
Slide 1

An introduction to model checking

University of Alberta

Edmonton
July 3rd, 2002

Guy Tremblay

Dépt. d’informatique
UQAM

Slide 2

Outline

� What are formal specification and verification methods?

� What is model checking?

– How can the behavior of a reactive system be specified?

– How can temporal properties be specified?

� How can model checking be done?

� Why and how can model checking be done in parallel?

1

Slide 3

1 What are formal methods?

“[Formal methods are] mathematically based techniques used to describe the proper-

ties of computing systems. They [are used to] specify, develop, and verify systems in a

systematic and rigorous manner [. . .]” [Wing90]

Key elements of a formal method:

� Formal language for writing specifications

� Rules to check the quality of the specifications

� Strategies and rules to refine and verify the specifications

Foundation on which everything rests = Formal specifications

Slide 4

What is a formal specification language?

Formal language) well-defined syntax and semantics:

� Syntax = EBNF, syntax diagrams, etc.

� Semantics = algebras, automatas and transition systems, relations and predicates, etc.

Specification lang.) describes the external behavior of a software component . . .

� by describing its key properties

� in an abstract way (without unneeded implementation details)

� without saying how it is going to be implemented (non-algorithmic)

2

Slide 5

Thus, a programming language is not a specification language because . . .

� it is algorithmic

� it is not abstract (arrays, pointers, etc.)

A specification provides a non-algorithmic description

) Describes the “what?” instead of the “how?”

An example (in Spec):

FUNCTION square_root{ precision: real SUCH THAT precision > 0.0 }

MESSAGE root(x: real SUCH THAT x >= 0.0)

REPLY(r: real)

WHERE r >= 0.0 & almost_equal(rˆ2, x)

CONCEPT almost_equal(r1 r2: real) VALUE(b: boolean)

WHERE b <=> abs(r1 - r2) <= precision

END

Slide 6

What are the major benefits of formal specifications and formal methods?

“Having to better understand the specificand by compeling the analyst to be abstract

yet precise about the properties of the system can be more rewarding than having the

specification itself.” [Wing90]

� Specifications are more explicit, precise, with less ambiguity.

� Formalization effort) help identify errors, ambiguities, and problems early.

� Provide a better foundation for implementation work.

� Allows for use of tools (manipulation, analysis, simulation).

� Basis for developing tests.

� Provide a basis for doing formal verification.

3

Slide 7

Why are there many specif. lang. and methods?

Many different styles of specifications:

� Abstract modeling for machines and objects (VDM, Z, Spec, etc.);

� Algebraic specification for ADT (Larch, ACT ONE, etc.);

� Behavioral specification for reactive systems (CCS, CSP, LOTOS, ACP, etc.)

� Safety and liveness properties (modal and temporal logics)

� . . .

Similar to programming languages:

� Diverse application domains

� Various styles and paradigms

� Varying expressive power and analyzability

Slide 8

2 Specifying reactive and concurrent systems

A system is said to be reactive . . .

� when it maintains a constant interaction with its environment

� when its behavior is “event-driven”

A system is said to be concurrent

� when its behavior is determined by the interaction of multiple tasks (processes) that coop-

erate and exchange information

4

Slide 9

Modeling the behavior of reactive systems

� The behavior of a reactive system can be described by specifying the actions that it can

(and cannot) perform

� A computation of a reactive system is generally infinite

) use of labeled transition systems (automata)

A small example: Lotos specification and its graphical description

process P[a, b, c]: noexit :=

a; c; a; P[a, b, c]

[]

b; a; c; P[a, b, c]

endproc
c a

a b
P[a, b, c]

c; a; P[a, b, c]a c

a; P[a, b, c]

a; c; P[a, b, c]

c; P[a, b, c]

Slide 10

Modeling concurrent systems

Concurrent behavior can be expressed by interleaving semantics:

� Concurrent (unordered) actions can occur in any order

) any possible interleaving is allowed

� Synchronized actions = actions performed synchronously by two (or more) agents

) only one action visible

a; b; d; STOP

|[b]|

d; b; c; STOP

a; b; d; STOP

b; d; STOP

d

b

a d

b

c

STOPSTOP

d; STOP c; STOP

b; c; STOP

d; b; c; STOP

Possible set of visible runs = fadbdc , adbcd , dabdc , dabcd g

5

Slide 11

Specifying properties of the behavior

� Automata = form of operational description

� describes how to generate the possible sequences of actions

� But . . . such a description does not make explicit the properties satisfied by the behavior

– Safety properties: nothing bad will ever happen.

– Liveness: something good will eventually happen.

Different approaches to the specification of properties:

� Modal logic: local properties of current state

� Temporal logic: properties of runs

– Linear-time logic

– Branching-time logic

Slide 12

Linear-time logic

Linear-time property = property along a single path of execution

) A state satisfies a linear-time logic property if all complete paths that start from this state

satisfy the property

Example:

M1 M2

muffin cookies

coin coin

cookiesmuffin

coin

These two machines have the same set of (complete) paths:

{ coin;muffin, coin;cookies }

) they will satisfy the same linear -time properties

. . . but do they really have the same behavior?

6

Slide 13

Modal logic

Modal logic = expresses (local) properties of the current state

� Possibility (may): hai�

= it is possible to do action a and then reach a state that satisfies �

� Necessity (must): [a]�

= whenever action a is done, the resulting state satisfies �

Two typical idioms:

� haitt = it is possible to do a

� [a]ff = a cannot be done

Slide 14

Examples on P =

P[a, b, c]

c; a; P[a, b, c]

a; P[a, b, c]

a; c; P[a, b, c]

c; P[a, b, c]

a b

ac
a c

� P j= haitt

(Liveness) P can do a as its first move

� P j= [a][b]ff

(Safety) In its starting state, P cannot do an a followed by a b

� P j= [�b]hcitt ^ [�a]ha; ditt

(Liveness) If the 1st action is not a b, then the 2nd is a c and if the 1st is not an a, the 2nd is an a or

a d

7

Slide 15

Modal logic) Machines M1and M2can now be distinguished:

M1 M2

muffin cookies

coin coin

cookiesmuffin

coin

� M1 j== [coin]hmuffinitt

� M2 j= [coin]hmuffinitt

Slide 16

Temporal (branching-time) logic

Temporal logic

= Expresses properties of the runs (the paths)

) Describes qualitatively the occurence of events in time

CTL = Computation Tree Logic:

� s j= AG�

= � holds on all possible states reachable from state s

= Always(�)

� s j= EF�:

= from s, there exists a path where � eventually holds

= Eventually(�)

8

Slide 17

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

AF p

.

.

.

.

.

.

.

.

.

.

.

.

EF pAG p

EG p

Slide 18

Examples on P =

P[a, b, c]

c; a; P[a, b, c]

a; P[a, b, c]

a; c; P[a, b, c]

c; P[a, b, c]

a b

ac
a c

� P j= AG([b][c]ff)

(Safety) For any run, it is never possible to do b followed by c

� s j= AG(EF haitt)

(Weak liveness) Along every path starting from s, eventually, an action a will be possible.

9

Slide 19

Mu-calculus

Modal mu-calculus = A temporal logic with explicit fixpoint operators

Syntax:

� ::= tt j ff jX j �1 ^ �2 j �1 _ �2 j [L]� j hLi� j �X:� j �X:�

Always and Eventually using fixpoint operators:

Always(�) = �X:� ^ [�]X

Eventually(�) = �X:� _ h�iX

Slide 20

3 Model checking

Model checking = “A technique that relies on building a finite model of a system and checking

that a desired property holds in that model.” [ClarkeEtAl96]

Model checking = An automatic technique for verifying properties of finite state systems

General approach:

1. ConstructM = a model (of the behavior of the system)

2. Specify � = a property expected of the system (expressed in modal/temporal logic)

3. Check thatM satisfies �. If not, produce counter-examples.

10

Slide 21

Implementation requires exploration of the state space

) Important requirement for M = must be finite

Advantages/disadvantages of model checking (+/-):

+ Verification is completely automatic

+ Can produce counter-examples that represent subtle errors

- State explosion problem

Slide 22

Primary applications (so far) = hardware and protocol verification:

� IEEE Futurebus+ cache coherence protocol [McMillan93]

(a number of previously undetected errors were found)

� ISDN/ISUP telecommunication protocol [Holzmann92]

(122 errors found)

� HDLC channel controller [DePalmaGla96]

(uncovered major bug)

� Active structural control system in civil engineering [ElseaidyEtAl96]

(uncovered major bug that could have worsen effect of vibration)

� . . .

11

Slide 23

4 Implementation of model checking

4.1 Global vs. local model checking

� Global model checking: Given a finite model, M , and a formula, �, determine the set of

states in M that satisfy �.

� Local model checking: Given a finite model,M , a formula, �, and a state s inM , determine

whether s satisfies �.

Characteristics of global vs. local model checking:

� Solution to global problem) solution to local one

� Solution to global problem) exploration of the whole state space

� Solution to local) demand-driven exploration of state space

Slide 24

4.2 How to compute fixpoints

Solving model checking problem) need to find solutions to recursive equations.

Let h�i and [�] denote the uses of the modalities with arbitrary actions.

Recall that:

� AG� = Always(�)

� EF� = Eventually(�)

Always and Eventually can be defined recursively:

Always(�) = � ^ [�]Always(�)

Eventually(�) = � _ h�iEventually(�)

12

Slide 25

Definition : x is a fixpoint of f iff f(x) = x

Fact : A solution to a recursive equation is always a fixpoint of an appropriate function.

Example: x = 2 � x

� Associated function: �(x) = 2 � x

� Solution: 0 is a solution since �(0) = 0

Example: x = x

� Associated function: �(x) = x

� Solution: Any n is a solution since �(n) = n

Slide 26

Example: a recursive definition of a list of integers

� Equation: l = 1 : l

� Associated function: �(l) = 1 : l

� Solution: Let ones = [1; 1; 1; 1; : : :] be an infinite list of 1s.

Then �(ones) = ones.

1 1 11

1

13

Slide 27

Fact: The least solution of a functional � can be obtained as the limit of a sequence of approxi-

mations (where ? is the least element of the domain):

1G

n=0

�n(?)

Example:

� Let �(l) = 1 : l

� Let �0(l) = ?

� Let � i+1(l) = �(� i(l)) = 1 : � i(l)

�0(?) = ?

�1(?) = 1 : ?

�2(?) = 1 : 1 : ?

: : :

� i+1(?) = 1 : 1 : : : : : ?

Slide 28

4.3 Global model-checking for mu-calculus

= Determine set of states satisfying property �

� Compute denotational semantics (set of states)

[[tt]]V = P

[[ff]]V = fg

[[X]]V = V(X)

[[�1 ^ �2]]V = [[�1]]V \ [[�2]]V

[[�1 _ �2]]V = [[�1]]V [[[�2]]V

[[[L]�]]V = fp j 8 a 2 L; p0 2 P :: p
a
! p0) p0 2 [[�]]Vg

[[hLi�]]V = fp j 9 a 2 L; p0 2 P :: p
a
! p0 ^ p0 2 [[�]]Vg

[[�X:�]]V = fix� ��;V

where ��;V(x) = [[�]]V[x7!X]

14

Slide 29

fix� ��;V =

1[

n=0

�n�;V(fg)

Where �0(x) = x

� i+1(x) = �(� i(x))

Termination property: Since the model (number of states) is finite, a fixpoint will be reached

after a finite number of iterations

Slide 30

4.4 Local model-checking for mu-calculus

= Determine whether a state satisfies a property �

� Compute axiomatic semantics (inference rules)

= Set of (inductive) rules that specify if a process p satisfies a formula �

p j= tt

p j== ff

p j= � ^ iff p j= � and p j=

p j= � _ iff p j= � or p j=

p j= [L]� iff 8a 2 L; p0 2 P :: p
a
! p0) p0 j= �

p j= hLi� iff 9a 2 L; p0 2 P :: p
a
! p0 ^ p0 j= �

p j= �X:� iff : : :

15

Slide 31

5 Parallel model checking

5.1 The state explosion problem

Modeling of concurrency by interleaving) Total number of states may grow exponentially with

the number of concurrently executing components

Example:

� 100 lines Lotos specification with 10 small processes)

– 56 000 states

– 180 000 transitions

Global model checking and exhaustive exploration of the state space

) keep state space in memory to avoid multiple exploration of same state

) lot of space required to store the graph (LTS)

Slide 32

Possible solutions to state explosion problem

� Symbolic model checking

� Exploit various kinds of information to reduce the number of states/transitions

(as long as the key properties are preserved)

� . . .

� Use a parallel machine with multiple nodes to provide more memory

16

Slide 33

5.2 Target machine and environment

Target parallel machine = EARTH (CAPSL, Univ. of Delaware, Newark, DE)

� Fine-grain multi-threaded parallelism = multiple levels of parallelism

(threads vs. fibers)

� Irregular dynamic parallelism = data flow style scheduling

� Off-the-shelf computer = EARTH-RTS (Pthreads and sockets)

– Earthquake = 16-processors Beowulf cluster (University of Delaware)

� Programming language = Threaded-C

Slide 34

CADP toolbox (INRIA, Grenoble, France):

� Translator from Lotos to LTS + numerous other tools:

– Simulation

– Equivalence checking

– Model checking for regular alternation-free mu-calculus

– . . .

� LTS provides an implicit representation of the graph (transition function)

� Goal = construct an explicit representation (state graph)

17

Slide 35

5.3 Distributing the graph

General strategy for distributing the graph

� Traverse the graph by evaluating the transition function

� Use a dispersion function h to distribute the states on the various processors

� Handle transition t = (s1, e, s2) on processor h(s2)

� Never send a transition more than once by keeping track of the states that have been

visited

Slide 36

Pseudo-code:

// Initialization phase in process 0

s0 = start_state();

visited = {s0};

FOREACH transition t = (s0, e, s1) going out of s0 DO

SEND t TO processor h(s1);

END

// Processing phase (on all processors)

WHILE not terminated (?!) DO

RECEIVE transition t0 = (s0, e0, s1) from arbitrary process;

IF !(s1 IN visited) THEN

visited = visited U {s1};

FOREACH transition t = (s1, e, s2) going out of s1 DO

SEND t TO process h(s2);

END

END

END

}

18

Slide 37

5.4 Detecting termination

Key problem = Detecting when all transitions have been processed

Currently implemented solution = Distributed detection termination based on the number of

messages sent/received

5.5 Next step = perform model checking

� Currently: Only distribution of transitions has been implemented

(graduate course project)

� Still need to add processing associated with model checking itself

– Global model checking) multiple exploration of the graph

(fixpoint computation)

– Local model checking) demand-driven exploration

Slide 38

6 Conclusion

� Model checking is an interesting approach to formal verification because it is automatic

� Major difficulty = need to handle large state space

� On-going and future work:

– Short-term = see how parallel and distributed execution can help with state explosion

problem

– Long-term = apply model checking to �-calculus

) handle mobile processes (dynamic and non-finite state space ;(

19

