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Abstract Configuration Logic (CL) is a formal language that allows a network engi-
neer to express constraints in terms of the actual parameters found in the configuration
of network devices. We present an efficient algorithm that can automatically check a
pool of devices for conformance to a set of CL constraints; moreover, this algorithm
can point to the part of the configuration responsible for the error when a constraint is
violated. Contrary to other validation approaches that require dumping the configura-
tion of the whole network to a central location in order to be verified, we also present
an algorithm that analyzes the correct formulas and greatly helps reduce the amount
of data that need to be transferred to that central location, pushing as much of the
evaluation of the formula locally on each device. The procedure is also backwards-
compatible, in such a way that a device that does not (or only partially) supports a local
evaluation may simply return a subset or all of its configuration. These capabilities
have been integrated into a network management tool called ValidMaker.
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1 Introduction

The management of computer networks is an increasingly complex and error-prone
task. On the one hand, the devices that form a network must behave as a group; however,
on the other hand, each of these devices is managed and configured individually.
The fundamental issue has remained mostly unchanged for many years. A network
engineer is given the responsibility of a pool of devices whose individual configurations
are managed mostly by hand. Every time a new service needs to be added to the
network, he must ensure that the configuration parameters of these devices are set
to appropriate values. This delicate operation must fulfil two goals: implementing
the desired functionality, while preserving proper operation of existing services. This
entails, in particular, that the new configuration parameters must not conflict with
already configured parameters of these or other devices.

Research in the past has shown that between 40% and 70% of changes made to
the configuration of a network fail at their first attempt, and half of these changes are
motivated by a problem located elsewhere in the network [1]. It is reasonable to think
that these figures have not significantly changed in the past couple of years: Feamster
and Balakrishnan revealed more than 1,000 errors in the Border Gateway Protocol
(BGP) configuration of 17 networks [2]; Wool studied firewalls from a quantitative
aspect and reported that all of them were misconfigured in some way or another [3].

How can one be assured that a service installed on a network works correctly? In
a paper about next generation configuration management tools, Burgess and Couch
[4] put forward the concept of aspects, similar in nature to Aspect-Oriented Program-
ming (AOP). An aspect is a set of configuration parameters p1, . . . , pn with domains
D1, . . . ,Dn and a set S⊆ D1×·· ·×Dn of admissible values for these parameters that
can be interdependent. Possible values can be restricted for technical reasons, policies,
QoS requirements or the semantics of the parameters. Any formal language (e.g., logic,
set theory) can be used to compactly represent S.

This task, already non-trivial at the onset, is becoming increasingly hard because
of the fast evolution of the number of devices, the complexity of the configuration, the
specific needs of each service and the sheer number of services a network must be
able to support. When one adds to this portrait the fact that data generally traverses
heterogeneous networks owned by multiple operators, one realizes why the advent
of novel approaches to the problem of network configuration management is vital. In
particular, the issue of the reliance on a central location for managing or examining the
network’s configuration requires to be addressed, for both simplicity and bandwidth
consumption considerations.

In Section 2, we shall see that configuration constraints can arise for various
technical reasons, ranging from syntactical restrictions to the higher-level semantics
of the network services implemented in a network. Moreover, such constraints not
only restrict parameter values on a single device, but they also impose correlations of
multiple parameters in multiple devices. This occurs in such a way that whether some
parameter has a valid value on one device may depend on the value of one or more
parameters located on other devices in the network.

For a reasonably small number of devices, configuration management can still be
handled by hand; assessing configuration correctness can easily be done by manually
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querying relevant parameters on each device (through the use of so-called “show
commands”) and making sure that their values follow the policies and constraints to
enforce. This manual inspection is neither desirable nor possible when managing tens
or hundreds of devices, where some form of automation is required. In turn, the high
costs of automation might pay off for very large networks, but not turn out to be viable
for medium-sized networks, which become too large to be handled by hand, and too
small to benefit from full-scale automation.

To this end, various protocols and tools have been developed, which are sur-
veyed in Section 3. Alas, we shall see that, while such tools are efficient at managing
modifications to configurations, they are much less powerful in their capabilities to au-
tomatically assess their correctness. Simple verification scripts running independently
on each device are not sufficient, since correlations exist between parameters across
multiple devices.

In Section 4, we present a network configuration validation tool called ValidMaker,
using a declarative approach to configuration management. Through a formal language
called Configuration Logic (CL), a network engineer can express constraints in terms
of the actual parameters in the configuration of the devices; each constraint can be
seen as a specific aspect. The integration of a CL validation engine within ValidMaker
allows us to to automatically check a pool of devices for conformance to a set of CL
formulas. As has been shown in previous works, the use of a logic-based formalism
for configuration management provides unique benefits. First, the verification of
configurations on multiple devices can be done very efficiently. Second, the approach
enforces a clean separation between the specification of constraints and its actual
validation. Finally, in the event one of the constraints is violated, we describe an
algorithm that returns the parts of the configuration that are incorrect as evidence to
the user. The validation can then switch to an interactive mode where the user can
explore this evidence, backtrack, and resume validation to locate the exact source of
the error. This functionality is missing from the existing tools that provide a mere
yes/no answer.

The solution adopted by the few tools that provide configuration checking capabil-
ities amounts to dumping the configuration of each device to a centralized location,
and to perform whatever verification is needed by providing local, random access
to the complete configuration of the network. One can easily see why this mode
of operation is neither efficient nor desirable for a variety of reasons. This is why
this paper presents a solution for assessing configuration correctness that attempts to
alleviate this problem by borrowing on the concept of lazy evaluation.1 In Section
5, we first show how configuration constraints can be expressed as first-order logical
expressions on formal representations of configurations as hierarchical data structures.
Assessing configuration correctness then amounts to computing whether a set of such
formulas evaluates as true. We then present an algorithm that automatically performs
this evaluation; while the algorithm still requires the need for a centralized point of
verification, the analysis of a formula greatly helps reduce the amount of data that
needs to be transferred to that central location, pushing as much of the evaluation of

1 In programming, lazy evaluation is the process of fetching only the parts of a data structure or object
passed as an argument to a function that are actually accessed by that function.
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the formula locally on each device. The procedure is also backwards-compatible, in
such a way that a device that does not, or only partially supports local evaluation, may
simply return a subset or all of its configuration.

An implementation of this algorithm is presented in Section 6, and its evaluation on
synthetically generated configurations is then discussed. Preliminary results indicate
that, for some configuration constraints, almost all the verification can be performed
locally. Even for constraints that impose correlations on parameters of multiple devices,
only the minimal information required for verifying these correlations is transferred
to the centralized engine, resulting in considerable savings in terms of consumed
bandwidth.

2 Network Device Configuration Correctness

In this section, we first formally define the concept of network device configuration,
and then introduce the notion of configuration correctness by providing examples of
constraints over configuration parameters taken from a real-world network service.

2.1 Devices and Configurations

What we define as a device can be a hardware component such as a router, a switch,
or a wireless access point or gateway. This device has its own internal features and
communication interfaces and usually varies depending on its manufacturer (for
physical devices) or its version (for virtual devices). The main characteristic of a
device is that its default behaviour can be modified dynamically through configuration.

The configuration of a device corresponds to a set of parameters and associated
values, recorded by the device and used for its operations. These settings allow one to
customize the device, for example by setting its physical interfaces, by setting rules
for data redirection, by adapting the generic behaviour of the device to the network, or
by modifying its behaviour according to events received in the past.

Editable elements in a configuration are called parameters. These parameters
are the elements used to customize the behaviour of a device for a given network.
Parameter values can be numeric (e.g., an IP address or subnet mask number), strings
(e.g., the name of an Ethernet interface) or be complex data structures (e.g., the state
of a port).

The precise form of a configuration within a device depends on its manufacturer.
For instance, the manufacturer Cisco uses a batch file containing Command Line
Interface (CLI) commands and associated values. This file is hierarchized, as some
commands make the device enter or exit from a mode (a particular context, such
as the configuration of a specific interface) or a submode. More generally, we shall
consider (without loss of generality) that we can reduce the configuration of each
device, regardless of its vendor (Cisco, Juniper, etc.) to a generic configuration in an
XML format (or so-called “Meta-CLI”) as is shown in Figure 1. This uniformization
of configurations is out of the scope of the present paper and has already studied in
previous work [5].
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!

version 12.0

!

hostname Pomerol

!

interface Loopback0

ip address 10.10.10.3 255.255.255.255

ip router isis

Fig. 1: A simple example of a Cisco device configuration

2.2 Configuration Correctness

The parameters of a configuration cannot take any arbitrary value. For a configuration
to be considered correct, a number of rules must be applied depending on the services
that the device is required to support. Constraints usually describe the necessary
conditions that must be met for a configuration to be consistent.

We illustrate this using a simple example based on the configuration of a Virtual
Local Area Network (VLAN), generally handled by network switches, and which
allows a network to be partitioned into logical segments. Each port of a switch can
be assigned to a particular VLAN. Ports that are assigned to the same VLAN are
able to communicate at OSI Layer 2 while ports not assigned to the same VLAN
require Layer 3 communication. All the switches that need to share Layer 2 intra-
VLAN communication need to be connected by a link called a trunk that joins two
interfaces (one on each switch) and these interfaces should be encapsulated in the
same mode. IEEE 802.1Q [6] and the Virtual Trunking Protocol (VTP) [7] are two
popular protocols involved in the management of VLANs.

The correct configuration of a VLAN imposes a number of constraints on the
parameter values that can be found on each switch. We give two examples of such
constraints:

1. No two devices on the same VLAN can have the same address for more than one
interface. Since IP addresses can be manually configured for each interface on a
device, conflicts between addresses can occur. This can make one of the interfaces,
which shares the same address, to appear to be defective and cause interruptions in
the communications.

2. Every device has to be a VTP client or a VTP server, and only one server can
exist. This means that for each switch where VTP is activated, a parameter must
define whether the switch acts as a client or a server (the so-called “VTP mode”).
Moreover, a conflict can arise if more than one switch is acting as a server, again
potentially causing interruptions in the network service.

This is just a small sample of configuration constraints that can be elicited. A key
observation is that most constraints impose restrictions on the values of parameters,
and that many times, values inside a device are correlated to values occurring for
other parameters in other devices. The reader can find a more detailed presentation of
VLANs in [5].
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3 State of the Art in Configuration Management

The management of data networks is still a tedious and error-prone task, whose
complexity is constantly increasing due to the evolution of the technologies and of
the equipment used [8, 9]. We now present some protocols and tools for configuration
management.

3.1 Management Protocols

Several protocols exist that are related to network management. We briefly present
them in increasing order of complexity.

3.1.1 FTP

One of the simplest ways of managing configurations is to transfer configurations as
files through a connection using the File Transfer Protocol (FTP). In such a scenario,
each device acts as an FTP server to which configurations are pulled or pushed as
simple files, and any changes made to the configurations are applied immediately. Such
a mode of operation provides almost no error checking; a user can easily overwrite
a working configuration with a file containing syntax errors or erroneous parameter
values, rendering the device incapable of operating. However, it often provides a
fallback method for acting upon a device, in the event higher-level methods fail to
work.

3.1.2 Command-oriented Protocols

Network devices rapidly increase in complexity, and most of them are now running
small-scale operating systems providing a set of commands for modifying their internal
configuration. A popular means of acting upon the configuration of a device emerged
in the form of a Command-Line Interface (CLI), in which communication between
the user and the device is done in text mode in a terminal. Nowadays, most network
devices have an embedded CLI for purposes of troubleshooting and configuration.
Cisco is one of the most prominent users of CLI, with its device operating system
providing a very rich set of thousands of commands. This has led some to redefine the
acronym CLI as “Cisco-Like Interface”.

Although still relatively low-level, the CLI has several advantages over FTP. One
notable improvement is that the network manager can perform modifications on a copy
of the configuration currently in use by the device, called the candidate configuration.
Basic verifications on the configuration commands (such as syntax error or invalid
parameter ranges) are performed before the configuration can be put into production
(i.e., set as the running configuration). Moreover, the CLI also provides ways for
a user to display various data about the current state of the device, using so-called
show commands, called this way in Cisco-talk because many write operations on a
configuration can be turned into read operations by prefixing them by the keyword
show.
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3.1.3 Variable-oriented Protocols

The previous two protocols were mainly used for remote connections to equipment,
but make it difficult to get an overview of the infrastructure as each device is accessed
individually. Moreover, browsing or searching through the configuration is a tedious
task that can only be done by issuing multiple show commands to various devices
and in various modes. To alleviate these issues, the Simple Network Management
Protocol (SNMP) was standardized by the Internet Engineering Task Force (IETF)
[10]. The initialism SNMP is typically used to refer to a set of specifications including
the protocol itself, the definition of an information model, a corresponding database
and finally, related concepts. One of the objectives is to enable independence between
architecture and mechanisms of particular hosts or particular gateways as much as
possible.

The Management Information Base (MIB) is probably the most important element
of SNMP that allows one to describe a large number of components (networks, routers,
servers, etc.) in a standard way. The structure of the MIB is hierarchical; data elements
are grouped into a tree. Each parameter of every device from every vendor is given
a unique sequence of dot-separated digits that represents it into a global namespace.
Managing parameters using SNMP then amounts to querying or writing to parameters
by giving their unique numerical identifier.

As such, SNMP can be dubbed a “variable-oriented” protocol, as each individual
element of the MIB can be accessed and modified on an individual basis. This structure
can be seen as an improvement over FTP and CLI, in that SNMP somehow standardizes
the mechanism for interacting with configurations. SNMP agents, coupled with SNMP
client software, makes it possible to browse through the configuration of a single
device or even of multiple devices, and perform queries and modifications via a more
user-friendly interface.

3.1.4 Document-oriented Protocols

The structure of the MIB, however, still imposes some rigidity to the way configuration
information must be structured and can be accessed. The Network Configuration Pro-
tocol, called NETCONF, is an IETF network management protocol [11] that is being
adopted by major network equipment providers. It is an XML-based protocol used to
manage the configuration of networking equipment (typically routers or switches) and
is intended to provide extended features over SNMP. NETCONF provides mechanisms
to install, manipulate, and delete the configuration of network devices. It specifies a
protocol that allows a manager to change the configuration of the equipment (device)
by sending and receiving XML data. Because of its XML nature, NETCONF can be
called a “document-oriented” management protocol.

To this end, NETCONF provides a small set of low-level operations to manage
device configurations and retrieve device state information. The base protocol provides
operations to retrieve, edit, copy, and delete configuration datastores. Additional
operations are provided, based on the capabilities advertised by the device [11].

7



3.1.5 YANG

Complementary to NETCONF is the YANG2 language [12] that allows the flexible
description of the data structures used to represent the configuration of an equipment
managed through NETCONF. In a way similar to what schemas are to XML doc-
uments, YANG declarations can specify the hierarchical structure of configuration
parameters (such as cardinality constraints on child elements), their types, and optional
arguments.

One notable feature of YANG is its capability to express constraints on the possible
structure of a configuration. For example, the “when” statement makes its parent
data definition statement conditional. The node defined by the parent data definition
statement is only valid when the condition specified by the “when” statement is
satisfied. This condition itself is an XPath expression that can be used to query other
parts of the tree. Similarly, the “must” statement takes as an argument a string that
contains an XPath expression, and is used to formally declare a constraint on valid
data.

3.2 Management Tools

The aforementioned protocols provide means of accessing configurations, but do
not provide any management facilities. These functionalities are assumed by tools
operating over one of these protocols. We mention some of the most prominent tools
below.

3.2.1 Cfengine

Cfengine [13] is a tool for automatic configuration management. It is usually run
periodically on hosts. When started, it retrieves an instance of policy definitions or
established constraints from the main server (the one hosting the policy set) and tries
to adapt its local system to this policy set. This makes it possible to declare constraints
or requirements on an infrastructure level beforehand. During its execution, Cfengine
compares the desired configuration and the one on the equipment [14] and applies
the required modifications, if any. Cfengine allows the deployment of configurations
on a set of computers, the synchronization of files on heterogeneous servers, and the
sending of commands to these servers.

3.2.2 Kiwi CatTools

CatTools is an application that allows automated configuration management of devices
such as routers, switches and firewalls [15]. CatTools uses Telnet or SSH for connec-
tion, and an embedded TFTP server to push its configurations onto equipment. After an
interval of time defined by the administrator, CatTools will retrieve the configuration
of each device and compare it to the version on the server; if different, CatTools will
replace the one on the device with the one on the server.

2 “Yet Another Network Language”

8



3.2.3 Puppet

Puppet is a management tool for automatic configuration dedicated to server operating
systems [16]. Puppet allows remote deployment of configurations on a set of servers
or network devices in a very short time. Like the other tools, Puppet works in a client-
server mode. The server part, called “Puppetmaster”, is installed on the main server.
The server allows one to create and edit configuration files in the form of a manifesto.
The server listens for client connections, then indicates to them which manifesto they
should apply.

3.2.4 Chef

Chef is another tool for automatic management of configurations [17]. The operation
of Chef is based on abstract definitions known as “cookbooks”. Cookbooks contain
“recipes” that are scripts written in Ruby and managed as source code. Each definition
describes how a specific part of the infrastructure should be built and managed. Chef
then applies these definitions automatically on the equipment as specified, resulting in
a fully automated infrastructure. When a new server is online, the only thing that Chef
needs to know is what cookbooks must be applied to the new equipment. The Chef
server acts as a data concentrator for configurations; it stores cookbooks and policies
and contains an inventory of all available nodes.

3.2.5 SmartFrog

SmartFrog [18] is another framework for creating configuration-driven systems. It has
been designed with the express purpose of making the design, deployment and man-
agement of distributed component-based systems simpler and more robust. It provides
its own declarative data description notation that is defined along with supporting tools
and programmatic data structures. Configuration descriptions, especially those that
are to be used as templates and so modified through extension, can also be validated
against component-specific assumptions that may not be present in the structure alone.
To this end, SmartFrog allows one to express simple Boolean constraints on parameter
values. However, it lacks advanced features allowing one to, e.g., correlate parameter
values in the configuration of multiple devices.

3.3 A Need for Declarative Configuration Management

Very few of the solutions described in the previous section address the issue of configu-
ration correctness. Management protocols allow modifications to configurations of one
device at a time, and can (at the most) perform some form of syntactical or structural
checking of the modifications to the parameters to be applied. The only exception is
YANG that makes it possible to define constraints over a configuration, and in some
cases, the possible values it can contain. Unfortunately, YANG only accepts XPath 1.0
expressions as conditions. They lack the variables and first-order quantifiers that are
required to model some of the consistency rules that we will describe in Section 4.
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Management tools, on their side, allow the automation of various tasks on multiple
devices, but offer very few in the way of expressing and verifying correctness of
a configuration according to rules. Moreover, it might be desirable, when one of
the configuration rules is violated in a given network, to be shown evidence for the
failure. For example, if all devices must agree on the value of a parameter, a pointer
to the device having a different value could be given. Similarly, if all neighbors of
a device must be declared in some section of its configuration, the address of the
missing neighbors could be provided as a guide to the administrator. In other words,
counter-examples, or “witnesses” to the effect that a constraint is violated, can be
powerful tools to help correct an error (instead of a simple true/false verdict). Again,
none of the existing management tools provide advanced counter-example generation
features besides a few hard-coded capabilities restricted to very simple cases (e.g.,
when a parameter is outside the set of its valid values).

The network management community has proposed other approaches. Some
frameworks that are under development consist in enriching a UML model with a set
of constraints that can be resolved using policies. The Policy Description Language
(PDL), developed by Lobo et al. [19], is designed for representing event and action
oriented generic policy; it has been extended into the CIMSPL policy language
for the distributed management of infrastructures [20] that complies with the CIM
(Common Information Model) Policy Model and fully incorporates CIM constructs.
Similarly, the Ponder language [21] is an example of a policy-based system for service
management describing constraints in the Object Constraint Language (OCL) [22]
on a CIM model. The DMTF community as a whole is working on using OCL in
conjunction with CIM. However, object-oriented concepts like class relationships
are not sufficient for modelling dependencies between configuration parameters in
heterogeneous topologies, technologies and device types. For example, it is far from
clear how the verification of an arbitrary OCL constraint could be carried out in a
distributed fashion, as will be described in Section 5 for the formal language introduced
in this paper.

4 Logic-Based Configuration Management

Following the requirements for future network configuration tools suggested in [4],
the network configuration management tool, ValidMaker, has been developed by
the team of Lab Téléinfo at Université du Québec à Montréal. The tool serves two
main purposes. First, it levels the heterogeneity of devices by providing a common
representation of configuration information called Meta-CLI. Second, ValidMaker
allows formal constraints to be expressed on Meta-CLI structures. To this end, it
provides a language called Configuration Logic (CL) that allows a network engineer
to input custom constraints, and a CL validation engine to automatically check a given
configuration for conformance. The constraints can impose dependencies between
many parameters of the configuration and correspond to the definition of an aspect in
[4].

To fulfil these two goals, the ValidMaker tool is composed of two modules, as
shown in Figure 2. We briefly describe these two modules below.
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Fig. 2: The architecture of the ValidMaker configuration tool

Fig. 3: A portion of a Meta-CLI configuration tree

4.1 Device Configuration Manager

The device configuration manager is the part of the system responsible for commu-
nicating with the devices, retrieving their configuration and transforming them into
Meta-CLI structures. In reverse, Meta-CLI configurations inside ValidMaker can be
translated back into runnable configurations sent to the devices in the proper format,
according to their version number.

As explained in [23], the configuration of network devices, such as routers and
switches, can be represented as a tree where each node is a pair composed of a name
and a value. This tree represents the hierarchy of parameters inherent in the configu-
ration of such devices. The Meta-CLI structures used in the internal representation
of configurations in ValidMaker use this tree form. As an example, Figure 3 shows
the representation of the configuration of a switch. Configurations are currently re-
trieved through a shared directory, where device configurations are dumped to text
files, imported into ValidMaker and converted (on-the-fly) into Meta-CLI structures. A
number of Cisco devices are supported; the actual process by which the configurations
are converted is beyond the scope of the present paper.
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Fig. 4: Illustrates a screenshot from ValidMaker’s configuration view. The configura-
tion of a device is abstracted as a tree of name-value pairs (left window). When a CL
constraint is violated on a given configuration, ValidMaker highlights the part of the
formula that is false (center window). The user is presented a list of tree nodes that
violate that part of the formula (right window). The validation can then be resumed on
one of these nodes to further explore the cause of the violation.

4.2 Configuration Logic Validation Engine

The configuration logic Validation Engine is the part of ValidMaker responsible for
the verification and automatic validation of the configuration file. Once the device
configurations are abstracted into Meta-CLI trees of name-value pairs, ValidMaker
allows the network engineer to express formal constraints on these trees with the
means of Configuration Logic (CL) [8].

4.2.1 Formalism, Syntax and Semantics of CL

CL formulas use the traditional Boolean connectives of classical propositional logic:
∧ (“and”), ∨ (“or”), ¬ (“not”),→ (“implies”). The notion of path is central to CL. A
path is a sequence of name-value pairs; for example, the following is an existing path
in the tree from Figure 3:

device=switch-1, interface=fe02, encapsulation=dot1q

For the sake of simplicity, we shall represent paths in the shorthand form p = x, where
p is a list of names and x is a list of values or variables standing for actual values;
hence, the notation p = x is simply a shorthand way of writing p1 = x1, p2 = x2, . . . ,
pn = xn. The domain function ν is used to query the contents of a tree T according
to some path p = x. More precisely, ν(T ; p = x, p) returns the set of all values for
parameter p at the end of path p = x in tree T .
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T |= ¬ϕ ≡ T 6|= ϕ

T |= ϕ ∨ψ ≡ T |= ϕ or T |= ψ

T |= ϕ ∧ψ ≡ T |= ϕ and T |= ψ

T |= ϕ → ψ ≡ T 6|= ϕ or T |= ψ

T |= 〈p = x ; p = x〉ϕ(x) ≡ T |= ϕ(k) for some k ∈ ν(T ; p = x; p)

T |= [p = x ; p = x] ϕ(x) ≡ T |= ϕ(k) for each k ∈ ν(T ; p = x; p)

T |= k1 = k2 ≡ k1 and k2 have the same value

Table 1: The recursive semantics of Configuration Logic

The universal quantifier, identified by [ ], indicates a path in the tree and imposes
that a formula be true for all nodes at the end of that path. For example, a formula
of the form [device = s1] s1 6= abc asserts that for every root node with name “device”
and value s1, then s1 does not equal “abc”. In other words, no device has “abc” as
the value of its top-level node. Likewise, the existential quantifier, identified by 〈 〉,
indicates a path in the tree and imposes that a formula be true for some node at the
end of that path.

Quantification in CL is location-based, as there can be multiple nodes with the
same name (e.g., p). The set of possible values for p is relative to the particular
subtree of the global configuration one is talking about. This is why a quantifier in CL
always carries the path p = x leading to a subtree (if any) that may refer to previously
quantified variables.

A tree T is said to satisfy some CL formula ϕ , and is noted T |= ϕ , when the
recursive evaluation of ϕ on T returns true. The complete semantics of CL is summa-
rized in Table 1; the recursive application of these rules provides a bona fide algorithm
for validating any CL formula on any configuration tree. It shall be noted that the
evaluation of a quantifier successively replaces the occurrences of its variable by a set
of values determined by ν ; hence, the base case for the recursion always amounts to
the comparison of two hard values.

For the sake of simplicity, it shall also be noted that ground terms are considered
to be equality comparisons between two values. The semantics of CL can easily
be extended to allow arbitrary predicates or arity greater than 2, of which classical
equality is but a particular case.

For example, consider the following CL formula:

CL Constraint 1

[device = s1] 〈device = s1 ; vtp mode = x〉x = client
∨〈device = s1 ; vtp mode = x〉x = server

This formula reads as follows: for every root node with name “device” and value
s1, there exists a node under “device = s1” with name “vtp mode” and value x, such
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that x is equal to “client”, or that there exists a node under “device = s1” with name
“vtp mode” and value x, such that x is equal to “server”. In the example configuration
shown in Figure 4, we see that a node exists with the name vtp mode and that its
value is server. This constraint is therefore true for that particular device.

4.2.2 Network constraints in CL

We will use the examples presented in Section 2 to write those constraints into
configuration logic formulas.

For instance, the constraint “No router can have the same address for more than
one interface” can be written as the following CL formula:

[router = r1] [router = r1 ; interface = i1] [router = r1 ; interface = i2]

[router = r1, interface = i1 ; ip-address = ip1]

[router = r1, interface = i2 ; ip-address = ip2] (i1 6= i2→ ip1 6= ip2)

This means that for a router r1 with two interfaces i1 and i2 having IP address as ip1
and ip2, then ip1 and ip2 can never be equal.

Similarly, we can express the constraint “Every switch has to be a VTP client or a
VTP server” can be written as:

[device = s1] (〈device = s1 ; vtp mode = x〉x = client
∨〈device = s1 ; vtp mode = x〉x = server)

This means that for every root node with name “device” and value s1, there exists a
node under “device = s1” with the name “vtp mode” and value x, so that x is equal to
“client”, or that a node exists under “device = s1” with the name “vtp mode” and value
x, so that x is equal to “server”.

4.2.3 Predicates

To improve the readability of CL rules, ValidMaker introduces the concept of predi-
cates. The use of predicates follows the same goal as the decomposition of a computer
program into functions: they are blocks of CL code that can be defined as Boolean
functions, and then called and reused in many CL formulas. Predicates are expressed
in the same way as formulas but can contain arguments. For example, consider the
following predicate:

IsVTPClient(S) :-〈S ; vtp mode = x〉x = client
This predicate states that under the node S passed as an argument, there exists a

node whose name is “vtp mode” and whose value is x, and where x is equal to “client”.
In other words, this predicate returns true whenever S has a child labelled “vtp mode
= client”. The predicate IsVTPServer is defined in a similar way.

IsVTPServer(S) :-〈S ; vtp mode = x〉x = server
Equipped with these predicates, it is possible to simplify CL Constraint 1 and

rewrite it in an alternate way:
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CL Constraint 1 (Alternate)

[device = s1] (IsVTPServer(s1)∨ IsVTPClient(s1))

Starting from basic, low-level predicates that refer directly to configuration pa-
rameters, one defines increasingly higher-level predicates that progressively abstract
these configuration details to capture important functions. The alternate version of
CL Constraint 1 shows it. At the top level, network constraints can be expressed as
a set of broad policies that the network engineer can easily manage. Therefore, the
use of predicates in ValidMaker is an easy and straightforward way to encapsulate
relationships and roles between parameters. This feature is in line with the suggestions
of [4].

ValidMaker provides an interface that allows users to input their own constraints
and predicates. It can also import a set of predefined CL constraints associated to a
particular network service or policy. The CL validation functionality is exposed to the
user as a simple menu entry.

4.3 A ValidMaker Use Case Scenario

In this section, we develop a simple configuration example based on the Virtual
Trunking Protocol for Virtual Local Area Networks (VLANs) and show how our
methodology provides a general environment for formalizing and automatically vali-
dating constraints on actual device configurations. VLANs are indeed recognized as a
specific area of pain that requires the support of configuration management tools, yet
is often neglected in real-world tools. The reader should keep in mind, however, that
our methodology is not tied to a particular device or protocol; earlier works formalize
constraints on Virtual Private Networks [23] in a similar way.

4.3.1 Virtual Local Area Networks and the Virtual Trunking Protocol

Switches allow a network to be partitioned into logical segments through the use of
VLANs. This segmentation is independent of the physical location of the users in
the network. The ports of a switch can be assigned to a particular VLAN. Ports that
are assigned to the same VLAN are able to communicate at Layer 2 while ports not
assigned to the same VLAN require Layer 3 communication. There can be numerous
VLANs on a single switch and all the stations of a VLAN can be distributed on many
switches. All the switches that need to share Layer 2 intra-VLAN communication
need to be connected by a link called a trunk. The trunk joins two interfaces, one on
each switch, and these interfaces should be encapsulated in the same mode. IEEE
802.1Q [6] and VTP [7] are two popular protocols for VLAN trunks.

The VLAN configuration must be entered on each switch where this VLAN is
required. Otherwise, if a port is assigned to a non-existing VLAN then the port is
disabled. The Virtual Trunking Protocol (VTP) [7] has been developed on Cisco
devices to centralize the creation and deletion of VLANs in a network into a VTP
server. This server takes care of creating, deleting, and updating the status of existing
VLANs to the other switches sharing the same VTP domain. The clients that are in the
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same VTP domain of the server will update their VLAN list according to the update.
The switches that are in transparent mode will simply ignore the transmission but will
nevertheless broadcast it so that other switches might get it.

Consider a network of switches where several VLANs are available. In order to
have a working VTP configuration, the network needs a unique VTP server; all other
switches must be VTP clients. This can be enforced by a first set of two constraints:

Configuration Constraint 1 VTP must be activated on all switches.

Configuration Constraint 2 There is a unique VTP server.

Using Configuration Logic, these requirements can be expressed in terms of
predicates and configuration parameters. Configuration Constraint 1 requires that
every switch be either a VTP client or a VTP server; CL Constraint 1 shown in Section
4.2 asserts exactly that. The second constraint makes sure that there is one, and only
one, server in the network. It first states that there exists a device s1, which is a VTP
server, and then that every device s2 different from s1 is a VTP client.

CL Constraint 2 (UniqueServer)

〈device = s1〉(IsVTPServer(s1) ∧ [device = s2] s1 6= s2 → IsVTPClient(s2))

For the needs of the example, we impose that all switches be in the same VTP
domain.

Configuration Constraint 3 All switches must be in the same VTP domain.

This constraint becomes the following CL formula. It states that for every pair of
devices s1 and s2, the predicate “SwitchesInSameVTPDomain” (Table 2) is true. This
predicate asserts that two switches are in the same VTP domain; this is done by
checking that for the two nodes S and T that represent the root of the configuration
tree of two devices, every VTP domain listed under S also appears under T .

CL Constraint 3 (SameVTPDomain)

[device = s1] [device = s2] SwitchesInSameVTPDomain(s1,s2)

Here we used a predicate called SwitchesInSameVTPDomain; this predicate asserts
that two switches are in the same VTP domain. This is done by checking that, for
the two nodes S and T , representing the root of the configuration tree of two devices,
every VTP domain listed under S also appears under T . This predicate can be detailed
as follows:

SwitchesInSameVTPDomain(S;T ) : [S ; vtp domain = x] 〈T ; vtp domain= y〉x= y

Finally, we must impose a technical constraint on VLAN trunks and give its
corresponding CL formula.

Configuration Constraint 4 The interfaces at both ends of a trunk should be defined
as such and encapsulated in the same mode.
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IsTrunk(I) :-〈I ; switchport mode = x〉x = trunk

SwitchesInSameVTPDomain(S,T ) :- [S ; vtp domain = x] 〈T ; vtp domain = y〉x = y

SameEncapsulation(I1, I2) :- [I1 ; switchport encapsulation = x1]

〈I2 ; switchport encapsulation = x2〉(x1 = dot1q∧ x2 = dot1q)∨ (x1 = isl∧ x2 = isl)

Table 2: CL predicates required for the VLAN example.

In CL, this constraint becomes:

CL Constraint 4 (TrunkActive)

[device = s1] [device = s2]

[s1 ; interface = i1] 〈s2 ; interface = i2〉
(InterfacesConnected(i1, i2) → (IsTrunk(i1)

∧ IsTrunk(i2) ∧SameEncapsulation(i1, i2)))

The predicate IsTrunk (Table 2) indicates that the device is a VTP server and that
a specific interface is connected to a trunk. Finally, the predicate SameEncapsulation
verifies that the encapsulation on a VLAN trunk is either IEEE 802.11Q or ISL, and
that both ends use matching protocols. The predicate “InterfacesConnected” is not
a predicate defined in CL, but rather a system primitive that the network can tell us
about. It returns true if the two interfaces are connected by a link.

4.3.2 Interactive Validation of CL Constraints

Once these constraints are defined (or imported), ValidMaker offers the possibility to
automatically validate them on a set of device configurations forming a network. This
validation does not merely return true or false. Rather, the CL validation algorithm
extracts valuable information from the configuration to explain to the user where
and why a given configuration violates a constraint. This interactive counter-example
exploration is unique to ValidMaker and distinguishes it from related work described
earlier.

In order to do so, ValidMaker returns to the user a part P of a configuration and a
sub-formula ϕ not satisfied by P that is the cause of the violation. Such a pair (P,ψ) is
called an evidence. The construction of the evidence for a falsified CL formula follows
a recursive algorithm that depends on the structure of the formula that is false. Let T
be a configuration tree, µ be a function that associates variables in a CL formula with
the tree node it takes its value from, and ν be the evaluation function described earlier.
An evidence is a set of tuples {(ϕ,S1), . . . ,(ϕ,Sn)}, where ϕ is a formula and the Si
are themselves evidence for the subformulas of ϕ . Intuitively, an evidence is meant
to be read top-down, with each of the Si interpreted as alternate explanations for the
falsity of ϕ , expressed in terms of ϕ’s subformulas. Alternately, each evidence can be
seen as a set of configuration elements to correct in order to restore the validity of ϕ .
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ΞT,µ (ϕ ∧ψ) = {(ϕ ∧ψ,{ΞT,µ (ϕ)∪ΞT,µ (ψ))}
ΞT,µ (ϕ ∨ψ) = {(ϕ ∨ψ,ΞT,µ (ϕ)),(ϕ ∨ψ,ΞT,µ (ψ))}

ΞT,µ (〈p = x ; p = x〉ϕ(x)) =
⋃

n∈ν(T ;p=x,p)

{
(〈p = x ; p = x〉ϕ(x),ΞT,µ[x→p=x,p=n](ϕ))

}

ΞT,µ ([p = x ; p = x] ϕ(x)) =

(〈p = x ; p = x〉ϕ(x),
⋃

n∈ν(T ;p=x,p)

{
ΞT,µ[x→p=x,p=n](ϕ))

}
ΞT,µ (x = y) =

{
/0 if ν(T ; µ(x)) = ν(T ; µ(y))
{(x = y,{µ(x),µ(y)})} otherwise

ΞT,µ (x 6= y) =

{
/0 if ν(T ; µ(x)) 6= ν(T ; µ(y))
{(x = y,{µ(x),µ(y)})} otherwise

Table 3: The recursive counter-example generation procedure

At the lowest level, the evidence is made of references to nodes n1,n2, . . . inside
T , and a sub-formula giving the statement between these nodes that is violated. If the
evidence contains a predicate, it is treated as an atomic unit (black box). However, at
the choice of the user, it is possible to step into a predicate and refine the evidence;
ultimately, predicates can be completely eliminated.

To this end, we define a procedure called ΞT,µ that recursively creates the evidence
for a rule given a global configuration tree T , and a mapping µ (initially empty)
between variables and tree nodes. This procedure is detailed in Table 3. It assumes that
implications ϕ → ψ have been transformed into their equivalent form ¬ϕ ∨ψ , and
that all negations in a CL formula have been pushed down to the lowest level using
DeMorgan’s identities.3

The case of the conjunction is straightforward. For a formula ϕ ∧ψ to be true,
both ϕ and ψ must be true. It follows that the evidence for the falsity of ϕ ∧ψ is
the combination of the evidence for the falsity of ϕ and ψ , noted ΞT,µ(ϕ)∪ΞT,µ(ψ).
Similarly, for a formula ϕ ∨ψ to be true, it suffices that either ϕ or ψ be true. The
evidence for the falsity of ϕ ∨ψ hence creates two nodes that represent the two
possible ways by which its validity can be restored. The remaining cases are handled
using a similar intuition.

In some cases, the source of the error can be unequivocally associated to the value
of some parameter that does not fulfil the constraint. This is the case, for example, for
a formula of the form ϕ ∧ψ . For such a formula to be false, then either ϕ or ψ is false.
The evidence returned by the algorithm is therefore the evidence of the first of ϕ or ψ

that evaluates to false.
There are cases, however, where this evidence does not return anything. For

example, a formula of the form 〈device = x〉ϕ(x) asserts that there exists a node
device = x in the configuration, for some value x, such that ϕ(x) is true. If the formula

3 Namely: ¬(ϕ ∨ψ) = ¬ϕ ∧¬ψ , ¬(ϕ ∧ψ) = ¬ϕ ∨¬ψ , ¬ [p = x ; p = x] ϕ(x) = 〈p = x ; p = x〉¬ϕ(x),
¬〈p = x ; p = x〉ϕ(x) = [p = x ; p = x] ¬ϕ(x).
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is false, then no such node exists: ϕ(x) is false for all possible values of x that occur
in the tree.

ValidMaker uses the structure produced by the function Ξ internally to display its
counter-examples to the user in an interactive mode. The validation process is halted,
and the user is presented with a menu showing all the possible values of x, as is shown
in Figure 4. He can then choose one of these values and resume the validation process
on that specific branch, and find out why the branch falsifies the formula.

5 Lazy Evaluation of Configuration Constraints

The analysis of the protocols and management tools described in Section 3 raises
a number of issues. Most importantly, all of these tools expect configurations to
be handled in a centralized location. In the case of ValidMaker, the verification of
configuration correctness is done locally on a mirror image of the complete network.
Unless modifications to the whole network are managed solely through ValidMaker,
the complete configuration of each device must be retrieved every time a verification
is performed to avoid synchronization problems.

The assumption of a central location for the configuration of the whole network
goes against the inherently decentralized nature of networks themselves. For example,
routing protocols do not require a centralized and complete view of the network to
properly assign routes to packets. Similarly, a wide body of work has concentrated
over the years on an ever-increasing distribution in the management of various other
aspects of a network: resource allocation [24], configuration access control [25],
and configurations themselves [26, 27, 28]. The hypothesis of a single configuration
repository, always in sync with each device’s runtime state, may be unrealistic in many
cases. For example, Cisco devices can autonomously negotiate VTP configuration
parameters with their neighbors, and hence, change their configuration parameters
by themselves. In other scenarios, it is flatly impossible, as in the case of autonomic
networks [29, 30].

On a more technical side, keeping a central configuration state can also incur
undesirable bandwidth consumption, to the point where control data occupies an
unacceptable fraction of total bandwidth. The bandwidth consumed by such a proce-
dure can be estimated through a back-of-the-envelope calculation; networks of 1,000
devices are not uncommon, and uncompressed configurations can exceed the size of
the device’s NVRAM (128 kB is a typical value) up to a factor of 3; this indicates
that verifying the configuration amounts to retrieving almost 400 MB of data every
time.4 Unless modifications to the whole network are managed through the same
centralized tool, the complete configuration of each device must be retrieved every
time a verification is performed to avoid synchronization problems. This issue has
long been recognized; discussions on the configuration retrieval capabilities of the
NETCONF protocol from a decade ago already mention, “A less powerful filtering
mechanism would cause more network traffic and thus increase network and CPU

4 http://www.cisco.com/c/en/us/td/docs/ios/12_2/configfun/configuration/guide/

ffun_c/fcf007.html
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load since managers would have to retrieve more data than required if the required
filtering cannot be done on the agent side.”5

In this section, we present a strategy that follows that trend, and show how the
verification of configuration constraints can be verified using only minimal central-
ized information. This strategy takes advantage of the fact that correctness rules are
expressed in a logical formalism that allows them to be analyzed and their evaluation
be optimized through systematic algorithmic processes. We call this set of techniques
lazy evaluation of configurations, as they are similar in spirit to the concept of the
same name in programming languages [31, 32].

5.1 Picking Configuration Subsets with NETCONF

The recursive application of the semantic rules given in Table 1 provides a bona fide
algorithm for the evaluation of any CL formula on any configuration. Every time a
quantifier needs to be evaluated, relevant values given the currently defined variables
are queried on the configuration through the valuation function ν , and each such value
spawns a new subformula to be evaluated recursively.

Unfortunately, as was already highlighted earlier, such an algorithm assumes
random access to any part of the configuration at any time. Consider, for example, the
following expression:

[a = x1] [b = x2] [a = x1 ; c = x3] [b = x2 ; d = x4] x1 = x2→ x3 = x4

Applying the semantics of Table 1 will require first querying all values of parameter
a; for each such value, one will then query all values of parameter b, followed by all
values of parameter c under the a previously fetched. Finally, all values of parameter d
under b will be queried, and the values retrieved will be compared. Assuming they are
equal, the algorithm will backtrack to fetch a new value of parameter d under b, and
eventually a new value of parameter c under a, and so on. Clearly, this is only feasible
if these various parts of the configuration can be fetched very quickly, which rules out
opening and closing a connection to a device every time a new value must be obtained.
Hence, local access to the configuration seems the only reasonable option.

However, knowledge of the formal property to evaluate can be put to good use
to reduce the amount of information that actually needs to be downloaded from each
device. A first step in the lazy evaluation of a configuration for verification purposes
consists in filtering out parts of the global configuration that are not relevant for the
CL formula to verify. In the previous example, clearly, any path in a device’s tree
other than a, b, a/c and b/d has no impact on the outcome of the evaluation algorithm.
Hence, one can only download portions of the configuration corresponding to the
relevant paths. In such a setting, the algorithm still operates in a centralized fashion
but operates on a pruned out version of the global configuration where only relevant
parts of the global tree have been kept.

It turns out that network management protocols provide exactly that kind of
functionality. In particular, NETCONF, following RFC 6241, provides so-called XML

5 http://psg.com/lists/netconf/netconf.2004/msg00448.html
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Fig. 5: A portion of a Meta-CLI configuration tree is illustrated.. Parameter names and
values are abstract.

subtree filtering, which is a mechanism that allows an application to select particular
XML subtrees to include in get and get-config RPC message replies. A small set
of filters for inclusion, simple content exact-match, and selection is provided, which
allows some useful (but also very limited) selection mechanisms.

Conceptually, a subtree filter is comprised of zero or more elements subtrees that
represent the filter selection criteria [11]. At each containment level within a subtree,
the set of sibling nodes is logically processed by the server to determine if its subtree
and path of elements to the root are included in the filter output.

A first possibility is to select nodes according to the namespace they belong to. If
assignment of namespaces to nodes is done carefully, nodes can be selected in a very
flexible way, as was suggested in [33]. Otherwise, nodes can be selected according to
specific criteria, as in the following snippet:

<filter type="subtree">

<top xmlns="http://example.com/schema/1.2/config">

<config_file>

<parameter>

<name_para>ipaddress</name_para>

</parameter>

</config_file>

</top>

</filter>

In this example, the <config_file> and <parameter> nodes are called containment
nodes, and <name_para> is a content match node. Since no sibling nodes of <name>
are specified (and therefore no containment or selection nodes), all of the sibling
nodes of <name_para> are returned in the filter output. Only “parameter” nodes in the
"http://example.com/schema/1.2/config" namespace that match the element
hierarchy and for which the <name> element is equal to “ipaddress” will be included
in the filter output.
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([p = x ; p = x] : ϕ)∧ψ ⇔ [p = x ; p = x] : (ϕ ∧ψ)

([p = x ; p = x] : ϕ)∨ψ ⇔ [p = x ; p = x] : (ϕ ∨ψ)

(〈p = x ; p = x〉 : ϕ)∧ψ ⇔ 〈p = x ; p = x〉 : (ϕ ∧ψ)

(〈p = x ; p = x〉 : ϕ)∨ψ ⇔ 〈p = x ; p = x〉 : (ϕ ∨ψ)

¬〈p = x ; p = x〉 : ϕ ⇔ [p = x ; p = x] : ¬ϕ

¬ [p = x ; p = x] : ϕ ⇔ 〈p = x ; p = x〉 : ¬ϕ

([p = x ; p = x] ϕ)→ ψ ⇔ 〈p = x ; p = x〉(ϕ → ψ)

(〈p = x ; p = x〉ϕ)→ ψ ⇔ [p = x ; p = x] (ϕ → ψ)

ϕ → ([p = x ; p = x] ψ) ⇔ [p = x ; p = x] (ϕ → ψ)

ϕ → (〈p = x ; p = x〉ψ) ⇔ 〈p = x ; p = x〉(ϕ → ψ)

Table 4: Rewriting rules for prenex normal form in CL, where ϕ and ψ are arbitrary
expressions.

5.2 Further Filtering Through Local Evaluation

Consider the following formula:

〈a = x1〉 [b = x2] 〈a = x1 ; c = x3〉
[a = x1,c = x3 ; d = x4] 〈b = x2 ; e = x5〉

x1 = x2∧ x3 > x1∧ x4 = x3∧ x5 > x2

For this formula, basic subtree filtering corresponds in Figure 5 to sending only the
nodes included in the dotted area of the tree. It is possible, however, to further filter
the amount of data that needs to be sent to the centralized validator by performing a
finer analysis of the actual values that may require to be compared with others. This
algorithm is presented in the following.

5.2.1 PNF and DNF Rewriting

The first step is straightforward and consists of rewriting the CL expression in prenex
normal form [34]. This has the effect of obtaining a logically equivalent expression,
but where all quantifiers appear at the beginning of the formula. Table 4 lists the
rewriting rules that are repeatedly applied until the prenex form is obtained.

The second part of this step consists of rewriting the non-quantifier part of the
expression in Disjunctive Normal Form (DNF). By the result of the previous manipu-
lations, the non-quantifier part of the formula is concentrated at the very end of the
expression and can be transformed into DNF by repeatedly applying a number of
transformation rules, as described in Table 5.

The result of this step is an expression of the following form:

Q1Q2 . . .Qq(e1,1∧·· ·∧ em1,1)∨·· ·∨ (en,1∧·· ·∧ emn,n)
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ϕ ∧ (ψ ∨ψ
′) ⇔ (ϕ ∧ψ)∨ (ϕ ∧ψ

′)

ϕ ∨ (ψ ∧ψ
′) ⇔ (ϕ ∨ψ)∧ (ϕ ∨ψ

′)

¬(ϕ ∨ψ) ⇔ ¬ϕ ∧¬ψ

¬(ϕ ∧ψ) ⇔ ¬ϕ ∨¬ψ

¬¬ϕ ⇔ ϕ

Table 5: Rewriting rules for disjunctive normal form in CL, where ϕ , ψ and ψ ′ are
arbitrary expressions.

where all quantifiers occur at the beginning of the formula, followed by an expression
of the form ϕ1∨ϕ2∨ ·· ·∨ϕn. Each ϕi is itself a term of the form e1∧ e2∧ ·· ·∧ em,
where ei is an expression of the form xi ? i j for some binary operator ?. By the rules of
Table 4, this expression can then be rewritten as follows:

(Q1Q2 . . .Qq(e1,1∧·· ·∧ em1,1))∨·· ·∨ (Q1Q2 . . .Qq(en,1∧·· ·∧ emn,n))

We have now reached a point where the original constraint has been decomposed into a
number of “alternatives”, each of which is a quantified formula in PNF and composed
only of conjunctions of Boolean comparisons between variables. The value of the
global constraint can be obtained from the Boolean disjunction of each alternative.
Since each alternative can be handled independently from the others, we describe the
processing of a single such alternative in the following.

5.2.2 Identify Chains of Variable Dependencies

The third step is to identify dependencies between variables of the expression that
can be evaluated locally. This is done by first analyzing the quantified part of the
expression and extracting all maximal chains of quantifiers Q1Q2 . . .Qn so that Qi+1
extends the path defined in Qi by one segment. These quantifiers need not follow
each other directly in the original formula; however, they must occur in the proper
order. For each chain, all constraints involving variables occurring in the chain are
then appended, yielding a set of partial CL formulas containing all constraints local to
each chain.

In our example expressions, two chains can be extracted, along with their respective
constraints, namely:

〈a = x1〉〈a = x1 ; c = x3〉 [a = x1,c = x3 ; d = x4] x3 > x1∧ x4 = x3

and

[b = x2] 〈b = x2 ; e = x5〉x5 > x2
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Fig. 6: The and/or tree for the configuration of Figure 5, for the two dependency
chains identified earlier. Single arcs indicate conjunctions, and double arcs indicate
disjunctions.

5.2.3 Identify Cross-Chain Dependencies

At the end of Step 3, it is possible that some conditions between variables have not
been included into any chain expression. In our example, this is the case for x1 = x2,
since it compares the values of variables between two distinct chains. To prepare each
chain expression for local processing, we annotate each expression by identifying
the variables over which a cross-chain dependency exists. In our present example,
variables x1 and x2 would be marked as such.

5.2.4 Evaluate Locally

The complete set of chain expressions is then sent to every device, which is then
required to evaluate them locally. This evaluation simply amounts to building one
and/or tree for each chain, as shown in Figure 6. This and/or tree is then trimmed of
any nodes and branches that do not satisfy one of the Boolean conditions attached to
this chain. In the previous tree, branches for which a condition evaluates as false are
dotted. For example, in the leftmost tree, node “8” is eliminated because none of its
children satisfy the condition x4 = x3, while its sibling “4” is eliminated because it
violates the condition x3 > x1.

This step ensures backwards compatibility for devices that do not support local
evaluation of constraints. Instead of performing a complete filtering of its configuration,
a device may elect to simply filter the configuration by keeping only the paths occurring
in the quantifiers, without evaluating the Boolean conditions. In an extreme case, the
device may simply ignore the chain expressions and return its whole configuration. In
either case, performing a coarser filtering of the configuration has no impact on the
validity of the final outcome of the algorithm.

5.2.5 Transmit Resulting Tree and Evaluate

In the last step, every device returns the filtered configuration resulting from its local
processing of the chain expressions to the centralized validator. In the trees of Figure
6, this corresponds only to the paths that start from the root and are not dotted. One

24



can see that the fraction of the tree that actually needs to be sent is much smaller even
than a mere filtering of the tree based on the paths occurring in quantifiers; in the first
chain, only the subtree 3–5–5 and 4–6–6 is required, while in the second chain, only
the subtree 7–8 is sent.

The resulting trees are then merged, and the centralized validator then proceeds to
evaluate the original CL formula on this merged tree structure. The end result is that
the centralized validator performs a normal evaluation of the property to verify, but
on an expurgated copy of the global configuration containing only the parameters on
which the global outcome is dependent.

The proof of the correctness of the algorithm is omitted, due to lack of space.
However, intuitively, one can see that the parameter values trimmed locally on each
device have no impact on the global result, as they make one of the conditions of
the expression evaluate to false. Therefore, even if such values have dependencies
with other variables in other chains (and hence possibly in other devices), they cannot
make the global expression true and can then safely be ignored. Note that this is
only possible if the original expression is composed only of conjunctions of atomic
conditions, an hypothesis we can assume because of the transformation into PNF and
DNF in Step 1.

As an additional optimization, if one assumes that all devices have evaluated the
intra-chain conditions, then these conditions can be removed from the expression
(more precisely, replaced by the constant true) upon evaluation at the centralized
validator. In such a case, only the subset of the and/or tree containing variables subject
to cross-chain dependencies needs to be sent. In our example, this corresponds only to
nodes a = 3, a = 4 and b = 7.

One can see the potential for the reduction of data to be transfered to a centralized
location. In our example, sending the complete configuration would require transmit-
ting 30 nodes; applying simple subtree filtering reduces this number to 21. Computing
the and/or tree and evaluating the conditions reduces it further down to 8, and sending
only values subject to cross-chain dependencies takes it down to 3.

6 Experiments

To assess the feasibility of this approach and measure its impact on the amount
of configuration data that needs to be transferred, we implemented the algorithm
described in Section 5.2 and tested it on sample configuration trees. The results of
these experiments are detailed in this section.

6.1 Implementation Details

The algorithm is implemented in Python, and is publicly available.6 The UML class
diagram in Figure 7 describes the data structure used to represent dependency chains.
The main component is the CentralValidation that manages the whole process of

6 https://github.com/sylvainhalle/MetaConfig. Note that the algorithm currently assumes
that the input formula is already in PNF/DNF.
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Fig. 7: Class diagram from lazy evaluation implementation

verifying a logical formula for devices of a given network. The abstract formula to
compute is formatted as a tree (LogicFormulaTree) and stored in the CentralValidation.
Each device receives a copy of this formula.

The valuate() method of the formula is used to valuate the nodes of the tree
recursively, by browsing the corresponding device. It is important to say that only the
values strictly needed to verify the formula are retrieved from the device. If there are
nodes that remain without value and children, they are removed from the formula tree,
in order to minimize space and time requirements. The necessary nodes are only those
whose name is present in the formula to validate (see comprehensive example below).

The compute() method is called to evaluate the nodes according to their nature:
NodeAnd (each child must return true), NodeOr (one child returning true is enough),
Node (neutral, used for the leaves of the tree; only this node’s condition must return
true); the conditions attached to these nodes are also computed. Nodes whose con-
ditions are false are removed. Thus, this function is recursive and returns a Boolean
result. If interdependencies exist between remote nodes or between devices, the result
is a tree that contains all the existing values of the interdependent parameters. In this
case, the Central Validation retrieves a copy of all the LogicalFormulaTree produced
by the devices and analyzes the interdependencies, if any.

The Alias implementation is used to assign a reference to a Node. The Condition
is represented as a link between 2 AbstractTerms and an operator. These can either be
AtomicAliasTerm (value assigned to a Node via an Alias), AtomicConstantTerm (a
constant value) or another simple condition (this structure is recursive).
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The input of our program is a CL formula and multiple device configurations
expressed as Meta-CLI. The output is a Boolean value representing the outcome of
the evaluation of the constraint on the multiple devices.

6.2 Results

We conducted several tests of the algorithm as described below. The device used for
testing was a fictitious configuration tree with simple values, similar to the one shown
in Figure 5.

The first CL formula tested on this configuration was:

[d = x] [d = x ; a = y] y≤ 0

The computation of this formula must have returned true for the given device. This
formula was stored as a tree in memory and sent to the device. It contains a reference
to a command d and to the parameter a in the Meta-CLI file of a given device. The
logical condition y≤ 0 is attached to the node parameter a.

Each device executed the computation locally. To check the formula, it was only
required to retrieve one command name and one parameter value. In this example, it
compared only the values 0 and -1 of parameter a under command d of its configuration.
Hence, it required very little data compared to all the parameters contained in the
complete configuration files. The amount of data to be retrieved for the validation of
the formula on a device containing n nodes was the constant 4: two values for a and
two for d.

We also tested 3 other formulas, as follows:

[d = x] [d = x ; a = y] [d = x ; b = z] y < z

〈d = x〉〈d = x ; a = y〉〈d = x ; b = z〉z = 3∧ y = 0

〈d = x〉〈d = x ; a = y〉 [e = w] [e = w ; c = z] y =−1∧ z = 3

We created multiple device configuration files as detailed in Table 6. Filesets contained
from 1 to 10 files with 5 to 500 randomly generated nodes. For each CL formula and
each configuration, we performed the evaluation of the configuration using both the
lazy evaluation approach described in the previous section, and the “total” approach
that required downloading the complete configuration of each device before starting
the computation. In each case, we measured the amount of data that was required to
be sent to the centralized validator in order to compute the result.

C1 C2 C3
Number of devices 2 5 10
Number of nodes per device 5 100 500

Table 6: Sample configurations generated in the experiments.
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Approach Selective Total
Formula 1 2 3 4 1 2 3 4
C1 8 12 12 12 10 10 10 10
C2 20 30 30 30 500 500 500 500
C3 40 60 60 60 5000 5000 5000 5000

Table 7: Data exchanged in the devices

The results we obtained are listed in Table 7. In both scenarios, we counted as one
unit of bandwidth each tree node that was transmitted by a device to the centralized
validator. We can see that the amount of data exchanged in the lazy approach is
much lower than in the total approach, some times by a factor of 100. One exception
was configuration C1, whose small size, combined with the overhead of marshaling
dependency chains to and from devices, resulted in a slightly higher bandwidth
consumption for the lazy approach. However, one can see that the lazy approach was
very effective as soon as the number of devices and the size of configurations reached
a minimum threshold.

7 Conclusion

In this paper, we tackled the issue of network configuration correctness by showing
with a sample of real-world scenarios how configuration parameters in network devices
are subject to various dependencies. A study of available management protocols and
tools showed that very few solutions offer capabilities for checking configurations
according to user-defined rules, and that those that assume arbitrary access to a
local copy of the complete configuration of the network. This, in turn, incurred high
bandwidth consumption, as the configuration of the entire network had to be dumped
to a central location every time a check for correctness had to be executed.

We then presented a processing strategy, based on the concept of lazy evaluation
that attempted to retrieve as little information as possible from each device for central-
ized processing. This strategy is based on the fact that configuration constraints can be
expressed formally in a language called Configuration Logic, and that CL expressions
can be analyzed to devise filtering rules to be applied on each device. First, parts of the
expression that can be evaluated locally were identified. These parts were sent to the
device, which applied the required filtering and returned to the centralized validator
a simplified version of its complete configuration. The validator then proceeded to
its evaluation as usual, except on a trimmed down version of the configuration where
parameters and values that did not matter in the final outcome were already removed.
Early empirical results show that this technique presents the potential to greatly reduce
the amount of data to be retrieved from each device, while still preserving the same
guarantees on the correctness of the configuration.

This project lends itself to several extensions, optimizations and improvements.
First, it was assumed that all snapshots of configurations (either managed centrally or in
a distributed way) were consistent –that is, no external modification to the configuration
could occur between the start and end of the validation operation. A mechanism for
ensuring the atomicity of the distributed validation process should be considered.
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Moreover, further trimming of the and-or trees produced by each device could be
computed locally, by intersecting multiple and-or trees that share quantified variables,
resulting in increased bandwidth savings. Identifying configuration parameters that
are relevant for the Boolean outcome of a rule could also be used to create alarms,
which would be triggered whenever some parameter present in a pre-computed and/or
tree changes its value.
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