
'

&

$

%

A SURVEY OF BIG DATA FRAMEWORKS ON A

LAYERED DATAFLOW MODEL

Claudia Misale, Maurizio Drocco, Marco Aldinucci and Guy

Tremblay

May 2016

Département d’informatique

Université du Québec à Montréal

Rapport de recherche Latece 2016-1



A SURVEY OF BIG DATA FRAMEWORKS ON A
LAYERED DATAFLOW MODEL

Claudia Misale
Comp. Sc. Dept.
University of Torino
Torino, Italy

Maurizio Drocco
Comp. Sc. Dept.
University of Torino
Torino, Italy

Marco Aldinucci
Comp. Sc. Dept.
University of Torino
Torino, Italy

Guy Tremblay
Dép. d’informatique
UQAM
Montréal, Qc, Canada

Laboratoire de recherche sur les technologies du commerce électronique

Département d’informatique

Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville

Montréal, QC, Canada

H3C 3P8

http://www.latece.uqam.ca

May 2016

Rapport de recherche Latece 2016-1

http://www.latece.uqam.ca


This work has been partially supported by the EU FP7 REPARA project
(no. 609666), the EU H2020 Rephrase project (no. 644235) and the 2015–
2016 IBM Ph.D. Scholarship program.



Abstract

In the world of Big Data analytics, one can find a series of tools aiming at simplifying
programming applications to be executed on clusters. Although each tool is claiming to
provide better programming, data and execution models—for which only informal (and
often confusing) semantics is generally provided—all share a common underlying model,
namely, the Dataflow model. The Dataflow model we provide shows how various tools
share the same expressiveness at different levels of abstraction. The contribution of this
work is twofold: first, we show that the resulting model is (at least) as general as existing
batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier
to reason about high-level data-processing applications written in such frameworks.
Second, we provide a layered model that can represent tools and applications following
the dataflow paradigm and we show how the analyzed tools fit in each level.

1 Outline

With the increasing number of Big Data analytics tools, we assist at a continuous fight
among implementors/vendors in demonstrating how their tools are better than others in
terms of performances and/or expressiveness. In this hype, for a user approaching Big Data
analytics (even an educated computer scientist), it might be hard to have a clear picture of
the programming model underneat these tools and the expressiveness they provide to solve
some user defined problem. In this scenario, we aim to understand exact features those
tools provide to the user in terms of API and how they are related to parallel computing
paradigms. To provide some order in the world of Big Data processing, in this paper we
categorize models and tools to extract common features in their programming models.

At this aim, we identified the Dataflow model [15] as the common model that better
describes all levels of abstraction, from the user-level API to the execution model. This
model represents applications via a directed graph of actors. In its “modern” reissue (a.k.a.
macro-data flow [3]), it naturally models independent (thus parallelizable) kernels starting
from a graph of true data dependencies. Kernels execution is triggered by data availability.

The Dataflow model is expressive enough to describe batch, micro-batch and streaming
models that are implemented in most tools for Big Data processing. Being all realized
under the same common idea, we show how various Big Data analytics tools share almost
the same base concepts, differing mostly in their implementation choices. We instantiate the
Dataflow model into a stack of layers where each layer represents a dataflow graph/model
with a different meaning, describing a program from what the programmer sees down to
the underlying, lower-level, execution model layer. Furthermore, we put our attention to
a problem rising from the high abstraction provided by the model that reflects into the
examined tools. Especially when considering stream processing and state management,
non-determinism may rise when processing one or more streams in one node of the graph,
which is a well-known problem in parallel and distributed computing. Eventually, the paper
focus on high-level parallelism exploitation paradigms and the correlation with Big Data
tools at the level of programming and execution models.

In this paper, we examine the following tools under the dataflow perspective: Spark [18],
Storm [16], Flink [1], and TensorFlow [2]. As far as we know, no previous attempt was made
to compare different Big Data processing tools, at multiple levels of abstraction, under a
common formalism.

1



The paper proceeds as follows. Sections 2 and 3 describe the Dataflow model and how
it can be exploited at three different abstraction levels. Sec. 4 focuses on user-level API of
the tools. The discussion about each level of our layered model is provided in Sections 5,
6 and 7. Eventually, Sections 8 and 9 discuss some limitations of the dataflow model in
capturing all the tool features and frames the programming model of the tools in a historical
perspective. Finally, Section 10 concludes the paper, also describing some future work.

2 Dataflow Process Networks

In this section, we review the Dataflow model of computation, as defined by Lee and
Parks [15]. We underline the formal properties of the basic Dataflow model that better
describes all models involved in our layered model from Fig. 1 (p. 3). We show how the
model is general enough to subsume many different levels simply by changing the semantics
of dataflow nodes and links.

Dataflow Process Networks are a special case of Kahn Process Networks, a model of
computation that describes a program as set of concurrent processes communicating among
each other via FIFO channels, where reads are blocking and writes are non-blocking. A
set of firing rules is associated to each process, here called actor. In a dataflow network,
processing consists of “repeated firings of actors”, where an actor represents a functional
unit of computation over tokens. For an actor, to be functional means that firings have
no side effects (thus actors are stateless) and the output tokens are functions of the input
tokens. The model can be extended to allow stateful actors.

A dataflow network can be executed in several ways. The two main classes of execution
are process-based and scheduling-based—other models are flavors of these two. The process-
based model is straightforward: each actor is represented by a process that communicates
via FIFO channels. In the scheduling-based model, also known as dynamic scheduling, a
scheduler tracks the availability of tokens in input to actors and schedules enabled actors for
execution; the atomic scheduling unit is referred as a task and represents the computation
performed by an actor over a single set of input tokens.

Actors A dataflow actor consumes input tokens when it “fires” and then produces output
tokens; thus it repeatedly fires on tokens belonging to one or more streams. The function
mapping input to output tokens is called the kernel of an actor1. A firing rule defines when
an actor can fire. Each rule defines what tokens have to be available for the actor to fire.
Multiple rules can be combined to program arbitrarily complex firing logics (e.g., the If
node).

Input channels The kernel function takes as input one or more tokens from one or more
input channels when a firing rule is activated. The basic model can be extended to allow
for testing input channels for emptiness, in order to express arbitrary stream consuming
policies (e.g., gathering from any channel), as we will remark in Sec. 8.

1We remark the Dataflow process network model seamlessly comprehends the Macro Dataflow parallel
execution model, in which each process executes arbitrary code. Conversely, actor codes in the classical
Dataflow architecture model are single instructions of the architecture language. From now on, we refer to
both Dataflow and Macro Dataflow models with a single formalism.

2



Framework API

Program Semantics Dataflow

Parallel Execution Dataflow

Process Network Dataflow

Platform

User-level API

Semantics of the application in terms of dataflow
graphs

Instantiation of semantic dataflow that explicitly
expresses parallelism

Runtime execution model (e.g., Master-Workers)

Runtime language or platform (e.g., JVM)

Figure 1: Layered model representing the levels of abstractions provided by the frameworks
that were analyzed.

Output channels The kernel function places one or more tokens into one or more output
channels when a firing rule is activated. Each output token produced by a firing can
be replicated and placed onto each output channel (i.e., broadcasting) or sent to specific
channel(s), in order to model arbitrarily producing policies (e.g., switch, scatter).

Stateful actors Actors with state can be considered like objects (instead of functions)
with methods used to modify the object’s contents. Stateful actors is an extension that
allows side effects over local (i.e., internal to each actor) states. It is shown in [15] that
stateful actors can be emulated in the functional dataflow model by adding an extra feedback
channel carrying the value of the state to the next execution of the kernel function on
the next element of the stream. From the architectural model perspective, this extension
corresponds to a form of the so-called hybrid Dataflow-von Neumann model.

3 The Dataflow Layered Model

By analyzing some well-known tools—Spark, Storm, Flink, and TensorFlow—we were able
to identify a common structure underlying all of them. We formalized an architecture that
can describe all these models at different levels of abstraction, from the (top) user-level
API to the (bottom-level) actual network of processes. The layered model shown in Fig. 1
presents five layers, where the three intermediate layers are Dataflow models with different
semantics, as described in the paragraphs below. Underneath these three layers is the
Platform level, that is, the runtime or programming language used to implement a given
framework (e.g., Java and Scala in Spark), a level beyond the scope of our paper. On top
is the Framework API level, that describes the user API on top of the dataflow graph and
it will be detailed in Section 4. The three Dataflow models in between are as follows.

• Program Semantics Dataflow : We claim the API exposed by any of the considered
frameworks can be translated into a dataflow graph. The top level of our layered
model captures this translation: programs at this level represent the semantics of

3



data-processing applications in terms of dataflow graphs. Programs at this level do
not explicitly express any form of parallelism: they only express data dependencies
(i.e., edges) among the program components (i.e., actors). This aspect will be covered
in Section 5.

• Parallel Execution Dataflow : This level, covered in Section 6, represents an effective
instantiation of the semantic dataflows in terms of processing elements (i.e., actors)
connected by data channels (i.e., edges). Independent units—not connected by a
channel—may execute in parallel. For example, a semantic actor can be replicated to
express data parallelism, the execution model in which a given function is applied to
independent input data (i.e., tokens).

• Process Network Dataflow : This level, covered in Section 7, describes how the program
is effectively deployed and executed onto the underlying platform. Actors are concrete
computing entities (e.g., processes) and edges are communication channels. The most
common approach—used by all the considered frameworks but TensorFlow—is for
the actual network to be a Master-Workers task executor, where a task is generated
every time an actor from the upper layer becomes enabled. In TensorFlow, processing
elements are effectively mapped to threads and possibly distributed over multiple
nodes of a cluster.

4 The Framework API

Data-processing applications are generally divided into batch vs. stream processing. Batch
programs are designed by composing operations over one or more finite datasets, while
stream programs target possibly unbounded sequences of data, called streams. Operations
over streams may have to respect a total data ordering, not needed in batch computations.

We divide API expressiveness in two categories: declarative and topological data pro-
cessing. As we now show, Spark and Flink belong to the first category—they provide both
batch and stream processing in the form of operators over collections and streams—whereas
Storm and TensorFlow belong to the second one—they provide an API explicitly based on
graphs.

4.1 Declarative Data Processing

This model provides as building blocks data collections and operations on such data. The
data model follows domain-specific operators, for instance, relational algebra operators that
operate on data structured with the key-value model.

Batch Processing applications are implemented as methods on objects representing col-
lections: this is an algebra on finite datasets where no data ordering is needed. APIs with
such objects and transformations are exposing a functional-like style. We provide three
examples of operations together with their respective semantics:

groupByKey(a) = {(k, {v : (k, v) ∈ a})} (1)

join(a, b) = {(k, (va, vb)) : (k, va) ∈ a ∧ (k, vb) ∈ b} (2)

map〈f〉(a) = {f(v) : v ∈ a} (3)

4



Here, the {·} syntax refers to multisets rather than sets. The groupByKey unary operation
groups tuples sharing the same key (i.e., the first field of the tuple); thus it maps multisets
of type (K × V )∗ to multisets of type (K × V ∗)∗. The binary join operation merges two
multisets by coupling values sharing the same key. Finally, the unary higher-order map

operation applies the kernel function f to each element in the input multiset.

Stream processing programs are expressed in terms of an algebra on eventually un-
bounded data (i.e., stream as a whole) where data ordering eventually matters. Data is
usually organized in tuples having a key field that determines its position in the stream.
This model is fundamental to describe an order among elements in a stream by using a
global timestamp as key (natural key-value model), but is used also to categorize streams
into substreams (artificial key-value model). For instance, this allows relational algebra
operators or data shuffling and grouping based on keys.

In a stream processing scenario, we also have to consider two important aspects: state
management and windowing. Stateful computations allow maintaining some information
during the whole application. State can be local to each actor, thus accessible via primitives
such as set/get, or managed with functional constructs that update a local state by a
kernel function. Windowing is used to organize streams into partitions obeying certain
criteria (such as time intervals) and with a fixed cardinality. Windowing is a particular
form of local stateful computation, where windows are created by maintaining an history
over stream items.

Apache Spark API implements batch programming with a set of operators, called
transformations, that are uniformly applied to whole datasets called Resilient Distributed
Datasets (RDD) [18], which are immutable collections of data. For stream processing,
Spark implements an extension through the Spark Streaming module, providing a high-
level abstraction called discretized stream or DStream [19]. Such streams of data represent
results in continuous sequences of RDDs of the same type, called micro-batch. Operations
over DStreams are simply “forwarded” to each RDD in the DStream, thus the semantics of
operations over streams is defined in terms of batch processing:

op(a) = [op(a1), op(a2), . . .]

where [·] refers to a possibly unbounded ordered sequence, a = [a1, a2, . . .] is a stream (i.e.,
a DStream in Spark terminology), and each item ai is a micro-batch of type RDD.

Apache Flink’s main focus is on stream programming. The abstraction used is the
DataStream, which is a representation of a stream as a single object. Operations are
pipelined by calling operators on a DataStream objects. Apache Flink provides a data type
for batch applications, called DataSet, that identifies a single collection (i.e., a stream of
one element) on which to apply operators. A Flink program, either for batch or stream pro-
cessing, is realized as an algebra of stateful operators over DataStream. State management
will be discussed in section 4.3.

4.2 Dataflow Data Processing

Storm and TensorFlow are two tools that provide a topological API. Topological programs
are expressed in terms of graphs, either explicitly (Storm) or with the description of directed

5



graph built by creating operators as nodes and input data as parameters of the operator
(TensorFlow).

Apache Storm is a framework that only targets stream processing. Storm’s program-
ming model is based on three objects: Spouts, Bolts, and Topologies. A Spout is a source
of a stream, that is (typically) connected to a data source or that can generate its own
stream. A Bolt is a processing element, so it processes any number of input streams and
produces any number of new output streams. Most of the logic of a computation goes into
Bolts, such as functions, filters, streaming joins or streaming aggregations. Hence, Bolts
are parametrized with per-tuple kernel code. Bolts and Spouts are stateless by default, in
the sense that no operator is provided to manage state consistency. Since Bolts and Spouts
are objects, stateful computations can be implemented by the user, but state management
is the sole responsibility of the user, who has to ensure program correctness. A Topology is
the composition of Spouts and Bolts resulting in a network. Storm uses tuples as its data
model, that is, named lists of values of arbitrary type.

Google TensorFlow is a framework specifically designed for machine learning applica-
tions, where the data model consists of multidimensional arrays called tensors and a pro-
gram is a directed graph representing operators processing tensors. An application graph
consists in a set of Operation objects, which represent units of computation (or nodes), and
Tensor objects, representing the units of data that flow between operators. We start with
an example from TensorFlow whitepaper [2] in Fig. 2(a) to exemplify the programming
model.

(a) Application Graph (b) Node Allocation

Figure 2: Graph of a small TensorFlow application (a). A different example with the node
distribution with Send-Receive paradigm implemented with Send/Receive nodes (b). Note:
those two instances are not referring to the same example application.

Each node of the graph represents an operation, that can be also a data generation
operation (nodes W , b, x). Each node has firing rules that depend on the kind of incoming
tokens. For example, edges called control dependencies can carry synchronization tokens:
the target node of such edges cannot execute its code until all appropriate synchronization
signals have been received.

6



The TensorFlow programming model brings to the user aspects that are considered
low-level, especially in frameworks for big-data applications, where the need for high-level
programming is more important. In particular, the group of control flow operations contains
a set of primitives to manage loops—which will be described later—and synchronization
primitives. Those operations allow synchronization among nodes from the communication
point of view, along with mutexes—MutexAquire, MutexRelease—used for accessing shared
data (or global state). In general, a higher expressiveness increases the difficulty, for non-
expert users, of writing correct programs (for instance, possible data races on global states).

4.3 State, Windowing and Iterative Computations

In this section, we examine other, transversal, aspects of the various tools, considering state
management, iterative computations and windowing for stream processing.

4.3.1 State

Frameworks providing stateful processing make it possible to express modifications (i.e.,
side-effects) to the system state that will be visible at some future point. If the state of the
system is global, then it can be accessed by all system components. For example, TensorFlow
mutable variables are a form of global state, since they can be attached to any processing
node. On the other hand, local states can be accessed only by a single system component.2

For example, the mapWithState functional in the Spark Streaming API realizes a form of
local state, in which successive executions of the functional see the modifications to the
state made by previous ones. Furthermore, state can be partitioned by shaping it as a tuple
space, following, for instance, the aforementioned key-value paradigm. With the exception
of TensorFlow, all the considered frameworks provide local key-value states.

Constructs for working on states can be defined in the formalism provided by the frame-
work. This is the case of TensorFlow’s primitives for reading and modifying mutable vari-
ables. Alternatively, the state API can be provided as an enrichment (i.e., a library) of the
language used for programming the kernel code of functionals. For example, calls to Flink’s
value and update functions can be inserted in kernel code for reading and writing the
local state, respectively. In addition to generic load/store of states, arbitrary APIs can be
designed to provide different state semantics. For example, TensorFlow provides a specific
API for working on mutable queues.

From a Dataflow perspective, stateful actors represent an extension to the basic model.
In particular, this extension breaks the functional nature of the basic Dataflow model,
inhibiting for example to reason in pure functional terms about program semantics, as
discussed in Sec. 8.

4.3.2 Windowing

A window is informally defined as an ordered subset of items extracted from the stream. The
most common form of windowing is referred as sliding window and it is characterized by the
size (how many elements fall within the window) and the sliding policy (how items enter and
exit from the window). Spark provides the simplest abstraction for defining windows, since

2In principle, one could define states that are local to a subset of components (rather than a single
component), but none of the considered frameworks provide this ability.

7



they are just micro-batches over the DStream abstraction where it is possible to define only
the window length and the sliding policy. Storm and Flink also apply this kind of grouping,
the former grouping Tuples and the latter grouping DataStreams. Windows in Spark are
usually processed independently and out of order, thus it is not possible to store windows
locally for further analysis. Storm offers a richer API by giving access to the current tuples
in the window

From a Dataflow perspective, as already mentioned, windowing is not an aspect of the
model itself. Windows are usually created within each actor by storing stream items into
some local state [10]. Since in the analyzed frameworks, state is not used for this kind of
operations, windows are created by one actor that also changes the granularity of items
flowing over the network. The other actors consuming windows only have access to the
current item.

4.3.3 Iterations

In Flink, iterative algorithms are defined by a step function, executed in each iteration,
embedded into a special iteration operator. The step function is an arbitrary dataflow
consisting of operators like map, reduce, join, etc. There are two types of iteration oper-
ators: Iterate and Delta Iterate. Both operators repeatedly invoke the step function
on the current state until a certain termination condition is reached (maximum number of
iterations or custom aggregator). Flink’s iteration interface differs massively from iterative
computations in Spark, since the latter does not provide any specific construct to implement
iteration. The code related to transformations on data is embedded into sequential code,
and the resulting dataflow is a certain number of repetitions of the transformations present
into the loop.

TensorFlow allows expressing conditionals and loops as specific control flow operators.

5 Program Semantics Dataflow

This level of our layered model provides a dataflow representation of the program semantics.
Such a dataflow model describes the application in terms of operators and data dependen-
cies among them. This level does not explicitly express parallelism: instead, parallelism
is implicit through the data dependencies among actors (i.e., among operators), so that
operators which have no direct or indirect dependencies can be executed concurrently.

5.1 Semantic Dataflow Graphs

A semantic dataflow graph is a pair G = 〈V, E 〉 where vertexes V represent operators
and edges E represent data dependencies among operators. Firing rules can be designed to
model from-any or from-all consuming nodes. In the first case, the actor is activated once it
receives one input token from any input channel, thus enabling a non-deterministic behavior
in its firing rule (i.e., on input choosing). Whereas in the second case the actor needs all
inputs to be activated. In all the considered frameworks, output tokens are broadcast onto
all channels going out of a node.

For instance, consider a map function m followed by a reduce function r on a collection
of data A and its result b, represented as the functional composition b = r(m(A))). This is

8



m r
A m(A) b

Figure 3: Functional Map and Reduce dataflow expressing data dependencies.

(a) Spark DAG (b) Flink JobGraph

Figure 4: Spark WordCount semantics dataflow identified by the application DAG (a).
Apache Flink semantics dataflow of a small problem (b).

represented by the graph in fig. 3, which represents the semantics dataflow of a simple map-
reduce program. The user program translation into the semantics dataflow can be subject
to further optimizations. For instance, two or more non-intensive kernels can be mapped
onto the same actor to reduce resource usage. In Google TensorFlow, semantics dataflow
maps directly to the graph described at the user-level API, as shown in Fig. 2(a). Since
some edges may have different meanings (i.e. explicit control dependencies), the dataflow
at this level gives a specialized view on all the different semantics of nodes and edges.

Apache Spark and Flink directly map the user application to the semantics dataflow
level: nodes represent operations (either transformations or actions, in the Spark nomen-
clature) that take as input collections, represented by RDDs in Spark and streams in Flink.
Fig. 4(a) shows the semantics dataflow related to the WordCount application, having as op-
erations (in order): 1. read from text file; 2. a flatMap operator splitting the file into words;
3. a map operator that maps each word into a key-value pair 〈w, 1〉; 4. a reduceByKey oper-
ator that counts occurrences of each word in the input file. It is interesting to note that the
DAG is grouped into stages (namely, stages 0 and 1). Those stages divide “map” phases
from “reduce” phases, where a “reduce” phase implies a data exchange possibly among
all processing elements, called shuffle. This aspect will be covered in more detail later.
Apache Flink calls its DAG semantics dataflow the JobGraph (or condensed view in the
Flink nomenclature): a representation of the application consisting of operators (JobVer-
tex) and intermediate results (IntermediateDataSet, representing data dependencies among

9



r

r

r

m m

r

m m

r

r

m m

r

m m

Figure 5: MapReduce execution dataflow with maximum level of parallelism reached by
eight map instances.

operators). A small example of a JobGraph is shown in Fig. 4(b).

5.2 Data Granularity

We note that, since all the frameworks provide at this level a DAG representing the appli-
cation semantics, they share a similar expressiveness. A key difference, though, is related
to what tokens moved along the edges. In a batch program, the data model represents
a collection of data flowing across actors and the output of each operator/actor is a new
collection or a single value of any type. In this scenario, actors are “one-shot”: they are
no longer available to the system after they produce the output since operators consume
only one input token. This differs from a stream processing application, where actors are
“kept alive” to consume new input tokens. Data model for stream processing applications
provided by those frameworks differ with respect to the granularity, which has consequences
on operations implemented in each actor: frameworks can be divided into fine vs. coarse
grain data processing, that is, single item or micro-batch. The varying granularity means
that actors operate on collections of items (Spark and windows in Flink) or on single items
(Storm, Flink). A coarser granularity limits the possibility to implement rich algorithms
based on window operations and limits the real-time property at the basis of every stream-
ing application, since time is spent in collecting a certain amount of data to create a single
token. Apache Storm works at single item granularity in the base form, while exploiting
microbatches when using the Trident extension. Trident is a high level abstraction on top
of Storm, that can be used as an alternative to the regular API, providing a functional level
such as the one described in the first layer of our layered model in Fig. 1. Trident processes
streams as a series of micro-batches which are called transactions.

6 Parallel Execution Dataflow

This level represents the effective instantiation of the semantics dataflow, in which some
actors are replicated to increase the level of parallelism with respect to the upper level,
where all parallelism came from independent actors. For some collective operations (e.g.,
map defined in Sec. 4.1), each replica works over a partition of the input data. This schema
is generally referred as embarrassingly parallel processing: since input data of replicas are
disjoint, there are no dependencies among replicas.

Referring to the MapReduce example presented in Fig. 3 with its semantics dataflow,
its parallel execution dataflow can now be represented as in Fig. 5. In this example, the
dataset A is divided in 8 independent partitions and the map function m is executed by

10



8 actor replicas; the reduce phase is then executed in parallel by actors enabled by the
incoming tokens (namely, the results) from its “producer” actors. As in the previous sec-
tion, we describe how the considered frameworks instantiate the dataflow and what are the
consequences it brings to the runtime.

Apache Spark identifies its parallel execution dataflow by a DAG such as the one shown
in Fig. 6(a), which is the input of the DAG Scheduler entity. This graph illustrates two main
aspects: first, the fact that many parallel instances of actors are created for each function
and, second, the operators grouping. This grouping identifies the so called Stages that are
executed in parallel if and only if there is no dependency among them. The stage grouping
brings another strong consequence, derived from the implementation of the Spark runtime:
each stage that depends on one or more previous stages has to wait for their completion
before starting execution. The depicted behavior is analogous to the one encountered in
the Bulk Synchronous Parallelism paradigm (BSP) [17]. In a BSP algorithm, as well as
in a Spark application, a computation proceeds in a series of global supersteps consisting
in: 1) Concurrent computation, in which every actor executes its business code on its own
partition of data; 2) Communication, where processes exchange data between themselves
if necessary (the so called shuffle phase); 3) Barrier synchronization, where processes wait
until all other processes have reached the same barrier. That is, the firing rule of the actor
is a from-all activation rule.

This has an important consequence on the Spark Streaming side. Since the runtime is
the same for both batch and stream processing, we can infer that in a stream application,
each micro-batch has to go over the whole DAG before the next one can be triggered.

(a) Spark Execution DAG (b) Flink Execution Graph

Figure 6: Parallel execution dataflow of a simple Map/Reduce application in Spark and
Flink.

11



Apache Flink transforms the JobGraph (Fig. 4(b)) into another graph called the Execu-
tionGraph [8] (Fig. 6(b)), which is a parallel version of the JobGraph, where the JobVertex
is an abstract vertex containing a certain number of ExecutionVertexes, one per parallel
subtask. Each operator with a parallelism of, for example, 100 will have one JobVertex
and 100 ExecutionVertices. A key difference with respect to the Spark execution graph
is that a dependency does not represent a barrier among execution vertexes (or stages in
Spark); instead, there is effective pipelining so tasks can be executed concurrently. This is
a natural implementation for stream processing, but in this case, since the runtime is the
same, it applies to batch processing applications as well. Conversely, iterative processing
is implemented according to the BSP approach: one evaluation of the step function on all
parallel instances forms a superstep, which is also the granularity of synchronization; all
parallel tasks of an iteration need to complete the superstep before the next one is initiated,
thus behaving like a barrier between iterations.

Apache Storm creates an environment for the execution dataflow similar to the Spark
execution graph. Each actor is replicated to increase the parallelism and each group of repli-
cas is identified by the name of the Bolt/Spout of the semantics dataflow they originally
belong to. Each of these collective actors represents data parallel tasks without dependen-
cies. Since Storm is a stream processing framework, pipeline parallelism is implemented.
Hence, while one operator is processing a tuple, an upstream operator can process the
next tuple concurrently, increasing both data parallelism within each actors group and task
parallelism among groups.

Google TensorFlow replicates vertexes, which denote tensor operators according to the
data parallel approach. This dataflow model also corresponds to the parallel execution
dataflow, since each operator is data parallel and works on data elements—here, multi-
dimensional arrays (tensors). Hence we can state that each node is a data-parallel actor
operating on intra-task independent input elements. Moreover, iterative nodes are imple-
mented with a notion of tags similar to the MIT Tagged-Token dataflow machine [6], where
the iteration state is identified by a tag and independent iterations are executed in paral-
lel. It is worthwhile to remark TensorFlow differs from Flink in the execution of iterative
nodes: in TensorFlow an input can enter a loop iteration whenever it becomes available,
while Flink poses a barrier after each iteration.

Summarizing, in this section, we showed how the analyzed frameworks are using the
very same model to represent the application that will be executed, namely, a dataflow
directed acyclic graph.

7 Dataflow Process Network

This layer shows how the program is effectively executed. In all frameworks but TensorFlow,
the resulting process dataflow follows the Master-Workers pattern, where actors on previous
layers are transformed into tasks. In TensorFlow, actors are effectively mapped to threads
and possibly distributed on different nodes.

Fig. 7(a) shows a representation of the Spark Master-Workers runtime. We will use this
structure also to examine Storm and Flink, since the pattern is the same: all that changes is

12



(a) Master-Workers (b) Worker hierarchy

Figure 7: Master-Workers structure of the Spark runtime (a) and Worker hierarchy example
in Storm (b).

how tasks are distributed among workers and how the inter/intra-communication between
actors is managed.

The Master has total control over program execution, job scheduling, communications,
failure management, resource allocations, etc. The master also relies on a cluster manager,
an external service for acquiring resources on the cluster (like Mesos, YARN or Zookeper).
The master is the one that knows the semantic dataflow representing the current application,
while workers are completely agnostic about the whole dataflow: they only obtain tasks to
execute, tasks that represent nodes of the semantic dataflow the master is executing. This is
possible since programs are executed lazily, that is, it is only when the execution is effectively
launched that the semantic dataflow is evaluated and eventually optimized to obtain the
best execution plan (Flink). In Storm and Flink, the data distribution is managed in a
decentralized manner, that is, it is delegated to each executor, since they use pipelined data
transfers and forward tuples as soon as they are produced. In Spark streaming, the master
is the one responsible for data distribution: it discretizes the stream into micro-batches
that are buffered into workers’ memory. The master generally keeps track of distributed
tasks, decides when to schedule the next tasks, reacts to finished/failed tasks, keeps track
of the semantic dataflow progress, and orchestrates collective communications and data
exchange among workers. This last job is crucial when executing a shuffle operation, that
needs data exchange among executors. Whereas workers do not have any information about
other workers, to exchange data they have to request informations from the master and,
moreover, specify they are ready to send/receive data.

Workers are nodes executing the operators code, namely, a worker node is a process in the
cluster. Within a worker, a certain number of parallel executors is instantiated, that execute
tasks related to the given application. Workers have no information about the dataflow at
any level since they are scheduled by the master. Despite this, the different frameworks
use different nomenclatures: in Spark, Storm and Flink cluster nodes are decomposed into
Workers, Executors and Tasks. A Worker is a process in a node of the cluster, i.e., a Spark
worker instance. A node may host multiple Worker instances. An Executor is a thread that

13



is spawned in a Worker process and it executes Tasks, which are the actual kernel of a node
of the dataflow. Fig. 7(b) illustrates this structure in Storm, an example that would also
be valid for Spark and Flink.

Moving to TensorFlow, the cardinality of the semantic dataflow is preserved, as each
operator node is instantiated into one node, and the placement is decided using a placement
algorithm cost model. The dataflow is distributed on cluster nodes and each node/Worker
may host one or more dataflow nodes/Tasks, that internally implement data parallelism with
a pool of threads/Executors working on Tensors. Communications among nodes is done
using the send-receive paradigm, allowing workers to manage their own data movement
or receiving data without involving the master node, thus decentralizing the logic and the
execution of the application (see also Fig. 2(b)).

8 Limitations of the Dataflow model

Reasoning about programs by means of the Dataflow model is attractive since it makes
the program semantics independent from the underlying execution model. In particular,
it abstracts away any form of parallelism due to its pure functional nature. The most
relevant consequence, as discussed in many theoretical works about Kahn Process Network
and similar models—such as Dataflow—is the fact that all computations are deterministic.

Conversely, many parallel runtime systems exploit nondeterministic behaviors in order
to provide efficient implementations. For example, consider the Master-Workers pattern
we discussed in Sec. 7. A naive implementation of the Master node distributes tasks to
N Workers according to a round-robin policy—task i goes to worker i (mod N)—which
leads to a deterministic process. An alternative policy, generally referred as on-demand,
distributes tasks by considering the load level of each worker, for example, to implement
a form of load balancing. The resulting processes are clearly nondeterministic, since the
mapping from tasks to workers depends on the relative service times.

Non-determinism can be encountered at all levels of our layered model in Fig. 1. For
example, nodes of Storm’s topologies consume tokens from incoming streams according to a
from-any policy—process an item from any non-empty input channel—thus no assumption
can be made about the order in which stream items are processed. More generally, the
semantics of stateful streaming programs depend on the order in which stream items are
processed, which is not specified by the semantics of the semantic Dataflow nodes in Sec. 5.
As a consequence, this prevents from reasoning in purely Dataflow—thus functional—terms
about programs in which actor nodes include arbitrary code in some imperative language
(e.g., shared variables).

9 From Skeletons to Big Data, a Historical Perspective

The need to exploit parallel computing at a high enough level of abstraction certainly
cannot be attributed to the advent (or the hype) of Big Data. In the parallel computing
and software engineering communities, this need has been advocated years before by way
of algorithmic skeletons [9] and design patterns [12], respectively. Conceptually, the tools
we discussed through the paper exploit Data Parallelism, Stream Parallelism, or both.

In the framework of Big Data oriented tools, data parallelism is often realised by way of
the MapReduce paradigm [11], for instance, as implemented by way of the Apache Hadoop

14



framework. Certainly pragmatically revolutionary, from the parallelism exploitation view-
point, the MapReduce paradigm is a specialisation of the Map and Reduce paradigm
composition with a powerful reduce operator oriented to data analytics workloads (i.e.,
groupByKey). The ability to efficiently support lists (tensors, actually) tranformations un-
der weakly ordered execution models has been proved by Gorlatch’s seminal work [14], which
definitely influenced the design of MapReduce. Also, Map, Reduce and other data parallel
skeletons have been introduced and developed in many experimental parallel programming
frameworks; most of them described in the survey3 from González-Vélez and Leyton [13].

Stream parallelism is an equally important parallelism exploitation pattern, from the
first high-level approaches to parallel computing, such as the P3L language [7], to the recent
frameworks, such as FastFlow [5]. In the Big Data context, currently, stream parallelism
is interpreted in a quite primitive way considering only basic management of data streams,
such as micro-batching, which turns stream parallelism into data parallelism, and processing
of independent data streams. More advanced usage of streams can be found in [10].

Patterns/skeletons share many of the principles underlying the high-level frameworks we
considered in the previous sections. Data Parallel patterns express computations in which
the same kernel function is applied to all items of a data collection, which include Map and
Reduce. They can be viewed as higher-order functions and can be placed at the very top
of our layered model from Fig. 1, since they expose a declarative data processing model
(Sec. 4.1).

Stream Parallel patterns express computations in which data streams flow through a
network of processing units. This model, enriched with Control-Parallel patterns such as
If and While, allows to express programs in terms of arbitrary graphs, where vertexes
are processing units and edges are network links. In this setting, Stream Parallel patterns
represent pre-built, nestable graphs, therefore they expose a topological data processing
model (Sec. 4.2).

Parallel patterns can be composed to express arbitrarily complex data processing pro-
grams. We already informally showed they subsume both declarative and topological data-
processing models. Moreover, TensorFlow can be regarded as a particular case of the
two-tier composition paradigm advocated, e.g., in [4], in which Data Parallel patterns can
be embedded only into Stream Parallel patterns, thus resulting into a hybrid declarative-
topological model.

10 Conclusion

In this paper, we showed how the Dataflow model can be used to describe Big Data ana-
lytics tools, from the lowest level—process execution model—to the highest one—semantic
dataflow. The Dataflow model is expressive enough to represent computations in term of
batch, micro-batch and stream processing. With this abstraction, we showed that Big Data
analytics tools have similar expressiveness at all levels and we proceeded with the descrip-
tion of a layered model capturing different levels of Big Data applications, from the program
semantics to the execution model. We also provided a survey of some well-known tools—
Apache Spark, Flink, Storm and TensorFlow—by analyzing their semantics and mapping
them to the proposed Dataflow-based layered model. With this work, we aim at giving users

3Now a bit outdated but still among the most comprehensive surveys in this area.

15



a general framework to understand the model underlying all the analyzed tools. Finally, we
also showed how the skeleton-based model provides an alternative but similar abstraction,
briefly describing some of most common parallel patterns that easily describe data parallel
patterns that are used for Big Data analytics. As future work, we plan to implement a
model of Big Data analytics tools based on algorithmic skeletons, on top of the FastFlow
library [5].

¡¡¡¡¡¡¡ Updated upstream
=======
¿¿¿¿¿¿¿ Stashed changes

References

[1] Apache Flink website. https://flink.apache.org/

[2] Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems (2015). URL http://tensorflow.org/

[3] Aldinucci, M., Danelutto, M., Anardu, L., Torquati, M., Kilpatrick, P.: Parallel pat-
terns + macro data flow for multi-core programming. In: Proc. of Intl. Euromicro PDP
2012: Parallel Distributed and network-based Processing, pp. 27–36. IEEE, Garching,
Germany (2012)

[4] Aldinucci, M., Danelutto, M., Drocco, M., Kilpatrick, P., Pezzi, G.P., Torquati, M.:
The Loop-of-Stencil-Reduce paradigm. In: Proc. of Intl. Workshop on Reengineer-
ing for Parallelism in Heterogeneous Parallel Platforms (RePara), pp. 172–177. IEEE,
Helsinki, Finland (2015)

[5] Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Accelerating
code on multi-cores with FastFlow. In: Proc. of 17th Intl. Euro-Par 2011 Parallel
Processing, LNCS, vol. 6853, pp. 170–181. Springer, Bordeaux, France (2011)

[6] Arvind, K., Nikhil, R.S.: Executing a program on the MIT tagged-token dataflow
architecture. IEEE Trans. Comput. 39(3), 300–318 (1990)

[7] Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: a structured
high level programming language and its structured support. Concurrency Practice
and Experience 7(3), 225–255 (1995)

[8] Carbone, P., Fóra, G., Ewen, S., Haridi, S., Tzoumas, K.: Lightweight asynchronous
snapshots for distributed dataflows. CoRR abs/1506.08603 (2015)

[9] Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, MA, USA (1991)

[10] De Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators
on data streams: an algorithmic skeleton approach. International Journal of Parallel
Programming pp. 1–20 (2016)

[11] Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

16

https://flink.apache.org/
http://tensorflow.org/


[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1995)

[13] González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: High-
level structured parallel programming enablers. Softw. Pract. Exper. 40(12), 1135–1160
(2010)

[14] Gorlatch, S.: Systematic efficient parallelization of scan and other list homomorphisms.
In: Proc. of the 2nd Intl. Euro-Par Conference on Parallel Processing-Volume II, Euro-
Par ’96, pp. 401–408. Springer-Verlag, London, UK (1996)

[15] Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. of the IEEE 83(5), 773–801
(1995)

[16] Nasir, M.A.U., Morales, G.D.F., Garćıa-Soriano, D., Kourtellis, N., Serafini, M.: The
power of both choices: Practical load balancing for distributed stream processing en-
gines. CoRR abs/1504.00788 (2015)

[17] Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

[18] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient Distributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. In: Proc. of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12. USENIX, Berkeley, CA, USA (2012)

[19] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: Proc. of the 24th ACM Symposium
on Operating Systems Principles, SOSP, pp. 423–438. ACM, New York, NY, USA
(2013)

17


	Outline
	Dataflow Process Networks
	The Dataflow Layered Model
	The Framework API
	Declarative Data Processing
	Dataflow Data Processing
	State, Windowing and Iterative Computations

	Program Semantics Dataflow
	Semantic Dataflow Graphs
	Data Granularity

	Parallel Execution Dataflow
	Dataflow Process Network
	Limitations of the Dataflow model
	From Skeletons to Big Data, a Historical Perspective
	Conclusion

