and up-to-date.
As shown by Arnout and Meyer [5], static analysis can also be used to identify contracts
present in the code but not mentioned in the documentation.

7.2 Collaborative Documentation

The life-cycle of documentation does not stop once it has been generated. It is only when
the documentation is used by readers that its quality and usefulness for developers become
appreciable. This section presents approaches that can be used to improve documentation
using readers’ knowledge and experience.

Once the documentation is generated, readers can spot poorly documented areas of the
library or identify errors. They thus needs to send feedback to writers to help improve the
documentation.

Usually, this communication occurs through external supports like forums or mailing
lists where readers can discuss their experiences and share problematic issues with other
readers or writers [57]. This approach makes the information difficult to find, as readers
have to browse through the Internet to find the appropriate discussions.

Some tools, like PhD, RDoc, SandCastle, ScalaDoc, or Sphinx, work with pluggable
rating or discussion systems. Rating systems plugins allow readers to rate the quality of a
piece of documentation, typically using a five stars system. Dicussion plugins allow readers
to exchange additional information about the documentation they are reading, for example,
to share concrete examples, signal stale documentation, or ask for more information.

Sometimes, readers can collaborate and correct or improve the documentation them-
selves, lightening the writers’ workload. In many open-source projects, collaborative docu-
mentation is supported through the source control system. Readers are expected to edit the
code to improve the comments, and documentation edits follow the same validation pro-
cess as source code—i.e., peer review, unit and integration testing, release. This approach
ensures the quality of the proposed edits but does not encourage newcomers to participate,
as it requires a high level of commitment only to correct a simple typo.

PhD lets readers improve the documentation by editing the web page in a wiki. Even if
this approach is easy to use, it still is prone to desynchronization with source code.

Nitdoc also provides editing from the web page but saves the changes using GitHub, with
commits and pull-requests that are automatically transmitted to the project maintainer.31

Once reviewed, changes can then be integrated in source code by merging, preserving links
between documentation and code.

31https://github.com/privat/nit/commit/fa45624f2ff95641427

https://github.com/privat/nit/commit/fa45624f2ff95641427


Documentation Generators Support for Program Comprehension 14

7.3 Measuring Documentation Quality

Writers need to measure the quality of the documentation they produce. For Khamis
et al. [40], documentation quality is hard to measure automatically because of the use
of natural language. Farooq et al. [23] propose that peer reviews be used to check the
documentation usability. Quality checking a documentation can become tedious depending
on size or frequency of update.

Wingkvist and Ericsson [83] propose to measure documentation quality using the Goal-
Question-Metric paradigm [77]. The writer chooses a set of objectives—what should be
documented—and infers a set of metrics that can be used to check if the objectives are
reached.

Khamis et al. [40] go further by defining a set of metrics inspired from natural language
processing that can be applied on Javadoc comments. Their approach makes it possible for
the writer to automatically check the quality of the text contained in the documentation.

8 Comparison Summary and Discussion

Table 2 presents a summary of the tool comparison on features supporting program com-
prehension. Blocks of columns are the five key issues discussed in the current paper: lack
of structure, lack of abstraction levels, lack of examples, elusive information, and stale doc-
umentation. Each such block is split in sub-columns linked to feature groups that try to
address these issues.

Note that the counts mentioned in this table are not “points” per se, so the higher is
not necessarily the better. A “•” in the grid solely indicates that a tool offers some feature
that tries to address a specific issue of code documentation. The quality of the feature, its
importance, or its usability for the writer or the reader is not taken in account.

At first sight, the comparison grid is surprisingly scarce: only 55 marks in total (out of
a maximum of 247 possibilities, i.e., 1 out of 5). The higher total for a feature group, reified
examples, is 10 (out of a maximum of 22 tools, i.e., about 1 out 2). The higher total for a
tool, Doxygen, is 7 (out of a maximum of 13 groups, again 1 out 2).

8.1 On the Tools

Surprisingly, most tools only offer basic features and do not try to address the identified
issues related to program comprehension.

Only five tools have a total of 5 or above: one multi-language, Doxygen, and four
language specific, Godoc (Go), Nitdoc (Nit), ScalaDoc (Scala), and Sphinx (Python). On
the other hand, the original and well known Javadoc has only a total count of 1, as it only
checks for missing tags and bad references—see Section 7.1.

Unfortunately, the choices of features available to a user are greatly constrained by the
programming language, as there are few documentation generators available and most are
language-specific. Thus, the users of any given language usually do not know or use the
documentation generators of other languages and, so, there are no requests to clone the
other tools’ best features.

No specific correlation seems to be observed between the programming language family
and the coverage of the tools. For instance, Sphinx and Doxx both target a dynamically-



Documentation Generators Support for Program Comprehension 15

Lack of Lack of Lack of Elusive Stale
structure abstraction examples information doc.

Tool S
tr

u
ct

u
re

S
u

gg
es

ti
on

s

L
is

ts

F
ig

u
re

s

C
o
d

e

E
x
a
m

p
le

s

C
h

ec
k
in

g

G
en

er
a
ti

o
n

C
li

en
t-

si
d

e

S
er

ve
r-

si
d

e

V
al

id
a
ti

o
n

C
ol

la
b

or
at

iv
e

Q
u

al
it

y

Doxygen • • • • • • •
Nitdoc • • • • • •
ScalaDoc • • • • • •
Sphinx • • • • • •
Godoc • • • • •
SandCastle • • • •
Perldoc • • •
YARD • • •
YUIDoc • • •
ApiGen • •
Haddock • •
phpDoc. • •
PhD • •
AppleDoc •
Docco •
Javadoc •
JSDoc •
Nat. Docs •
RDoc •
Univ. Rep. •
Doxx

Autodoc

Codox

Table 2: Summary of tool comparison. A “•” indicates that a tool (line) provide a solution
within a corresponding feature group (column). This means the tool offers something above
the basic set of features to improve program comprehension in the corresponding feature
group. The details about tools’ features can be found in the indicated sections (column).
Tools without any “•” indicate basic tools that offer only the common minimal set of
features. Feature groups without any “•” indicate that some features are proposed only in
research papers, but are not currently integrated in any tool.



Documentation Generators Support for Program Comprehension 16

typed script-like object-oriented language, whereas Scaladoc and Sphinx target quite dis-
tinct languages—statically-typed vs. dynamically-type languages.

8.2 On the Issues

Lack of structure

Six tools allow the writer to control the generated documentation’s structure. Links between
documentation elements must be specified by hand. No tool provides automatic reading
suggestions.

Lack of abstraction

The kinds of abstraction most often used are lists and trees. Six tools provide graphs or
diagrams that give a higher level view of the software. Content and order of the lists and
diagrams cannot be easily managed by the writer. Source code presentation is scarcely
supported, and only three tools provide some help to a better code understanding.

Lack of examples

Examples are generally reified using some kind of annotations. But only three tools au-
tomatically check the examples and help to keep them up-to-date. No tool support the
automatic extraction of examples from existing code or the generation of new examples.

Elusive information

Surprisingly, search engines are not a feature provided by many tools. Most of the proposed
engines are client based and only provide search in an index. Four tools provide server side
engines that can perform textual or code search.

Stale documentation

Six tools can check the quality of the generated documentation. Checking consists mainly
in detecting missing comments for public methods. Collaborative editing does not appear
to be popular among mainstream documentation generators. No concrete solution is given
to automatic documentation quality measuring.

As shown in the comparison grid, few tools address all the issues. Overall, coverage is
scarce. In fact, only Doxygen and Sphinx provide at least one feature in each column block,
although not in each sub-column.

As mentioned above, the data presented in Table 2 does not aim to provide a detailed
“quantitative” comparison. Nonetheless, this analysis shows that, although specific features
to improve program comprehension do exist and are implemented in some tools or are
proposed by some researchers, the best tools only propose a small subset of them. Thus,
there is still much room for improvement toward designing a powerful documentation tool.



Documentation Generators Support for Program Comprehension 17

9 Conclusion

In this paper, we discussed the key issues of auto-documentation with respect to program
comprehension : Documentation based on indexes generally lacks structure, abstraction
levels and examples; Access to the documentation or to the information within documen-
tation can be difficult; Documentation can contain outdated references or links even when
it is generated from source code.

Based on these issues, we analyzed existing documentation generators to examine the
solutions they propose and discussed these solutions. We gave a comprehensive comparison
of mainstream documentation generator support for program comprehension.

The results of our comparison show that only two tools, Doxygen and Sphinx, propose
some kind of solution that address each category of issues, though with only a subset of
features. Furthermore, although there are tools that propose original solutions to some of
the issues, it appears that few of the competing tools use those ideas and solutions. Finally,
even though program comprehension can be eased by the quality of its documentation, the
documentation generated by the most popular documentation generator tools—for instance,
Javadoc—is not always the most appropriate.

As future work, we want to put together some of the best practices listed in this paper
within a tool that will include the most promising solutions to address the presented issues.
We also want to evaluate the features from a quality point of view and measure how each
feature improves program comprehension.

References

[1] M. Allen, “PerlDoc,” 2014.

[2] Apache Fondation, “Ant,” 1999.

[3] Apache Fondation, “Maven,” 2002.

[4] V. Arnaoudova, Towards Improving the Code Lexicon and its Consistency. PhD thesis,
École Polytechnique de Montréal, 2014.

[5] K. Arnout and B. Meyer, “Uncovering hidden contracts: The .NET example,” Com-
puter, vol. 36, no. 11, pp. 48–55, 2003.

[6] J. Ashkenas, “Docco,” 2010.

[7] S. Bajracharya, T. Ngo, E. Linstead, P. Rigor, Y. Dou, P. Baldi, and C. Lopes,
“Sourcerer : A Search Engine for Open Source Code,” in Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’06), pp. 681–682, 2006.

[8] K. Beck, Test-Driven Development—By Example. Addison-Wesley, 2003.

[9] D. Brown, “PHP.net,” 2014.

[10] R. P. L. Buse and W. Weimer, “Synthesizing API usage examples,” in International
Conference on Software Engineering (ICSE’12), (Zurich, Switzerland), pp. 782–792,
IEEE Press, June 2012.



Documentation Generators Support for Program Comprehension 18

[11] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller, “Deficient Documentation
Detection: A Methodology to Locate Deficient Project Documentation Using Topic
Analysis,” in Working Conference on Mining Software Repositories (MSR’13), (San
Francisco, CA, USA), pp. 57–60, IEEE Press, 2013.

[12] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected API subgraph via text
phrases,” in ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering (FSE ’12), (New York, New York, USA), ACM Press, 2012.

[13] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF : A Search Engine for Java Using
Free-Form Queries,” Lecture Notes in Computer Science, vol. 5503, pp. 385–400, 2009.

[14] K. Chen and V. Rajlich, “Case study of feature location using dependence graph,” in
International Workshop on Program Comprehension (IWPC ’00), pp. 241–247, IEEE
Comput. Soc, 2000.

[15] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the documentation
essential to software maintenance,” in International Conference on Design of Commu-
nication Documenting & Designing for Pervasive Information (SIGDOC ’05), (New
York, New York, USA), p. 68, ACM Press, 2005.

[16] U. Dekel and J. D. Herbsleb, “Improving API Documentation Usability with Knowl-
edge Pushing,” pp. 320–330, 2009.

[17] S. Denier and Y.-G. Guéhéneuc, “Mendel: A Model, Metrics, and Rules to Under-
stand Class Hierarchies,” in IEEE International Conference on Program Comprehen-
sion (OCPC’08), pp. 143–152, IEEE, June 2008.

[18] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions about unfamiliar
APIs: An exploratory study,” in International Conference on Software Engineering
(ICSE ’12), (Zurich, Switzerland), pp. 266–276, IEEE Press, June 2012.

[19] G. Dubochet, “Scaladoc,” 2011.

[20] G. Dubochet and D. Malayeri, “Improving API documentation for Java-like languages,”
in Evaluation and Usability of Programming Languages and Tools (PLATEAU ’10),
(New York, New York, USA), pp. 1–1, ACM Press, 2010.

[21] S. Ducasse and M. Lanza, “The class blueprint: visually supporting the understanding
of classes,” IEEE Transactions on Software Engineering, vol. 31, no. 1, pp. 75–90, 2005.

[22] D. S. Eisenberg, J. Stylos, and B. A. Myers, “Apatite : A New Interface for Exploring
APIs,” in Conference on Human Factors in Computing Systems (CHI ’10), pp. 1331–
1334, 2010.

[23] U. Farooq, L. Welicki, and D. Zirkler, “API usability peer reviews: a method for eval-
uating the usability of application programming interfaces,” in Conference on Human
Factors in Computing Systems (CHI ’10), (Atlanta, Georgia, USA), pp. 2327–2336,
ACM, 2010.

[24] T. Faulhaber, “Autodoc,” 2009.



Documentation Generators Support for Program Comprehension 19

[25] A. Forward and T. C. Lethbridge, “The relevance of software documentation, tools
and technologies,” in Symposium on Document Engineering (DocEng ’02), (New York,
New York, USA), pp. 26–33, ACM Press, 2002.

[26] J. L. Freitas, D. da Cruz, and P. R. Henriques, “A Comment Analysis Approach for
Program Comprehension,” in International Conference on Software Engineering (ICSE
’13), (San Francisco, CA, USA), pp. 11–20, IEEE Press, Oct. 2012.

[27] L. Friendly, “The design of distributed hyperlinked programming documentation,” in
International Workshop on Hypermedia Design ’95, pp. 151–173, 1995.

[28] Gentle Bytes, “AppleDoc,” 2009.

[29] Georg Brandl, “Sphinx,” 2007.

[30] A. Gokhale, V. Ganapathy, and Y. Padmanaban, “Inferring likely mappings between
APIs,” International Conference on Software Engineering (ICSE’13), pp. 82–91, May
2013.

[31] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby, “A
Search Engine for Finding Highly Relevant Applications,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (ICSE ’10), vol. 1,
(New York, New York, USA), pp. 475–484, ACM Press, 2010.

[32] M. Grechanik, Q. Xie, C. Mcmillan, and C. Cumby, “Exemplar: EXEcutable exaMPLes
ARchive,” IEEE Transactions on Software Engineering, vol. 38, no. 5, pp. 259–262,
2009.

[33] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the Use of Automated Text
Summarization Techniques for Summarizing Source Code,” in Working Conference on
Reverse Engineering (WCRE ’10), pp. 35–44, IEEE, Oct. 2010.

[34] Y. Hao, G. Li, L. Mou, L. Zhang, and Z. Jin, “MCT: A tool for commenting programs
by multimedia comments,” in International Conference on Software Engineering (ICSE
’13), (San Francisco, CA, USA), pp. 1339–1342, IEEE Press, May 2013.

[35] W. Heijstek, T. Kuhne, and M. R. Chaudron, “Experimental Analysis of Textual and
Graphical Representations for Software Architecture Design,” in International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM ’11), pp. 167–176,
IEEE, Sept. 2011.

[36] S. Hens, M. Monperrus, and M. Mezini, “Semi-automatically extracting FAQs to im-
prove accessibility of software development knowledge,” in International Conference
on Software Engineering (ICSE ’12), (Zurich, Switzerland), pp. 793–803, IEEE Press,
June 2012.

[37] R. Holmes and G. C. Murphy, “Using Structural Context to Recommend Source Code
Examples Categories and Subject Descriptors,” in International Conference on Soft-
ware Engineering (ICSE ’05), pp. 117–125, 2005.



Documentation Generators Support for Program Comprehension 20

[38] R. Holmes, R. J. Walker, and G. C. Murphy, “Approximate Structural Context Match-
ing : An Approach to Recommend Relevant Examples,” IEEE Transactions on Soft-
ware Engineering, vol. 32, no. 12, pp. 952–970, 2006.

[39] JSDoc 3 documentation project, “JSDoc,” 2011.

[40] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of source code
comments: the JavadocMiner,” in International Conference on Natural Language Pro-
cessing and Information Systems (NLDB ’10), pp. 68–79, Springer-Verlag, 2010.

[41] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
Overview of AspectJ,” Lecture Notes in Computer Science, vol. 2072, pp. 327–353,
2001.

[42] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Towards an Intelligent Code Search En-
gine,” in AAAI Conference on Artificial Intelligence, pp. 1358–1363, 2010.

[43] D. E. Knuth, Literate Programming. Stanford University Center for the Study of
Language and Information, 1992.

[44] J. Krinke, “Identifying similar code with program dependence graphs,” in Working
Conference on Reverse Engineering (WCRE ’01), pp. 301–309, IEEE Comput. Soc,
2001.

[45] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information retrieval ap-
proach to concept location in source code,” in Working Conference on Reverse Engi-
neering (WCRE ’04), pp. 214–223, IEEE Comput. Soc, 2004.

[46] S. Marlow, “Haddock,” 2002.

[47] P. W. McBurney and C. McMillan, “Automatic documentation generation via source
code summarization of method context,” Proceedings of the 22nd International Con-
ference on Program Comprehension - ICPC 2014, pp. 279–290, 2014.

[48] C. McMillan, “Searching, selecting, and synthesizing source code,” in International
Conference on Software Engineering (ICSE ’11), (New York, New York, USA), p. 1124,
ACM Press, 2011.

[49] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio: A Search
Engine for Finding Functions and Their Usages,” in International Conference on Soft-
ware Engineering (ICSE’11), (Honolulu, HI), pp. 1043–1045, 2011.

[50] Microsoft, “MSDN,” 2004.

[51] Microsoft, “SandCastle,” 2006.

[52] Mike van Riel, “phpDocumentor,” 2010.

[53] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker,
“Automatic generation of natural language summaries for Java classes,” IEEE Inter-
national Conference on Program Comprehension, pp. 23–32, 2013.



Documentation Generators Support for Program Comprehension 21

[54] I. Naisan and S. Ibrahim, “Comparison of Two Software Documentation Generators:
Universal Report and Doxygen,” Proceedings of International Conferences of Informa-
tion, Communication, Technology (ICT’09), pp. 67–70, 2009.

[55] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?
A study of programming Q&A in StackOverflow,” IEEE International Conference on
Software Maintenance, ICSM, pp. 25–34, 2012.

[56] S. Oney and J. Brandt, “Codelets: linking interactive documentation and example
code in the editor,” in Conference on Human Factors in Computing Systems (CHI
’12), pp. 2697–2706, 2012.

[57] C. Parnin and C. Treude, “Measuring API documentation on the web,” in International
Workshop on Web 2.0 for Software Engineering (Web2SE ’11), (New York, New York,
USA), pp. 25–30, ACM Press, 2011.

[58] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using formal concept
analysis and information retrieval,” ACM Transactions on Software Engineering and
Methodology, vol. 21, pp. 1–34, Nov. 2012.

[59] J. Reeves, “Codox,” 2014.

[60] F.-G. Ribreau, “Doxx,” 2013.

[61] M. P. Robillard, “Automatic generation of suggestions for program investigation,”
ACM SIGSOFT Software Engineering Notes, vol. 30, p. 11, Sept. 2005.

[62] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,” Empirical
Software Engineering, vol. 16, pp. 703–732, Dec. 2010.

[63] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers
comprehend software?,” in International Conference on Software Engineering (ICSE
’12), (Zurich, Switzerland), pp. 255–265, IEEE Press, June 2012.

[64] C. Rubio-González and B. Liblit, “Expect the unexpected: error code mismatches
between documentation and the real world,” in ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE ’10), pp. 73–80,
2010.

[65] L. Segal, “YARD,” 2007.

[66] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting and describ-
ing high level actions within methods,” Procedings of the 33rd International Conference
on Software Engineering - ICSE 2011, pp. 101–110, 2011.

[67] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving API documentation using
usage information,” in Extended Abstracts on Human Factors in Computing Systems
(CHI EA ’09), pp. 4429–4434, 2009.

[68] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment: Testing Javadoc
comments to detect comment-code inconsistencies,” in IEEE International Conference
on Software Testing, Verification and Validation (ICST’12), pp. 260 – 269, 2012.



Documentation Generators Support for Program Comprehension 22

[69] A. Terrasa, “Nitdoc,” 2011.

[70] The Go Authors, “Godoc,” 2009.

[71] The PHP Documentation Group, “PhD DockBook,” 2007.

[72] D. Thomas, “RDoc,” 2001.

[73] Universal Software, “Universal Report,” 2001.

[74] G. Valure, “Natural Docs,” 2003.

[75] A. van Deursen and T. Kuipers, “Building documentation generators,” in IEEE Inter-
national Conference on Software Maintenance (ICSM ’99), pp. 40–49, IEEE, 1999.

[76] D. van Heesch, “Doxygen: Source code documentation generator tool.,” 2008.

[77] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, Goal Question Metric
(GQM) Approach. John Wiley & Sons, Inc., 2002.

[78] T. Vestdam and K. Nørmark, “Maintaining Program Understanding–Issues, Tools, and
Future Directions.,” Nordic Journal of Computing, vol. 11, no. 3, pp. 303–320, 2004.

[79] T. Votruba, J. Hansĺık, and O. Nešpor, “ApiGen,” 2010.

[80] W. Wang and M. W. Godfrey, “Detecting API usage obstacles: A study of iOS and
Android developer questions,” in Working Conference on Mining Software Repositories
(MSR ’13), (San Francisco, CA, USA), pp. 61–64, IEEE Press, May 2013.

[81] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatic Segmentation of Method Code
into Meaningful Blocks to Improve Readability,” in Working Conference on Reverse
Engineering (WCRE ’11), pp. 35–44, IEEE, Oct. 2011.

[82] F. W. Warr and M. P. Robillard, “Suade: Topology-Based Searches for Software Inves-
tigation,” in International Conference on Software Engineering (ICSE ’07), pp. 780–
783, IEEE, May 2007.

[83] A. Wingkvist and M. Ericsson, “A metrics-based approach to technical documentation
quality,” in International Conference on the Quality of Information and Communica-
tions Technology (QUATIC ’10), pp. 476–481, IEEE, Sept. 2010.

[84] Yahoo! Inc., “YUIDoc,” 2011.

[85] A. T. Ying and M. P. Robillard, “Code Fragment Summarization,” Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, pp. 655–658, 2013.

[86] A. T. Ying and M. P. Robillard, “Selection and presentation practices for code example
summarization,” Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2014, pp. 460–471, 2014.

[87] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou, “Automatic
parameter recommendation for practical API usage,” in International Conference on
Software Engineering (ICSE ’12), pp. 826–836, IEEE, June 2012.



Documentation Generators Support for Program Comprehension 23

[88] Q. Zhang, W. Zheng, and M. Lyu, “Flow-augmented call graph: A new foundation for
taming api complexity,” Lecture Notes in Computer Science, vol. 6603, pp. 386–400,
2011.

[89] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO : Mining and Recommend-
ing API Usage Patterns,” in European Conference on Object-Oriented Programming
(ECOOP ’09), pp. 318–343, 2009.


	Introduction
	Survey Overview
	Common Issues of Documentation Regarding Program Comprehension
	The State of the Art in Auto-Documenting Systems

	Lack of Structure
	Documentation as a User Manual
	Reading Suggestions

	Lack of Abstraction Levels
	Lists and Trees
	Diagrams and Figures
	Source Code
	Code Summarization

	Lack of Examples
	Reified Examples
	Examples Checking
	Automatic Examples Generation

	Elusive Information
	Client-Side Search Engines
	Server-Side Search Engines

	Stale Documentation
	Documentation Checking
	Collaborative Documentation
	Measuring Documentation Quality

	Comparison Summary and Discussion
	On the Tools
	On the Issues

	Conclusion

