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Abstract Mobile applications (apps) are developed quickly and evolve con-
tinuously. Each development iteration may introduce poor design choices, and
therefore produce code smells. Code smells complexify source code and may
impede the evolution and performance of mobile apps. In addition to common
object-oriented code smells, mobile apps have their own code smells because of
their limitations and constraints on resources like memory, performance and
energy consumption. Some of these mobile-specific smells are behavioural be-
cause they describe an inappropriate behaviour that may negatively impact
software quality. Many tools exist to detect code smells in mobile apps, based
specifically on static analysis techniques. In this paper, we are especially in-
terested in two tools: Paprika and aDoctor. Both tools use representative
techniques from the literature and contain behavioural code smells. We anal-
yse the effectiveness of behavioural code smells detection in practice within
the tools of concern by performing an empirical study of code smells detected
in apps. This empirical study aims to answer two research questions. First, are
the detection tools effective in detecting behavioural code smells? Second, are
the behavioural code smells detected by the tools consistent with their original
literal definition?

We emphasise the limitations of detection using only static techniques and
the lessons learned from our empirical study. This study shows that established
static analysis methods deemed to be effective for code smells detection are
inadequate for behavioural mobile code smells detection.
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1 Introduction

Mobile apps are becoming complex software systems that have evolved and
grown increasingly through the years. In 2020, there were more than five mil-
lion apps available in various app stores [44], with more than 200 billion down-
loads in 2020 [45]. Apps must therefore become more and more efficient. They
are thus developed quicker and evolve continuously to fit the new user re-
quirements. These modifications are made by developers to solve bugs or add
missing features in a constrained time frame, forcing them to adopt poor de-
sign or implementation choices, also known as code smells [10], which reinforce
the technical debt.

Even if these mobile apps are mostly developed with Object-Oriented (OO)
languages, and many questions on OO code smells have already been ad-
dressed in the literature [30] [34], mobile apps bring new concerns involving,
for instance, screen sizes, energy consumption, limited memory and limited
performance [29]. To address these resource limitations, the research commu-
nity introduced new Android-specific code smells, describing them carefully to
detect and correct them [12] [20] [38].

We define a behavioural code smell as characteristics in the source code
inducing an inappropriate code behaviour during the execution that may neg-
atively impact software quality in terms of performance, energy consumption,
memory. The term “behaviour” refers specifically to code execution behaviour,
i.e. an occurrence or a sequence of observable code events or actions during
execution.

For example, the code smell Durable WakeLock (DW) manifests when the
lock of a WakeLock is not released, causing battery drain. The WakeLock is
the mechanism allowing an app to keep the device on. The DW code smell
describes the following inappropriate behaviour: A call to the acquire method
is not followed by a call of the release method. In this case, the source code
characteristics are the invocations of the acquire and release methods of the
WakeLock class. As another example, the code smell HashMap Usage (HMU)
indicates that a HashMap structure should be used for large sets of objects
and SimpleArrayMap/ArrayMap should be used for small sets of objects to
be more memory-efficient. The HMU code smell describes the following inap-
propriate behaviour: The HashMap structure is used for small sets of objects
or ArrayMap / SimpleArrayMap structures are used for large sets of objects.
In this case, the source code characteristics are the use of the HashMap / Ar-
rayMap / SimpleArrayMap classes. Behavioural code smells are not explicitly
mentioned or defined in the literature to the best of our knowledge. Also, fol-
lowing the empirical study we carried out in this work, we were able to identify
three behavioural code smells categories. The first one is characterised by the
misuse of a method call or a sequence of method calls during the execution.
The code smell DW belongs to the first category. The second is characterised
by runtime issues, such as a long execution time of a method or an excessive
use of the memory. Finally, the third is characterised by undesired data vari-
ations during execution, such as the size of a structure becoming excessively
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large. The code smell HMU belongs to the third category. This does not ex-
clude that other categories may be added in the future if new behavioural code
smells are introduced.

So far, several tools have been proposed for the detection of Android-
specific code smells. In our study, we used a systematic procedure to collect
and select the mobile code smells detection tools for consideration in this study,
and we narrowed down to aDoctor [38] and Paprika [20]. This systematic
procedure is detailed in Section 3.2.1.

aDoctor and Paprika are still in use, as shown by their recent extensions
released to meet new requirements. For instance, a new version of aDoctor
as an Eclipse plugin [21] has been released. A new extension of Paprika
called Sniffer [18] has been developed to perform analysis and detection of
code smells based on GitHub project commits. These tools are also the most
widely cited and used in the literature within the available tools. Both tools
use term search and metric computation techniques. These are the techniques
most often used by recent Android code smells detection tools, as shown in
the categorisation of tools by Rasool et al. [41]. Furthermore, to the best of
our knowledge, there are no dynamic detection tools that allow the detection
of Android code smells, in particular behavioural code smells, which might
require dynamic analysis for their detection. These two tools are therefore
representative of the existing tools for the detection of Android code smells.

We focus on behavioural code smells in mobile apps for two main reasons.
First, they may hinder the software quality of mobile apps, and specifically
in terms of energy consumption, memory and performance. Secondly, existing
research has not specifically addressed their detection. Therefore, we want to
assess if the current code smells detection tools are effective to identify such
code smells.

In this paper, we study the effectiveness of behavioural code smells de-
tection in practice as well as identifying the limitations of current detection
techniques on the tools. To this end, we conduct an empirical study comparing
the textual definitions of behavioural code smells as described in the literature
against their detection techniques within the concerned tools. The empirical
study also consists of investigating the issues of the detection rules defined in
the tools to check whether the detection results are partial or erroneous. Con-
cretely, we analysed 676 instances of seven behavioural code smells detected
in 318 apps manually with the tools of concern.

More precisely, this empirical study aims to answer the following two re-
search questions:

RQ1: Are the tools of concern effective for detecting behavioural code
smells?

Finding: We found that the tools of concern return a significant part of
false negatives, up to approximately 42% for some code smells, and false pos-
itives, up to approximately 73% for some code smells. False positives affect
the effectiveness because erroneous detection results are returned to the de-
velopers. False negatives affect the effectiveness since in that case only partial
detection results are returned to the developers.



4 Dimitri Prestat1 et al.

RQ2: Are the behavioural code smells detected by the tools of concern
consistent with their original literal definition?

Finding: We found that the detection rules do not and often cannot check
the characteristics mentioned in the literal definition of the code smells. This
therefore explains the prevalence of both false positives and false negatives.

This is the first empirical study of its kind studying the effectiveness and
consistency of behavioural code smells detection in practice as well as identi-
fying the limitations of current detection techniques.

To summarise, our first contribution is to provide an empirical study that
compares the detection tools’ results against the textual definitions of seven
behavioural code smells described in the literature. Furthermore, our second
contribution is a thorough analysis of the tools’ detection techniques to identify
their limitations and share the lessons learned from our empirical study.

This paper is organised as follows. Section II discusses the related work,
Section III presents our empirical study and Section IV shares the lessons
learned from our empirical study. We finally conclude the paper in Section V.

2 Related Work

In this section, we discuss the relevant literature about mobile apps’ code
smells analysis and detection.

2.1 Code Smells Analysis

Reimann et al. [42] propose a catalogue of 30 quality smells dedicated to
Android. These code smells originate mainly from the good and bad prac-
tices documented online in Android documentation or by developers reporting
their experience on blogs. These code smells concern various aspects like im-
plementations, user interfaces or database usages. They are reported to have
a negative impact on properties, such as efficiency, user experience or security.
Paprika [20] and aDoctor [38] use some code smells originating from this
catalogue. Unfortunately, this catalogue’s website is no longer accessible.

Security smells are another category of smells focusing on the vulnerabili-
ties on the mobile apps [12]. In this case, this paper identifies 28 smells whose
presence may indicate a security issue in app, and presents a static analysis
tool to study the prevalence of such smells. Moreover, symptoms and mitiga-
tion for each of these smells are described.

Mannan et al. [29] compares code smells in Android versus desktop ap-
plications. They examine these differences in terms of their variety, density
and distribution of code smells. They found that the density of code smells is
very similar, whereas the distribution and the variety are much superior on
Android apps. They also shed light on the gap between the code smells that
appear in practice and those studied in the literature.

It has been suggested that code smells are not only introduced by the least
experienced developers on a project, but by any developers [17]. The removal
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of these code smells does not seem to be affected by the developers’ experience
as well. Another study shows that code smells can stay in the code for years
before being removed [18]. These two major points show that most projects
are likely to be infested with smells, and detecting them to correct them is of
utmost importance.

The qualitative study of Habchi et al. [15] investigated the perception of
performance bad practices by Android developers. This study found that devel-
opers may lack interest and awareness about Android code smells. Moreover,
the study showed that some developers challenge the relevance and impact of
code smells in practice. Moreover, Johnson et al. [23] conducted 20 interviews
to understand the lack of interests from developers to use static analysis tools
to find bugs. One of the important conclusions of this study is that the false
positives and warnings are the main barriers of tools adoption.

Malavolta et al. [28] study the frequency and evolution of maintainability
issues of Android apps. These results show that the most recurrent maintain-
ability issue is code duplication caused by the Android programming model.
The maintainability issue density grows until it stabilises, and is usually seldom
fully resolved. It also shows that the maintainability issues are independent
from the type of development activity, so every type of app is involved.

2.2 Code Smells Detection Techniques

Multi-Objective Genetic Programming has also been used to detect Android
smells [24]. This approach generates rules, which consist of a combination of
quality metrics with their threshold values to detect a specific type of code
smell. This approach takes as input a set of Android-specific code smell ex-
amples, and find the best set of rules to cover most of the expected Android
code smells.

Gottschalk et al. [13] propose a re-engineering approach to detect energy
code smells and to fix them through code refactoring. Although the authors
propose a platform-agnostic detection technique together with a list of seven
mobile energy code smells, they illustrate the applicability of their approach for
the detection of Android code smells. They provide only a simplistic descrip-
tion of the code smells to be detected, but nothing is said on how the actual
detection could be performed. The approach only focuses on code smells that
can impact on energy consumption. They did not perform any analysis on
the presence of such code smells in apps from any app stores or empirically
demonstrate its importance on the energy consumption.

Sniffer [18] is an open-source toolkit that tracks the full history of Android-
specific code smells. However, Sniffer is not another detection tool because
it relies on Paprika to detect Android code smells. Paprika being slightly
modified to be able to analyse the source code directly instead of the byte
code.

Recently, Iannone et al. [21] proposed a new version of aDoctor, which
helps developers refactor the smells automatically. This extended version is
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open-source and available in Android Studio as a plugin published in the
official store. The identification algorithms of the smells are the same as defined
in aDoctor [38] previous version. In order to be able to recover a lot of data
more easily, we use the other version of aDoctor, although we are aware that
this extension has been released.

Several other tools are available to detect Android code smells. These tools
perform the detection by different static analysis techniques. Such techniques
can be mainly based on patterns or based on the computation of source code
metrics, mainly OO code metrics. For instance, Ghafari et al. [12] developed
a static analysis tool to study the prevalence of security smells. Furthermore,
Rasool et al. [41] describe an approach that is able to recover 25 Android code
smells by source code analysis and computes source code metrics.

EARMO [35] reported an approach able to detect and correct code smells
related to energy consumption from mobile apps. This approach, when used
to correct these smells, is able to extend the battery life considerably.

Emden and Moonen [8] developed jCosmo for Java code smells detection
and defined two code smell aspects: Primitive smells aspects and Derived
smells aspects. Primitive smells aspects can be observed directly from the
code. Derived smell aspects are inferred from other aspects. They also sug-
gested that some code smells need runtime information and thus dynamic
analysis can be used. JSNose [9] is a Javascript code smells detection tool
that combines static and dynamic analysis of the client-side code. It considers
behaviour by monitoring the creation/update of functions, objects, and their
properties at runtime. Feature Envy smell [25] has been detected dynami-
cally by considering the actual execution performance instead of the static
behaviour.

There is a lot of research that has focused on detecting code smells in
mobile apps, which demonstrates the interest of this topic in the community.
Some of these works have provided detection approaches and tools, including
Paprika and aDoctor.

However, to the best of our knowledge, no study has specifically investi-
gated the effectiveness of these tools and the relevance of the results returned
by the tools conforming to their original definitions.

3 Empirical study

In this section, we present the results of our empirical study. The detection
results of Paprika and aDoctor are presented and examined in detail to
evaluate if these tools are effective to detect behavioural code smells and fur-
ther whether detection results are consistent with the literal definition of these
code smells. We follow Wohlin et al. guidelines [46] to describe this study.

3.1 Research Questions

The empirical study aims to respond to the following two research questions:
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– RQ1: Are the tools of concern effective for detecting behavioural
code smells? We attempt to identify the extent to which the tools return
false positives and false negatives. This is one of the main motivations of
the paper. Some instances defined as having a code smell do not finally
have a code smell and are therefore false positives. Having too many false
positives impacts the effectiveness of the detection tools because the results
are erroneous. Similarly, some instances defined as not having a code smell
do finally have a code smell and are therefore false negatives. Having too
many false negatives impacts the effectiveness of tools as the results are
partial.

– RQ2: Are the behavioural code smells detected by the tools of
concern consistent with their original literal definition? This ques-
tion aims to check if the detection rules specify well or not the literature
definition of behavioural code smells. Detected code smells are inconsistent
with their literal definition if elements of the definition are missing in the
tool’s detection rules. This assumes that there are common definitions for
these code smells. This is indeed the case for the behavioural code smells
considered in this paper, for which [19, 20, 38] all give the same textual
definitions that vary only in the use of some synonyms. We hence followed
these definitions with the single exception of the NLMR and IOD code
smells, as we will explain in Section 3.2 on page 10.

To answer our research questions, we want to reject the null hypothesis
formulated as:

– Hposi
1 : There are no false positives of detected code smells returned by the

tools.
– Hnega

2 : There are no false negatives of detected code smells returned by
the tools.

– Hrule
3 : There is no difference between the detection rules and the literal

definition of code smells.

3.2 Subjects

3.2.1 Tools

The study is based on two tools, Paprika and aDoctor. These two tools are
easy to use and open-source. Both tools use static detection techniques and
are fully automatic.

We used a systematic procedure to collect and select the mobile code
smells detection tools for consideration in this study, and we narrowed down
to aDoctor [38] and Paprika [20]. We first started with the list of mobile
code smells detection tools provided by Rasool et al. [41]. To the best of our
knowledge, this list is the most extensive and up-to-date list on mobile code
smells detection tools. Indeed, we did not find any other work that reports
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such list and we did not find any other tool that was not reported in this
list. Rasool et al. reports 25 publications of mobile code smells detection and
gives in each case the technique used for the detection (search based, met-
ric based and symptom based), the tool that implements the technique and
the availability of the tool (yes or no). This list includes 19 different tools
for the 25 papers. Among these 19 tools, 5/19 are prototypes and are not
available [22, 24, 35, 39, 43]. Among the 14/19 remaining tools, 4/14 are com-
mercial or private and are not available [3, 7, 27, 29]. In the 10/14 tools left,
4/10 are extensions of aDoctor [2, 21] and Paprika [16, 18] and among the
6/10 remaining tools, 4/6 address categories of code smells (permission code
smells [4], security code smells [11], unit test smells [40] and object-oriented
code smells [26]) that are not behavioural, in contrast to the focus of this
study. The last 2/6 remaining tools are aDoctor [38] and Paprika [20], and
we have therefore chosen to focus on these two tools.

A major difference between these tools is that Paprika is much more
suitable for large-scale analysis. First of all, in terms of analysis time, Paprika
is much faster, and especially useful when we aim to analyse a large number of
apps. While Paprika with the extension Sniffer only expects a list of code
source folders, aDoctor needs to run a different execution for each app and
for each code smell.

Although both are essentially static in detection, aDoctor simply makes
use of regular expressions and string search. Paprika, on the other hand, uses
queries on graphs, and thus on the structure of apps and classes, allowing
more options in the detection rules. This difference is felt on the results of
aDoctor, much larger in number of apps and number of instances affected
by code smells.

Paprika uses software metrics, such as the number of instructions and
cyclomatic complexity, for the detection of code smells. aDoctor, which is
described as a lightweight tool, considers none of these aspects. Paprika uses
these software metrics mainly for the detection of OO smells, but also for
Android-specific code smells, such as HAS, HBR and HSS, which are described
later in the paper.

aDoctor uses specific regEx or character strings in the code according
to predefined detection rules to determine whether a code smell is present
or not. It parses the input Java source code and outputs a result table for
each code smell. Paprika, on the other hand, analyses the bytecode of the
app and parses it to fill an internal graph database. The nodes of this graph
represent methods, classes and attributes. Thanks to the queries executed in
this database, the code smells are determined to be detected or not.

3.2.2 Code Smells

We are interested specifically in behavioural code smells. Those behavioural
code smells are related to various important concerns of mobile apps, such as
energy consumption, memory and performance. Even though other code smells
address those same concerns, they are not necessarily behavioural. This is the
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Code Smell Is Behavioural Studied Tool
DR aDoctor
DTWC ✓ aDoctor
DW ✓ ✓ aDoctor
HAS ✓ ✓ Paprika
HBR ✓ ✓ Paprika
HMU ✓ ✓ Paprika
HSS ✓ ✓ Paprika
IDFP aDoctor
IDS aDoctor
IGS aDoctor & Paprika
IOD ✓ ✓ Paprika
ISQLQ aDoctor
IWR Paprika
LIC aDoctor & Paprika
LT ✓ aDoctor
MIM aDoctor & Paprika
NLMR ✓ ✓ aDoctor & Paprika
PD aDoctor
RAM aDoctor
SL aDoctor
UC ✓ aDoctor
UCS Paprika
UHA Paprika
UIO ✓ Paprika

Table 1 Summary of the behavioural detected code smells in Paprika and aDoctor.

case, for instance, for the IDS (Inefficient Data Structure) Android code smell
[38]. Indeed, the definition of the IDS code smell is the following: “The mapping
from an integer to an object through the use of a HashMap<Integer,Object>
is slow, and should be replaced by other efficient data structures, such as
the SparseArray [42]”. This is not specifically a characteristic in the code
inducing an inappropriate code behaviour during the execution, but rather
a characteristic in the code (the use of a HashMap<Integer,Object>) that
negatively impacts the software quality of the app (lower performance of the
app). It is therefore not a behavioural code smell.

In this study, among the 11 behavioural code smells detected in Paprika
and aDoctor (see Table 1), we consider the following seven behavioural code
smells: DW, HAS, HBR, HMU, HSS, IOD, NLMR. Each is handled by a
single tool, with the exception of NLMR that is handled by both Paprika and
aDoctor. However, we exclude the four behavioural code smells: DTWC, LT,
UC and UIO. LT is deprecated due to the deprecation of the Thread.stop()
method [37]. The three other code smells, DTWC, UC and UIO, have very few
occurrences because they appear in rarer contexts and their few occurrences
do not allow for enough relevant cases to be studied. We relate the seven
studied behavioural code smells to the three categories of behavioural code
smells described earlier. For the first category characterised by the use of a
method call or a sequence of method calls, we include DW. For the second
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category characterised by runtime information, we include HAS, HBR, HSS,
IOD and NLMR. For the third one characterised by undesired data variations
during execution, we include HMU.

Still, each code smell may imply thousands of detected code smells and un-
detected potential code smells within our 318 apps. It hence represents quite
some investigation in app source code. We now present these seven selected
code smells following the definitions given by [19], [20] and [38]. We provide
for each behavioural code smell the associated inappropriate behaviour and
characteristics in the source code.

Durable Wakelock (DW): A Wakelock is the mechanism allowing an app
to keep the device on in order to complete a task. However, when such task
is completed, the lock should be released to reduce battery drain [42]. In An-
droid, the class PowerManager.WakeLock is in charge to define the methods
to acquire and release the lock. If a method using an instance of the class
WakeLock acquires the lock without calling the release, a smell is therefore
identified.
Inappropriate Behaviour: A call to the acquire method is not followed by
the call of the release method.
Characteristics: The use of acquire and release methods of the WakeLock
class.

No Low Memory Resolver (NLMR): When the Android system is run-
ning low on memory, the system calls the method onLowMemory of every
running activity. This method is responsible for trimming the memory usage
of the activity. If this method is not implemented by the activity, the Android
system automatically kills the process of the activity to free memory. This may
lead to an unexpected program termination. Furthermore, when the method
onLowMemory is declared, it should contain an action reclaiming memory.
Therefore, an Activity class that does not define onLowMemory or that does
define this method but in which case onLowMemory does not perform any
memory reclaiming action, is considered a code smell.

We diverge slightly from the definitions [19, 20, 38] for the NLMR code
smell. Indeed, in these papers the code smell is detected by checking that every
activity implements the onLowMemory method whether or not this method
contains any instruction. However, the discussion around the NLMR code smell
clearly shows that the intention is to reclaim memory as we do in the above
definition.

The NLMR code smell refers to the onLowMemory method, which is now
deprecated and has been replaced by the onTrimMemory method [5]. We nev-
ertheless included it in this study since even if the onLowMemory method is
deprecated, it is still widely used. Indeed, we will show in Section 3.5.2 that
many NLMR instances occur in our dataset. Furthermore, the replacement of
a method by another does not change the detection principle and our detec-
tion method will still be applicable when the new recommended method is in
general use.
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Inappropriate Behaviour: The onLowMemory method does not reclaim
memory when executed.
Characteristics: The implementation of the onLowMemory method within
an Activity class.

HashMap Usage (HMU): The Android framework provides ArrayMap and
SimpleArrayMap as replacements from traditional Java HashMap. These struc-
tures are considered to be more memory-efficient and to trigger less garbage
collection with no significant difference on operations performance for maps
containing up to hundreds of values [6, 14]. So, unless a complex map for a
large set of objects is required, the use of ArrayMap should be preferred over
the usage of HashMap in Android apps. Therefore, creating small HashMap
or large SimpleArrayMap/ArrayMap instances is considered as a code smell.
Inappropriate Behaviour: A HashMap structure is used for a small set of
objects or ArrayMap / SimpleArrayMap structures are used for a large set of
objects.
Characteristics: The use ofHashMap /ArrayMap / SimpleArrayMap classes.

The three following code smells: Heavy AsyncTask (HAS), Heavy Service Start
(HSS) and Heavy BroadcastReceiver (HBR) are very similar. The detection
rules for these code smells have the same form: there is a method that occurs
on the main process that should be non-blocking and short in execution. Only
the name of the method changes.

Heavy AsyncTask (HAS): In Android, the AsyncTask API allows de-
velopers to perform short background operations. However, three out of the
four steps of AsyncTask are executed on the main UI thread and not in the
background. Thus, these steps should not be time-consuming or blocking op-
erations to avoid: i) the GUI to become unresponsive to user interactions or
ii) the ANR dialog to be shown. Thus, a class extending AsyncTask should
never contain time-consuming or blocking onPostExecute, onPreExecute, or
onProgressUpdate methods [33].
Inappropriate Behaviour: The onPostExecute / onPreExecute / onPro-
gressUpdate methods are time-consuming or blocking.
Characteristics: The implementation of onPostExecute / onPreExecute /
onProgressUpdate methods within an AsyncTask class.

Heavy Service Start (HSS): Services in Android can perform heavy op-
erations in background. However, Android services run in the main thread
of their hosting process. By default, the service execution starts with a call
to the OnStartCommand of the service, which is run in the main UI thread.
When the service executes time-consuming or asynchronous operations, a new
thread should be created by the method OnStartCommand to handle these
operations outside the main UI thread, since otherwise it may cause the app to
freeze or to display an ANR dialog [32]. Thus, the OnStartCommand method
should never contain time-consuming or blocking operations.
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Inappropriate Behaviour: The onStartCommand method is time-consuming
or blocking.
Characteristics: The implementation of the onStartCommand method within
a Service class.

Heavy BroadcastReceiver (HBR): Android apps can use a broadcast
receiver to manage broadcast communications with the system or other apps.
However, the onReceive method of BroadCastReceiver runs in the main UI
thread and may cause the app to freeze or to show an ANR dialog [31]. Thus,
the onReceive method should never contain time-consuming or blocking oper-
ations.
Inappropriate Behaviour: The onReceive method is time-consuming or
blocking.
Characteristics: The implementation of the onReceive method within a
BroadCastReceiver class.

Init OnDraw (IOD): OnDraw routines are responsible for updating the
GUI of an Android app. These routines are invoked each time the GUI is re-
freshed (up to 60 times per second), and thus any extra computational work
done in OnDraw is magnified by that frequency. Moreover, a high rate of
memory allocations may lead into high memory consumption and numerous
calls to garbage collection activities [36]. Thus, OnDraw routines should never
contain init instructions to allocate memory (either new or calls to factory/-
constructor) or be an excessive time-consuming method.

We diverge slightly from the definitions [19,20] for the IOD code smell. In-
deed, in these papers the code smell is detected by checking that every onDraw
method does not have memory allocations. However, the discussion around the
IOD code smell clearly shows that the intention is not to have any extra com-
putational work done in onDraw so the method must not be time-consuming
as we do in the above definition.
Inappropriate Behaviour: The onDraw method is time-consuming or ini-
tialises objects.
Characteristics: The implementation of the onDraw method within a View
class.

3.3 Objects

The apps used in the study come from the dataset published by Habchi et
al. [18], where it was used to analyse and detect code smells based on GitHub
project commits. This dataset consists of real open-source apps from F-Droid
published on GitHub. F-Droid provides a dataset of real apps that are neither
dummy apps, nor templates, nor libraries. We study 318 of the 324 apps origi-
nally published in the dataset of Habchi et al. For the remaining six cases, four
apps are no longer available, their repositories became private or deleted, and
two of them cannot be processed by Paprika. The reasons are not known or
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detailed, it may be because their repositories have evolved using files/classes
not supported by Paprika.

We present the dataset of the apps from different viewpoints in terms of
category, size, interest and contributions to illustrate its diversity and repre-
sentativeness. The list of apps and the metrics associated with the apps used
for the study are published [1] for the sake of evaluation and replication.

Fig. 1 Distribution of the apps with regards to their category.

1) Category: We classify the apps of the dataset according to the category
they belong to. We determine categories by analysing manually the related
information in the GitHub repository of each app. We found 30 categories in
the dataset. Figure 1 shows the number of apps per category. For example,
opensudoku belongs to the category Game and Wifi-Fixer belongs to the cat-
egory Network. Two apps have no categories because their associated GitHub
repository has disappeared in the meantime. The apps of the dataset are well
represented uniformly within these 30 different categories.

2) Size: Finally, we describe our dataset in terms of app size. We focus in
particular on the metrics of the number of classes and the number of lines of
code. The distribution of the number of classes is presented in Figure 2 and
the distribution of the number of lines is presented in Figure 3. The number
of classes varies from 1 to 1,326 and the number of lines varies from 108 to
166,611. Apps of all sizes are present in the dataset, both in number of classes
and number of lines. The majority of apps have between 15 and 138 classes
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Fig. 2 Distribution of the apps with regards to their number of classes.

Fig. 3 Distribution of the apps with regards to their number of lines.

and between 2,032 and 21,535 lines of code.

3) Interest: We describe our dataset from the point of view of the GitHub
community. The stars and watchers allow us to measure the interest of the
community towards the different repositories. Giving a star to a project allows
you to show interest in a project so that you can easily retrieve it. Becoming a
watcher of a repository allows you to show your interest and to be kept up to
date on the activities of the repository. The distribution of stars and watchers
is presented in Figure 4. We note that the dataset represents all kinds of inter-
est, with some repositories having very high interest with star counts reaching
thousands of stars, up to 14,767. The majority of apps have between 29 and
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Fig. 4 Distribution of the apps with regards to their stars and watchers.

335 stars and between 6 and 31 watchers.

Fig. 5 Distribution of the apps with regards to their commits.

4) Contribution: We also describe the dataset according to the contribution
of users in the different repositories. For this purpose, we use the number of
contributors to the repositories as well as the number of commits. The distri-
bution of commits is presented in Figure 5 and the distribution of contributors
is presented in Figure 6. The majority of apps have between 127 and 1043 com-
mits and between 3 and 21 contributors.
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Fig. 6 Distribution of the apps with regards to their contributors.

Fig. 7 Overview of the process.

3.4 Process

The process of the study as illustrated in Figure 7 consists of five main steps
described in the following.

Step 1. We use Paprika and aDoctor on the dataset of 318 apps to
detect code smells, hence retrieving the detected code smells (i.e., positive
instances).

Step 2. In parallel, in Step 2 we identify the candidate classes for the un-
detected potential code smells across the 318 apps. These candidate classes are
all the classes possibly affected by a code smell conforming to its definition.
The undetected potential code smells (i.e., negative instances) are the candi-
date classes not detected as code smell by either Paprika or aDoctor. We
chose the candidate classes on the basis whether they contain a method or an
instruction mentioned in the code smell’s definition. Clearly, any other class
cannot be an instance of the code smell. For example, the IOD code smell’s
definition refers to the inherited onDraw method containing memory alloca-
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tions or having a too long execution time. The candidate instances are hence
all classes implementing the onDraw method. We then obtain the undetected
potential code smells of these candidate classes by removing all classes already
detected by Paprika or aDoctor.

Furthermore, it is important to note that in Step 3 and Step 4, depend-
ing on the code smell, there may be a huge number of instances to analyse
manually. For instance, as we will see further in Table 2 of Section 3.5, in our
dataset some code smells may contain few instances such as 19 instances for
IOD, while others have more than 1000 instances, such as NLMR.

The manual inspection of each instance is a complex task, especially given
the number of instances. Therefore, to cope with the manual analysis of Steps
3 and 4, while still considering a statistically significant sample for each code
smell, we rely on a stratified sample. This stratified sample ensures that the
proportion of each code smell is preserved in the sample.

More precisely, we randomly selected a set of 312 positive and 244 negative
code smell instances. The sample for each code smell consists of the detected
code smells fetched by Step 1 and the undetected potential code smells fetched
by Step 2. This represents a 95% statistically significant stratified sample with
a 10% confidence interval of the instances obtained by Step 1 and Step 2. The
confidence interval is set to 10% to use the same interval as the reference
dataset of Habchi et al. [18].

Step 3.We analyse manually which detected code smells are false positives.
Step 4. We analyse manually which undetected potential code smells are

false negatives.
The manual analysis was performed as follows. Each class contained in the

sample of the code smells was studied manually by three people: one of the
authors and two other PhD students with expertise in mobile apps and their
code smells. For each class to be verified, each participant examined the class
thoroughly to determine whether the code smell really occurs. We only share
the results at the end to avoid influencing each other. In the few cases where
there were discrepancies, we revisited the case to reach a consensus of the
majority. This process took two weeks. All the results of the consensus can
be found in the artefacts [1]. The three participants received specific criteria
for each code smell to determine whether an instance is a true positive, false
positive, true negative or false negative. For example, for the HMU code smell
which refers to data structure size, we consider how these structures are filled.
If they are filled a finite number of times or within small loops, we consider
them small. If they are filled by loops iterating over a possibly very large
variable, we assume they are possibly large. For code smells like HSS, where
the execution time is crucial, participants searched for big loops, many calls to
complex methods or many objects used or allocated. The rules for determining
whether a code smell really occurred are defined in the qualitative analysis in
Section 3.5.2, in the Manual Analysis parts.

Step 5. Finally, we identify the inconsistencies between the detection
rules of Paprika and aDoctor with the literal definitions while relying on
the false positives/negatives and we deduce the limitations of these tools. This
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validation has been performed by a developer, who has a deep understanding
of Android code smells. This step of validation is not subject to interpreta-
tion and does not require the involvement of several developers because it is
a straightforward process as indicated in the following. The step of validation
includes the following three sub-steps. The first sub-step consists in compar-
ing the detection rules of the tools with the literal definitions and deducing
the inconsistencies between them. The second sub-step consists in confirming
these inconsistencies with the false positives/negatives that illustrate concrete
instances of detected code smells and undetected potential code smells. In the
last third sub-step, based on the inconsistencies confirmed, the limitations of
the tools are identified. For example, the literal definition of the HMU code
smell indicates that an HMU code smell manifests when HashMaps are used
for small structures or ArrayMaps are used for large structures. However, the
detection rule for the HMU code smell indicates only that there is a code
smell when a HashMap structure is used. In terms of inconsistencies, the de-
tection rule does not take into consideration the sizes of structures nor does
refer specifically to the ArrayMap structure. These inconsistencies are being
confirmed among the false positives/negatives: the false positives include large
HashMaps and the false negatives include large ArrayMaps. Based on these
inconsistencies, the limitation of current tools is that they cannot adequately
detect code smells characterised by undesired data variations during execution.

3.5 Results

In this section, we respond to the two research questions using the results of
the empirical study. We answer the first research question using a quantitative
analysis. On the other hand, we answer the second research question with a
qualitative analysis.

3.5.1 RQ1: Are the tools of concern effective for detecting behavioural code
smells?

To answer this research question, we will focus on the quantitative results of
our study.

Fig. 8 True/False Positive/Negative instances.
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Code Smell #Apps #Instances Tool
DW 81 199 aDoctor
NLMR 292 2826 aDoctor
NLMR 259 1132 Paprika
HMU 136 729 Paprika
HAS 53 144 Paprika
HSS 38 48 Paprika
HBR 132 513 Paprika
IOD 16 19 Paprika

Table 2 Results reported by the tools Paprika and aDoctor.

First, let clarify the different types of instances handled in the study. The
process of Figure 7 distinguishes two types of code smell instances. As shown in
Figure 8, it first considers the Detected code smells (D), which are the instances
returned by the tools in Step 1 of Figure 7. Conversely, the complement of this
set, the Undetected potential code smells Dc are the instances not detected by
the tools and hence returned in Step 2 of Figure 7. Secondly, the Verified
instances (V ) are those determined by the manual analysis of Step 3 and Step
4 in Figure 7 and conform with the definition of the code smells. In this case,
the complement V c is simply those instances not in conformance with the code
smells definition.

We can now distinguish the following four types of instances, as shown
in Figure 8. The true positives are the instances detected by the tools and
validated manually in conformance with their code smells definition: TP =
D∩V . The false positives are the instances detected by the tools but validated
manually not in conformance with the code smells definition: FP = D \ V .
The false negatives are the instances not detected by the tools but validated
manually to be in conformance with the code smells definition: FN = Dc \V c.
Finally, the true negatives are the instances not detected by the tools and
validated manually not in conformance to the definition: TN = Dc ∩ V c.

We will now present our results. Table 2 shows the number of apps and
the number of detected code smells returned by Paprika and aDoctor in
Step 1 of Figure 7. It should be noted that a single code smell is common to
both tools, the NLMR code smell. It is also worth mentioning that even if,
in this case, both tools return Activity classes not defining the onLowMemory
method, the number of classes and even more the number of instances differ.
This is due to the fact that Paprika checks if one of the superclasses of the
class candidate is the Activity class, while aDoctor checks if the class extends
one of the 95 Android classes from a predefined list.

Table 3 presents the number of undetected potential code smells as re-
turned by Step 2 of Figure 7. As described in the process, the undetected
potential code smells are the candidate classes affected by a code smell but
not detected by the tools. Here the number of undetected potential code smells
for NLMR is the same for both tools. Indeed, the identification of candidates
classes in Step 2 of Figure 7 is independent of the tools and filtering out the
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Code Smell #Apps #Instances #Tool
DW 46 64 aDoctor
NLMR 18 33 aDoctor
NLMR 18 33 Paprika
HMU 13 24 Paprika
HAS 159 846 Paprika
HSS 72 113 Paprika
HBR 112 376 Paprika
IOD 102 274 Paprika

Table 3 Number of undetected potential code smells identified.
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DW 66 64 0 (0%) 25 (39%) 100% 73% 84% aDoctor
NLMR 93 33 0 (0%) 6 (18%) 100% 94% 97% aDoctor
NLMR 89 33 0 (0%) 6 (18%) 100% 94% 97% Paprika
HMU 85 24 42 (49%) 10 (42%) 50% 81% 62% Paprika
HSS 48 52 35 (73%) 10 (19%) 27% 57% 37% Paprika
IOD 19 71 0 (0%) 12 (17%) 100% 61% 76% Paprika
Total 400 277 88 (28%) 62 (25%) N/A N/A N/A N/A

Average N/A N/A N/A N/A 64% 69% 64% N/A

Table 4 Results of the sample of code smells studied.

instances returned by these tools gives, in this case, the same result. Even if
the definitions in the literature are similar, the detection rules may vary from
one tool to another. Both tools detect an NLMR code smell if an Activity does
not implement the onLowMemory method. While Paprika only focuses on
classes inheriting from Activity, aDoctor is also interested in other classes
inheriting from ComponentCallBacks, such as Fragments. This is reasonable
since the onLowMemory method is defined in ComponentCallBacks. We fol-
lowed the definition and were only interested in Activity classes for candidate
classes, which both tools detect at similar level. As a result, the detected code
smells differ from the tools while the undetected potential code smells are the
same.

Table 4 presents the number of false positives and false negatives as deter-
mined in Steps 3 and 4 of Figure 7. There is quite some variation from one
code smell to another, but each code smell has its batch of false positives and
false negatives. For the false positives, we observe that we can go from 0%
for code smells whose detection ensures that the code smell indeed occurs, to
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72.92% for results for which manual verification is necessary and essential. On
the other hand, for false negatives, we observe that we can go from 17% for
the behavioural code smells for which the tools cover almost every instance, to
42% for the code smells where tools are missing a lot of instances. Since HBR,
HAS and HSS are very similar and differ only in the name of the method, and
because there is a huge number of instances for each of them (see Table 2), the
study focuses only on HSS. The means of detection for these three code smells
are exactly the same. In some cases, the instance numbers shown in Table 4
coincide with those of Table 2 or Table 3. This is a simple consequence of
stratification. Indeed, code smells with few instances will often have the same
or nearly the same number of instances after stratification.

The false positives and false negatives come from the detection rules used in
Paprika and aDoctor. One can therefore conclude that those tools capture
far more code smells than necessary. This is a consequence of a static analy-
sis based on search patterns and metrics computation that does not allow a
perfect accuracy leading to false positives. For similar reasons, the detection
techniques do not capture all the code smells that should be captured, which
leads to false negatives. This is mainly due to technical limitations brought
by a purely static detection on behavioural code smells, as we discuss later in
this section. Code smells with many instances may lead to a surplus of work
to check whether they should be considered. Indeed, Paprika [19] indicates
that for some studied code smells, like NLMR and HMU, the responsibility is
left to the developer to check if an instance identified by Paprika deserves a
correction, or not. False positives and false negatives are further analysed and
discussed in Section 3.5.2. The rules causing false negatives and false positives
are defined in the qualitative analysis in Section 3.5.2.

One can also consider precision, recall, and F1-Measure. Precision is the
proportion of true positives among all positives, recall is the proportion of
true positives among true positives and false negatives, and the F1-Measure
is the harmonic mean of precision and recall. Precision is mostly high, but in
some cases, like HMU and HSS, half or more of the detected instances are not
relevant. In such cases, it is hence left to the developers to determine whether
the detected code smells are relevant. Recall tends to be lower than precision,
hence many relevant instances are missing from the detected instances. It is
hence left to the developers to find these missing code smell instances. Based
on the results of Table 4, we hence reject Hposi

1 and Hnega
2 .
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Answer RQ1: The tools return false positives up to approximately
73% for HSS and false negatives up to approximately 42% for HMU.
They both impact the effectiveness. The false positives detected by the
tools of concern affect their effectiveness because they return to the
developers erroneous detection results. The false negatives affect the
effectiveness by returning to the developers partial detection results.
The precision may be low for specific code smells like HMU with 27%
or HSS with 50%. The recall drops down to 57%. Overall, the precision
for the code smells studied is 74%, the recall is 69% and the F1-Measure
64%, which is quite a bit low.

3.5.2 RQ2: Are the code smells detected by the tools of concern consistent
with their original literal definition?

While the previous section focused primarily on the quantitative results, this
section discusses the nature of the results depicted in Table 4 with a qualitative
analysis. We hence study in detail the selected code smells to check to which
extent the results of the detection go against their literal definition.

For each code smell, we follow a common description pattern, which refers
to the terms in Figure 7: a) an excerpt of the literal definition of the code smell
from Section 3.2 as a reminder. b) the concrete detection rules implemented in
the aDoctor and Paprika tools to detect the code smell regardless of what
has been described in the related papers; c) the nature of the detected code
smells, i.e., how the classes that contain such code smell are characterised; d)
the nature of the undetected potential code smells; e) the criteria used during
the manual analysis for the detected code smells; f) the criteria used during
the manual analysis for the undetected potential code smells; g) the nature
of the false positives with an illustrative example, if applicable; h) the nature
of the false negatives with an illustrative example, if applicable; i) a discus-
sion on the results; j) the technical limitations identified of the aDoctor and
Paprika tools with the problems associated with the current detection rules.
Each description pattern associated to a code smell allows us to respond to
the research question RQ2, i.e., whether the code smell detected by aDoctor
and Paprika is consistent with its original literal definition.

Durable Wakelock (DW)
a) Literal definition: A DW code smell manifests when there is an instance
of the WakeLock class that acquires the lock (using the acquire method) with-
out releasing it (using the release method).
b) Detection rules: (aDoctor) A DW code smell manifests if there is a
call of a method with a name that contains the string of characters “acquire”.
This detection rule does not check specifically the acquire method but a string
of characters “acquire”. Also, it does not check if there is an instance of the
WakeLock class and if the release method is absent. However, the detection
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private void acquireProximityWakeLock ( ) {
synchronized ( AudioPlayer .LOCK) {

i f (wakeLock != null ) {
wakeLock. acquire () ;

}
}

}

private void releaseProximityWakeLock ( ) {
synchronized ( AudioPlayer .LOCK) {

i f (wakeLock != null && wakeLock . i sHe ld ( ) ) {
wakeLock. release () ;

}
}
messageAdapter . setVolumeControl (AudioManager .STREAMMUSIC) ;

}

Fig. 9 Example of an DW false negative within the Conversations app and AudioPlayer
class. As the calls are in two dissociated methods, we can not be sure they are called in the
proper order.

rule presented in the paper of aDoctor [38] indicates to check also the ab-
sence of release and that both methods are from theWakeLock class. We hence
manually checked within the detected code smells the WakeLock instance and
the absence of release. We only report the results on this enhanced version of
the rule.
c) Detected code smells: With this enhanced rule, the DW detected code
smells in aDoctor are classes that call the acquire method of the WakeLock
class , but do not implement the release method.
d) Undetected potential code smells are the classes that contain both
methods from the WakeLock class.
e) Manual analysis of the detected code smells: No manual analysis is
required because all detected code smells are true positives. Indeed, the related
classes do not have the method release implemented.
f) Manual analysis of the undetected potential code smells: If both
methods are present, several criteria are applied. If the two method calls are
separated by a whole bunch of function calls and conditions tests that we are
not sure are executed/satisfied, then we cannot be sure that both methods are
properly called.
g) False positives: Each detected code smell is irrevocably a true positive be-
cause the detected code smells do not have the method release implemented.
h) False negatives: The true negatives ones are the undetected potential
code smells where both methods will be called, while the false negatives are
the undetected potential code smells where this is not the case. Almost 39% of
the undetected potential code smells are false negatives, meaning we cannot
be confident enough that the two methods are called correctly to minimise
the battery drain. This may be due to the fact that the two methods are
far apart from many methods and conditions, which may not always be re-
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spected as depicted in Figure 9. As the calls are in two dissociated methods,
here acquireProximityWakeLock() and releaseProximityWakeLock(), it is also
necessary to check if they are called correctly. However, we have no clues as
whether these functions are properly called in the correct order. It can also be
the situation that the release is only done when the app is destroyed, which
does not conform to the definition of the code smell. This last scenario is the
most frequent among the false negatives encountered.
i) Discussion on the results: This code smell is one of the most difficult to
determine its effectiveness manually. Determining whether two distant meth-
ods will be called on apps whose structure is not fully known is difficult.
j) Limitations of current tools: The current aDoctor implementation of
the DW detection simply identifies the presence of the acquire method without
checking the presence of the release method. And only because both methods
are present does not mean that they are necessarily called.

public void onLowMemory( ) {}

Fig. 10 Example of the onLowMemory method within the osmeditor4android app and
MapViewLayer class. Although the method is defined, it is empty and therefore has no
reaction on the memory.

public void onLowMemory( ) {
Logger . i n f o ( ” low memory f o r app l i c a t i o n ” ) ;
super .onLowMemory( ) ;

}

Fig. 11 Example of the onLowMemory method within the trackworktime app and Work-
TimeTrackerApplication class. Although the method is defined, it is only composed of a log
and therefore has no reaction on the memory.

No Low Memory Resolver (NLMR)
a) Literal definition: An Activity class that does not define onLowMemory
or that does define this method but in which case onLowMemory does not
perform any memory reclaiming action, is considered a code smell.
b) Detection rules: (Paprika & aDoctor) An Activity class does not
have an onLowMemory method. The detection rules are the same for aDoc-
tor and Paprika, but their implementations are slightly different. Paprika
checks if one of the superclasses of the class candidate is the Activity class,
while aDoctor checks if the class extends one of the 95 Android classes from
a predefined list. This implementation difference has an impact on the number
of detected code smells as shown in Table 2.
c) Detected code smells are the Activity classes that do not define the on-
LowMemory method.
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d) Undetected potential code smells are the Activity classes that define
the onLowMemory method and do not perform any memory reclaiming action.
e) Manual analysis of the detected code smells: No manual analysis is
required because all detected code smells are true positives.
f) Manual analysis of the undetected potential code smells: We check
if the onLowMemory methods do not perform any memory reclaiming action.
g) False positives: All the detected code smells do not have the onLowMem-
ory method implemented, so they are all true positives. There are therefore
no false positives.
h) False negatives: When inspecting the onLowMemory methods of unde-
tected potential code smells, some methods do not perform any memory re-
claiming action. In particular, this occurs mainly for the following reasons: (1)
The method body is empty as in Figure 10; (2) It only serves to log purpose as
shown in Figure 11, (3) or it has no effect like calling the super.onLowMemory,
which is also empty.
i) Discussion on the results: This code smell is not frequent. Only 18% of
the investigated methods (i.e., 6 instances) have no action on the memory. In-
deed, when the onLowMemory method is declared, there is usually a memory
reclaiming action.
j) Limitations of current tools: The tools only consider the absence of the
onLowMemory method but they do not consider its presence with no memory
reclaiming action.

private Pair<List<Str ing >, L i s t<Str ing>> changes ( ) {
Map<String , Object[]> cache = new HashMap<>();
try ( Cursor cur = mDb. getDatabase ( ) . query ( ” s e l e c t fname ,

csum , mtime from media where csum i s not nu l l ” , null ) ) {
while ( cur . moveToNext ( ) ) {

St r ing name = cur . g e tS t r i ng (0 ) ;
S t r ing csum = cur . g e tS t r i ng (1 ) ;
Long mod = cur . getLong (2 ) ;
cache .put(name, new Object [ ] { csum, mod, fa l se }) ;

}
} catch ( SQLException e ) {

throw new RuntimeException ( e ) ;
}
( . . . )

}

Fig. 12 Example of an HMU false positive within the Anki-Android app and Media class.
Here, the HashMap cache structure can be huge because it is filled from a database which
is in accordance with the definition.

HashMap Usage (HMU)
a) Literal definition: An HMU code smell manifests when a HashMap struc-
ture is used for small set of objects and SimpleArrayMap/ArrayMap for large
set of objects.
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private void getBucketData ( f ina l ArrayMap<String , String>
bucketNamesList , f ina l St r ing buckedId , f ina l St r ing

buckedName) {
f ina l St r ing [ ] p r o j e c t i o n = { buckedId , buckedName , ” count (∗ ) as

media count ” } ;
f ina l St r ing groupBy = ”1) GROUP BY (2” ;
f ina l Cursor cur so r =

PBApplication . getApp ( ) . getContentReso lver ( ) . query ( imagesUri ,
p ro j e c t i on , groupBy , null , ”media count desc ” ) ;

i f ( cu r so r != null && cur so r . moveToFirst ( ) ) {
St r ing name ;
S t r ing id ;
S t r ing count ;
f ina l int bucketIdColumn = cur so r . getColumnIndex ( buckedId ) ;
f ina l int bucketNameColumn = cur so r . getColumnIndex (buckedName) ;
f ina l int bucketCountColumn =

cur so r . getColumnIndex ( ”media count ” ) ;
do {
id = cur so r . g e tS t r i ng ( bucketIdColumn ) ;
name = cur so r . g e tS t r i ng (bucketNameColumn) ;
count = cur so r . g e tS t r i ng ( bucketCountColumn ) ;
bucketNamesList . put( id , name + ” (” + count + ”)”) ;

} while ( cu r so r . moveToNext ( ) ) ;
}
( . . . )

}

Fig. 13 Example of an HMU false negative within the client-android app and PBMediaS-
tore class. Here, the ArrayMap bucketNamesList structure can be huge because it is filled
from a database while it should remain a small structure.

b) Detection rules: (Paprika) A class uses an HashMap structure.
c) Detected code smells are the classes that use an HashMap structure.
d) Undetected potential code smells are the classes that use a SimpleAr-
rayMap or ArrayMap structure.
e) Manual analysis of the detected code smells: We consider how these
structures are filled. If they are filled a finite number of times or within small
loops, we consider them small. If they are filled by loops iterating over a pos-
sibly very large variable, we assume they are possibly large.
f) Manual analysis of the undetected potential code smells: The same
criteria are used, as it is also necessary to examine the size of the structures.
g) False positives: Conforming to the definition of the code smells, a true
positive is an instance that uses an HashMap for a small structure, and a
false positive is an instance that uses an HashMap for a large structure. An
example of the HMU code smell raised by Paprika is shown in Figure 12.
Here Paprika raises a code smell because it detects a HashMap and leaves
it up to the user to check whether the detection is effective. However, in this
example, the cache has no limitations on the .put() associated with it. One
would expect this HashMap to be large because the request may return a lot
of results. Therefore, it may not be considered as a smell.
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h) False negatives: Conversely, a true negative is an instance that uses a
SimpleArrayMap/ArrayMap for a short structure, and a false negative is an
instance that uses a SimpleArrayMap/ArrayMap for a large structure. The
false negatives should also include HashMap used for a small number of map
entries. However, there are no such cases in our sample. Paprika reports all
HashMaps as code smells, therefore all instances containing HashMaps are de-
tected code smells. An example of an undetected potential code smell is shown
in Figure 13. Here Paprika does not detect a code smell because it only fo-
cuses on HashMap. However, in this example, the bucketNamesList ArrayMap
has no limitations on the .put() associated with it. One would expect this Ar-
rayMap to be large because it is filled using a query from a media database.
Therefore, it may be considered as a smell.
i) Discussion on the results: The findings are quite similar, whether in the
case of detected code smells with 49% false positives or undetected potential
code smells with 42% false negatives, meaning in both cases the detection
seems to be insufficient to correctly identify the code smell. It is important to
note that developers do not seem to specifically use one structure or another
depending on the size envisaged, which suggests that a detection by looking
at one of the structures is not efficient enough. However, HashMap is the most
used structure.
j) Limitations of current tools: There is no notion of structure sizes, the
tools only detect the presence of an HashMap.

Heavy Service Start (HSS)
a) Literal definition: An HSS code smell manifests when the OnStartCom-
mand method contains time-consuming or blocking operations.
b) Detection rules: (Paprika) The method onStartCommand has more
than 17 instructions or a cyclomatic complexity greater than 3.5 (when the
threshold is set on low).
c) Detected code smells are the classes defining the method onStartCom-
mand having a cyclomatic complexity greater than 3.5 or a number of instruc-
tions greater than 17.
d) Undetected potential code smells are the classes defining the method
onStartCommand having a cyclomatic complexity lower than 3.5 and a num-
ber of instructions lower than 17.
e) Manual analysis of the detected code smells: We determine if a
method is not time-consuming by investigating the source code according to
several indicators. Here is a non-exhaustive list of indicators: 1) The method
does not have loops or small ones; 2) It only has trivial method calls whose con-
tent is known and recognised; 3) There are no operations that are potentially
costly, such as queries on large items in a database; 4) There are few memory
allocations, we can assume it is not time-consuming. If we cannot determine
the time-consuming aspect because of unknown snippets of code, we consider
them potentially time-consuming for the detected code smells and potentially
not time-consuming for the undetected potential code smells. Indeed detected
code smells have already been identified with long and complex methods while
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@Override
public int onStartCommand ( Intent intent , int f l a g s , int s t a r t I d ) {
onHandleIntent( intent ) ;
return START NOT STICKY;

}
@Override
protected void onHandleIntent ( In tent i n t en t ) {
( . . . )
Cursor cur so r = getContentReso lver ( ) . query ( content , p ro j e c t i on ,

s e l e c t i o n , null , null ) ;
( . . . )
newSongsMetadata = new ArrayList<>() ;
while (cursor .moveToNext() ) {
St r ing a r t i s t = cur so r . g e tS t r i ng (0 ) ;
S t r ing t i t l e = cur so r . g e tS t r i ng (1 ) ;
( . . . )
newSongsMetadata . add (new St r ing [ ] { a r t i s t , t i t l e }) ;

}
( . . . )
for (String [ ] track : newSongsMetadata) {
St r ing a r t i s t = track [ 0 ] ;
S t r ing t i t l e = track [ 1 ] ;
threadPool . execute ( ( ) −> {
try {
Request r eque s t ;
File musicFile =

Id3Reader . getFile (BatchDownloaderService . this , artist ,
t i t le , fa l se ) ;

( . . . )
r eque s t = Lyr icsChart . getVol leyRequest ( l r c ,

BatchDownloaderService . this , BatchDownloaderService . this ,
f i n g e r p r i n t , a r t i s t , t i t l e ) ;

requestQueue . add ( r eque s t ) ;
} ( . . . )

}) ;
}

}

Fig. 14 Example of an HSS false negative within the QuickLyrics app and BatchDown-
loaderService class. Here, the method includes a long sub-method composed of complex
operations, queries, iterating loops. Such method is expected to have a long execution time.

undetected potential code smells have short and not complex methods.
f) Manual analysis of the undetected potential code smells: The same
criteria are used, as we also need to investigate whether the method is time-
consuming.
g) False positives: A detected code smell is a false positive if the method
is not time-consuming. Very often, these functions consist of a large switch
or a sequence of if-else, resulting in a large function but without a lot of exe-
cuting operations. Figure 15 is an excerpt of a detected code smell. Although
the onStartCommand method is long with 57 lines, it consists of a big switch
case. Each branch of the switch case is composed of minor operations. Such
an instance may not be considered as a code smell, as one can expect a short
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@Override
public int onStartCommand ( Intent intent , int f l a g s , int s t a r t I d ) {
int ac t i on = in t en t != null ? i n t en t . get IntExtra ( ” ac t i on ” , 0) :

0 ;
int id = in t en t != null ? i n t en t . get IntExtra ( ” t a s k i d ” , 0) : 0 ;
switch ( a c t i on ) {
case ACTION ADD:
( . . . )
break ;

case ACTION CANCEL:
( . . . )
break ;

case ACTION PAUSE:
i f ( id == 0) break ;
saveTask = mTasks. get( id ) ;
i f (saveTask != null ) {
saveTask . pause() ;

}
break ;

case ACTION RESUME:
( . . . )
break ;

case ACTION CANCEL ALL:
( . . . )
break ;

}
return START REDELIVER INTENT;

}

Fig. 15 Example of an HSS false positive within the OpenManga app and SaveService class.
Although this is a long method, it is subdivided into small blocks of simple instructions.
Such method is expected to have a short execution time.

execution time.
h) False negatives: The false negatives are the time-consuming undetected
potential code smells. There are some cases where despite having a short
method, it may still be time-consuming or blocking operations. These false neg-
atives are usually composed of costly loops, interweaving of many sub-methods.
Figure 14 is an excerpt of an undetected potential code smell. Although the
onStartCommand method is very brief, it consists of a long onHandleIntent
method of 70 lines. The latter is composed of many complex operations, such
as queries on a large data set and loops performing operations on this data.
Such an instance can be considered as a code smell, as one can expect a long
execution time.
i) Discussion on the results: Despite similar criteria, there are many more
false positives (73%) than false negatives (19%). The difference between false
positives and false negatives shows that the metrics are effective enough to
detect short operations, but ineffective in determining long operations.
j) Limitations of current tools: The detection is based on arbitrary heuris-
tics. Rather than really checking whether the concerned methods involve long
or blocking operations, heuristics are used to report as smells the methods
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with the number of instructions and cyclomatic complexity metrics greater
than an arbitrary value.

@Override
protected void onDraw(Canvas c , IMapView osmv) {

boolean s qua r eT i l e s = myRendererInfo . getTileWidth ( ) ==
myRendererInfo . ge tT i l eHe ight ( ) ;

for ( int y = tileNeededTop ; y <= tileNeededBottom ; y++) {
for ( int x = tileNeededLeft ; x <= tileNeededRight ; x++) {

( . . . )
Bitmap t i l eBi tmap = null ;
i f ( t i l e . zoomLevel >= minZoom && t i l e . zoomLevel <=

maxZoom) {
t i l eBi tmap = mTileProvider . getMapTile ( t i l e ,

owner ) ;
}
i f ( t i l eBi tmap == null ) {

while (( tileBitmap == null ) && (zoomLevel −
t i l e . zoomLevel) <= maxOverZoom &&
t i l e . zoomLevel > minZoom) {
t i l e . r e i n i t ( ) ;
( . . . )
t i l eBi tmap = mTileProvider . getMapTile ( t i l e ,

owner ) ;
}

}

i f ( t i l eBi tmap != null ) {
c .drawBitmap(tileBitmap , new Rect(tx , ty , tx +

sw, ty + sh) ,
new Rect(destRect . l e f t + xPos ,

destRect . top + yPos, destRect . right +
xPos , destRect .bottom + yPos) ,
mPaint) ;

} ( . . . )
}

}

Fig. 16 Example of an IOD false negative within the osmeditor4android app and Map-
TilesLayer class. The method consists of a lot of nested loops, calculations and zoom oper-
ations. Such method is expected to be costly.

Init OnDraw (IOD)
a) Literal definition:An IOD code smell manifests when the onDraw method
contains init instructions to allocate memory or contains time-consuming op-
erations.
b) Detection rules: (Paprika) An onDraw method calls constructors.
c) Detected code smells: The detected code smells in Paprika are the
classes using the onDraw method containing constructor calls.
d) Undetected potential code smells: The undetected potential code
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smells are the classes using the onDraw method not detected by Paprika,
and thus excluding the ones that contain directly constructor calls.
e) Manual analysis of the detected code smells: As there are no false
positives as explained in the following (see g)), there is no manual analysis of
the detected code smells.
f) Manual analysis of the undetected potential code smells: The cri-
teria are the same as the HSS code smell, as the criteria concern memory and
time-consuming operations.
g) False positives: A detected code smell is a false positive if despite be-
ing flagged as a code smell, the method is not time-consuming and does not
have memory allocations. As each detected code smell has memory allocations,
there are no false positives.
h) False negatives: A false negative is an undetected potential code smell
where the method onDraw has time-consuming operations and improper mem-
ory allocation. Figure 16 is an excerpt of an undetected potential code smell.
There are no direct initialisations, but it is still a long method of 150 lines
that performs a lot of computations, which could have been done outside this
method. For example, a whole set of zoom-related computations that could
be done elsewhere along with nested loops. Such a method can have strong
consequences on the performance of the app as indicated by the definition of
IOD. It could therefore be considered as a code smell.
i) Discussion on the results: Only a small proportion of the undetected po-
tential code smells appears to be time-consuming with 17% of false negatives.
Like HSS, the detection seems quite effective not to overlook the instances that
need to be detected. It means that usually the methods without initialisations
usually have no time-consuming operations, but there are still instances with
a lot of time-consuming loops of computing at each iteration of onDraw.
j) Limitations of current tools: Looking at the presence of initialisation of
new objects is not enough to handle the execution time.

Summary of the qualitative results. The code smells are inconsistent with
their literal definition if elements of the definition are missing in the tool’s
detection rules. We listed inconsistencies in the “Limitations of current tools”
part for each code smell. For example, the literal definition of HMU states
that HashMap should be used only for big structures, while SimpleArrayMap
is preferred for small ones. But, in this case, the instances detected by the tool
contain the HashMap structure, when large HashMap are consistent with the
literal definition. There is also no consideration for SimpleArrayMap in the
tool’s detection rule despite its importance in the literal definition. One more
example: for DW, when a WakeLock is acquired, a release must be called.
However, the tool considers only the definitions of the acquire and release
methods. However, this does not necessarily mean that these methods are
called, as required by the literal definition.

Based on the limitations of current tools for each code smell, we hence
reject Hrule

3 .
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Answer RQ2: By analysing the detection rules, problems occur for
each code smell studied. These problems have an impact on the detec-
tion results, which return false positives and false negatives. Observing
the results shows that the detected code smells are not always con-
sistent with their literal definition. For each code smell, limitations of
current tools due to static analysis have been identified.

3.6 Threats to Validity

Internal Validity. The main threat to our internal validity could be an im-
precise detection of behavioural code smells. The results in Table 4 are also
subject to imprecision, even though they are bound to be very close to re-
ality, being checked manually by two other developers. The disparity in the
propagation of behavioural code smells may affect the results because some
code smells are widely spread, like the NLMR or HMU, while some are not
widespread, like IOD. Indeed, we may not find the best studying cases in our
sample of results that are not widespread. Moreover, the fact that one is forced
to reduce the number of samples to be analysed may also have an impact for
the same reasons.

External Validity. The main threat to external validity is that our study only
concerns seven Android-specific behavioural code smells. Without a further
investigation, these results should not be generalised to other code smells or
development frameworks. We therefore encourage future studies to replicate
our work on other datasets and with different behavioural code smells and
mobile platforms. However, this is the first study of its kind on this issue.
Another main threat to external validity is the dataset used in the study,
which is the same external validity from Habchi et al. [18] where the dataset
is taken from. We used a set of 318 open-source Android apps from F-Droid,
which is relatively small. It would have been preferable to also consider closed-
source apps to build a more diverse and representative dataset. However, we
did not have access to any proprietary software that can serve this study. We
also encourage future studies to consider other datasets of open-source apps to
extend this study. However, the number of apps is reasonable and consistent
compared to the tools validation in the literature. In comparison, aDoctor
was evaluated with 18 apps [38] and Paprika with 106 apps [20].

Repeatability/Reliability Validity. The results of the validation are re-
peatable and reliable because we use freely open-source programs that can
be freely downloaded from the internet. The results are available in our arte-
facts [1].

Generalisability. The main threat to generalisability is that only two tools
are considered, Paprika and aDoctor. However, both tools are popular,
available, representative of the techniques used in the literature and have been
widely studied by the scientific community. They are therefore representative
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Challenge Associated studied code smells
Identify code smells characterised
by the use of a method call or
a sequence of method calls.

DW

Identify code smells characterised
by runtime information.

HAS, HBR, HSS, IOD, NLMR

Identify code smells characterised
by undesired data variations
during execution.

HMU

Table 5 Challenges of using static analysis to detect behavioural code smells.

of the tools of concern for the detection of Android code smells using static
analysis. The use of other tools for further validation should be considered.

4 Lessons learned from empirical study

We have seen the issues with behavioural code smells detection rules in aDoc-
tor and Paprika. However, as we detail in Threats to Validity in Section 3.6,
we can generalise the findings to other static detection tools. The challenges
encountered are related to the three categories of behavioural code smells iden-
tified earlier in the study. The challenges with their associated studied code
smells are depicted in Table 5. Through static analysis, we can hardly detect
code smells characterised by the use of a method call or a sequence of method
calls, such as DW where an acquire must be followed by a release. It is also
difficult to detect code smells characterised by runtime information. For ex-
ample, HAS, HSS and HBR where the execution of the methods should not be
too long or blocking. This is also the case for IOD where the execution time
should be short and NLMR where memory should be released. Finally, it is
challenging to detect code smells characterised by undesired data variations
during execution. For example, for HMU, the size of an ArrayMap should not
become excessively large and HashMap should not be used for short structures.
The findings can therefore be generalised to any behavioural code smells that
fall into one of these three categories.

At this point, we have seen the limitations of static-only detection for
code smells that show a strong behavioural aspect. Several approaches can
be used to consider the behaviour of the app. Modelling the application’s
behaviour, applying model checking or performing dynamic analysis. We will
explore solutions through dynamic analysis.

First, for each behavioural code smell discussed in this paper, we show how
such a dynamic detection can be done. Then, we discuss and look further at
which state-of-the-art code smells are behavioural and could use a dynamic
analysis.
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4.1 Recommendations on Code Smells Studied

From the analysis and the different feedback of the real app examples, we
show how the different behavioural code smells studied could be addressed by
a dynamic analysis.

DW: A static analysis makes it rather difficult to know if the two methods,
acquire and release are called during execution. Looking at the execution trace
by a dynamic analysis would permit to see if these two methods are properly
called. If they are properly called, we can verify if the time between the two
calls is not excessively long. Furthermore, one could also check that the bat-
tery has not been drained too heavily by monitoring the battery.

NLMR: Here the goal is to determine when the app is in the background or
when it starts to run out of memory, if it frees the unnecessary resources. A
dynamic analysis could hence monitor, during the execution of the app, that
in such cases the memory is really freed. Such a dynamic analysis would com-
plete a static analysis, which already allows detecting the classes that have
not defined the method.

HMU: In conformance with the initial definition, it is better to use Sim-
pleArrayMap or ArrayMap for small sets up to hundreds of elements, and use
HashMap for bigger instances. A dynamic analysis consists in verifying two
assertions by monitoring the evolution of the content of the instances of these
structures. Firstly, if a SimpleArrayMap at a given time exceeds the limit given
by the Android recommendations, then we report a code smell. Secondly, if
during an entire execution of the app, an HashMap is below this limit then a
code smell is raised.

HBR, HAS and HSS These code smells, which are very similar, indicate
that we do not expect these methods to be too time-consuming or blocking
because they run on the main process and not on a dedicated process. Rather
than looking statically at whether they seem too long using metrics such as
the number of instructions, a dynamic analysis would be more precise to de-
termine if a method was indeed too time-consuming during the execution of
the app.

IOD: Whether the onDraw method has a too long execution time or is too
memory-hungry, it is complex to determine without taking into considera-
tion the execution of the app. A static analysis can simply give indications
by looking at specific initialisations or operations. A dynamic analysis could
tell, by observing the execution of the app, whether the onDraw method is
too time-consuming or memory-hungry. The search for memory allocations by
initialisation is, however, possible by a static analysis by searching for instruc-
tions involving memory allocation.
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Tool Could Use Do not need
Paprika (13) 7(55%)

NLMR, HMU, IOD, HAS,
HSS, HBR, UIO

6(45%)
MIM, LIC, UCS, UHA,
IGS, IWR

aDoctor (15) 5(33%)
DW, NLMR, DTWC, UC,
LT

10(67%)
DR, IDFP, IDS, ISQLQ,
LIC, MIM, PD, RAM,
SL, IGS

Total (28) 12(43%) 16(57%)

Table 6 Number of code smells that could use or do not need a dynamic analysis for the
detection.

4.2 Code Smells on the State of the Art

The code smells detected by Paprika usually offer greater opportunity for dy-
namic detection. This is due to the nature of the smells addressed by Paprika,
with smells impacting the performance, the graphic display, the memory and
the process blocking. These kinds of smells have a clear behavioural aspect
suggesting that inspecting the execution of apps will lead to a better detec-
tion.

As for the aDoctor tool, it focuses on different types of code smells that
are usually related to the good uses of Android-specific methods. Yet, some
code smells still could benefit from a dynamic detection, but most of them
do not need it because it often consists of checking the presence of methods
or replacing some methods with another one. We recall that Paprika and
aDoctor have four code smells in common: NLMR, MIM, LIC and IGS.
Static and dynamic analysis are not exclusive, both methods can be combined
to detect code smells.

Table 6 gives the number of code smells detected by the two tools that
could use or do not need dynamic techniques for a detection closer to the
reality. These results are obtained by an analysis of the definition of the code
smells, among those for which the behaviour of the app is to be taken into
consideration to know if the code smell is well respected. Above all, the nature
of the returned results is taken into consideration, as well as the extent to
which the detected instances must be verified. Many code smells (57%) are not
suitable for dynamic techniques due to their definition consisting of checking
the presence of a method or an attribute. For example, Unsupported Hardware
Acceleration (UHA) is a code smell that suggests avoiding drawPath operation
of the Android class Canvas, advising replacing it by multiple drawLine calls.
Such a description only needs a static analysis. The code smells that do not
need dynamic analysis are MIM, LIC, UCS, IGS, IWR and UHA for Paprika
and DR, IDFP, IDS, IGS, ISQLQ, LIC, MIM, PD, RAM and SL for aDoctor.
Meanwhile, nearly 43% of the code smells seem to have an insufficient detection
with the current methods due to their dynamic nature, like the seven studied
code smells in this paper. In addition to the code smells studied in the paper,
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the code smells in this category are UIO for Paprika, and DTWC, UC and LT
for aDoctor. The entries in this table are correlated with those in Table 1.

We decide to put aside the code smells described as security smells [12].
Even if there are many described, we concentrate on the smells impacting the
quality of the app rather than the security. Indeed, security code smells usually
consist of the use of a safer method/structure/class, along with checking the
presence of a parameter or a variable. The triviality of these code smells does
not seem to be a good fit for dynamic techniques.

Taking into consideration the dynamic aspect makes it possible to extract
new code smells that were not previously categorised. In particular, code smells
concerning memory, execution time, process blocking. This is because the other
classifications of Android-specific code smells in the state of the art did not
describe code smells that they could not detect at all.

Although dynamic analysis is more precise than static analysis, it requires
executing the app. However, we must take into consideration that in many
cases, developers do not have ready-to-go test cases. Using dynamic analysis
could take more time and also requires artefacts not always so common in
mobile apps, like test cases.

Finally, some code smells, such as HMU and HSS, define some thresholds
in their detection rules. For example, Paprika detects the HSS code smell
by computing two metrics, the number of instructions and the cyclomatic
complexity. It defines a threshold for both of them. Each method having a
number of instructions greater than 17 or cyclomatic complexity greater than
3.5 is detected as a code smell. Through dynamic analysis, more appropriate
metrics can be applied. For the HSS code smell, the execution time can be
taken into consideration. Detecting them dynamically would still be difficult
as we still have to define a threshold, like the threshold for the execution time
for the HSS code smell. However, a dynamic detection allows having more
appropriate metrics and thresholds, like execution time or released memory,
which leads to a better detection for the behavioural code smells.

5 Conclusion and Future Work

In this paper, we presented an empirical study on the detection of code smells
within mobile apps. As this study is the first of its kind on the detection of
mobile code smells, it is still conducted on a small scale because it requires
extensive manual work. We analysed and compared Paprika and aDoctor
on their approach, both of which are based on static analysis. We focused
only on specific code smells concerning the behaviour of the app. We showed
that the tools return false negatives and false positives for these behavioural
code smells, which affect the effectiveness of the tools. We have shown with a
qualitative study on specific code smells that some apps that were not flagged
as having smells, did not, however, meet the literal definition of the smells.
A non-negligible portion of the detected code smells are false positives, i.e.,
detected code smells that should not have been detected. We have investigated



An empirical study of Android behavioural code smells detection 37

the detection rules to discover the problems that cause these errors in the de-
tection. Moreover, we discussed the impacts of these detection rules on the
results. This is the first preliminary study of its kind on this topic, to raise
awareness in the community to provide detection tools that are more adapted
to address behavioural code smells. It is essential to avoid false positives and
false negatives to assist the developer as much as possible in the develop-
ment of the app. Besides, we promote the need to consider behaviour in the
area of Android code smells detection where many concerns are essentially be-
havioural. In future work, we are planning to extend our study to more apps
and code smells of a dynamic nature not handled by the current tools. We
are also planning to propose an automated tool-based approach that detects
behavioural code smells through dynamic analysis.
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COMMENTS FOR THE AUTHOR:
One reviewer has already given accept in the last round and Reviewer 2 in

this round also gave accept. Reviewer 1 still has a minor comment, which is
about the use of wording ”source code describing an inappropriate behaviour”
being misleading. Please clarify if it’s about API misuse or it’s just the seman-
tics of the code is inappropriate.

I will check the revision on this minor point without the need of forwarding
to reviewers for another round.

Reviewer 1: I would like to thank the authors for carefully addressing my
comments in the previous revision. In general, I’m mostly happy with the
revisions and clarifications.

After reading the clarification on R1C3, I still hold reservations on what
exactly ”describing” means. I’m still not sure whether I correctly understand
what the authors mean. It seems that the code should explicitly show some API
misuse and the authors are defining such misuses as inappropriate behaviours.
So, the word ”behaviour” is not referring to app runtime behaviour? If this is
the case, for IDS, why can’t we consider ”the use of HashMap<Integer,Object>”
itself as an inappropriate behaviour and thereby, IDS is also describing an in-
appropriate behaviour?

I do hope that the authors can further polish this definition in the final
version.

It is true that the term “behaviour” can be confusing as it can have a
dual meaning. As stated by the reviewer, it can refer to the app runtime
behaviour, for example a low performance of the app as in the IDS code smell.
In the current paper, we use the term “software quality” to refer to such app
runtime behaviour but also to refer to other concerns involving performance,
energy consumption, and memory. The term “software quality” is thus more
general and includes app runtime behaviour (also referring to performance).
But in our case, we use “behaviour” to refer specifically to code execution
behaviour, i.e. an occurrence or a sequence of observable code events or actions
during execution. For example, the DW code smell describes the following
inappropriate behaviour: A call to the acquire method is not followed by a call
of the release method.

All studied code smells (including behavioural and non-behavioural ones)
have a bad software quality impact. However, behavioural code smells have
the specificity to refer to characteristics in the source code inducing an inap-
propriate code behaviour during the execution. The code characteristics can
refer to API misuse but not only, it can also refer to common code usage, for
example the use of specific code structures such as HashMap vs. SimpleAr-
rayMap/ArrayMap.

We refine the definition of “behavioural code smells” to remove any ambi-
guity. We also rephrase the related explanation of the IDS code smell.


