
Quantified Boolean Solving for Achievement
Games

Steve Boucher and Roger Villemaire

Dept. of Computer Science, UQAM, Montreal, Canada
steve.boucher@live.ca,villemaire.roger@uqam.ca

Abstract. Recent developments in the propositional representation of
achievement games have renewed interest in applying the latest advances
in Quantified Boolean Formula technologies to solving these games. How-
ever, the number of quantifier alternations necessary to explore the so-
lution space still impairs and limits the applicability of these methods.
In this paper, we show that one can encode blocking strategies for the
second player and express the last moves of the play with a single string
of existential quantifiers, instead of the usual alternations of universal
and existential quantifiers. We experimentally show that our method im-
proves the performance of state-of-the-art Quantified Boolean Formula
solvers on Harary’s Tic-Tac-Toe, a well-known achievement game.

Keywords: achievement game · Quantified Boolean Formula · winning
strategy · Harary’s Tic-Tac-Toe

1 Introduction

In an achievement game, also known as a positional game, two players take turns
at adding a stone of their color on some board. The first player whose stones
form a target shape wins the game. If no player achieves a target shape, the game
is a draw. Tic-Tac-Toe, Gomoku, and Hex are the most well-known examples.

Typically, these games (in fact their generalizations to arbitrary board sizes)
are PSPACE-complete. This is for instance the case for Gomoku [21] and Hex
[20]. QBF, which ask whether a Quantified Boolean Formula is satisfied, or not,
is the emblematic example of a PSPACE-complete problem [23]. It is therefore
natural to apply QBF methods, developed in the wake of impressive advances
in Propositional Satisfiability Testing (SAT) [1], to achievement games.

Games have also attracted the attention of theoreticians that have produced
many involved combinatorial results [4]. In a way similar to the application of
SAT solving to combinatorial problems, such as [14], it is hence also quite natural
to apply QBF algorithms to the study of combinatorial games.

However, from a QBF perspective, the search for a winning strategy in a
game gives rise to QBFs with many quantifier alternations, in stark contrast to
most other application fields [22]. This is clearly a bottleneck, even if QBF game
encodings have greatly improved recently [6, 18].



2 S. Boucher, R. Villemaire

We present in this paper a QBF encoding for achievement games. We divert
from the standard practice of encoding the existence of a winning strategy for
the first player and rather search for a strategy for the second player that allows
her to either win or get a draw. These two approaches are equivalent since the
first player will win the game, if and only if, the second cannot win or get a draw.
Moreover, we restrict the second player to follow, in the last steps of the game, a
so-called pair paving strategy, which offers the benefit of being expressible with
a string of existential quantifiers, instead of the usual alternation of universal
and existential quantifiers.

With state-of-the-art QBF solvers, we evaluate our approach on Harary’s Tic-
Tac-Toe (HTTT), a game that has been extensively studied [12, 13, 3] and has
also already been used to evaluate QBF game encodings [6, 18]. We show that our
encoding leads to efficient QBF solving for HTTT, and furthermore that it can
be combined with conventional winning strategy encodings to further improve
solving time by iterative deepening.

This paper is structured as follows. Section 2 recalls basic notions on QBF,
Section 3 presents Harary’s Tic-Tac-Toe, and Section 4 recalls related work on
QBF encodings of games. Section 5 presents our encoding and Section 6 our
experimental evaluation. Finally, Section 7 concludes the paper.

2 Quantified Boolean Formulas

We consider Boolean variables, i.e., variables that can take value 1 (true) or 0
(false). A literal is either a variable or its negation. A clause is a disjunction
(OR) of literals and a formula in Conjunctive Normal Form (CNF) is a conjunc-
tion (AND) of clauses. A CNF is furthermore satisfiable if there is an assignment
of values to its variables that makes the formula true under the usual Boolean
operators’ semantics.

A Quantified Boolean Formula (in prenex CNF form) (QBF), is a CNF (the
QBF’s matrix ) preceded by universal (∀) and existential (∃) quantifiers on the
Boolean variables. QBF semantics can be recursively defined on the number of
quantifiers. However, there is an alternative approach that is more relevant to
this paper. Namely, one can consider a QBF to be a game between two players,
existential and universal. The play follows the quantifiers from left to right; the
existential player choosing a value for existentially quantified variables and the
universal player choosing a value for universal quantified variables. The play
ends when all quantifiers have been processed. The existential player then wins
the game if the chosen assignment satisfies the QBF’s matrix, otherwise the
universal player wins the game. A QBF is then satisfied if the existential player
has a winning strategy, namely if the existential player can make choices (that
depend on the universal player’s previous moves) assuring him to win the game.



Quantified Boolean Solving for Achievement Games 3

3 Harary’s Tic-Tac-Toe

F. Harary [7, 11] established the combinatorial analysis of achievement games by
considering two players, usually called Black (first) and White (second), playing
on an N ×N square (regular) board with target shapes formed of the rotations
and reflections of a polyomino (or square animal), which is an edge-connected
set of cells. An animal for which the first player (Black) has a winning strategy
is said to be a winner, otherwise it is a loser. A classic strategy stealing argument
shows that there is in fact no winning strategy for White, since Black could play
according to this strategy, by pretending that there is already some white stone
on the board. So, when there is no winning strategy for Black, there is a blocking
strategy for White that ensures a draw.

Fig. 1: Snaky Fig. 2: Symmetry breaking

Harary has also established that 11 animals are winning when the board size
is large enough and that all other animals, with a single exception, are losers. For
these losers, he determined that White has a domino paving strategy, i.e., there
is a partition of the board into 2-cells animals (dominoes), such that any target
animal on the board contains at least one of these dominoes. White’s blocking
strategy is then simply to play on the second cell of the domino containing
Black’s previous move in order to block Black from winning the game.

For the unsettled case, that of Snaky (Fig. 1), Harary [7] conjectured that
it is a winner, and furthermore that this should be the case for boards of size
15× 15 and more, at least. This question, however, is still open.

As the last remaining case, it is not surprising that Snaky has attracted quite
a lot of attention. For instance, Snaky has been shown to be a loser on 7 × 7
and 8× 8 boards [10] by giving an explicit winning strategy for White that was
found by a branch-and-cut algorithm that supplements a search for a blocking
strategy for White, with a search for a paving of the board by pairs.

4 Related Work

Encodings of games have received some attention by the QBF research commu-
nity. For instance, [9] gives a representation of the Connect-4 game in QBF. This
encoding represents, with Boolean variables, the game configuration and move,
in each turn, up to a maximum of k turns. Since there is a maximum number
of possible turns (for a fixed board size), k is set to this value. A gameover



4 S. Boucher, R. Villemaire

variable, one in each turn, is also used to determine the first player that wins
the game. Finally, existential (universal) quantifiers represent moves of the first
(second) player and the QBF expresses the existence of a winning strategy for
the first player. However, this paper establishes that there are some concerns as
to how to encode the rules of the game.

Indeed, adding game rules as conjuncts to the QBF’s matrix would allow the
second player to break a rule, falsifying the formula, and win the game. Similarly,
adding game rules to the matrix as hypothesis in an implication would allow the
first player to break a rule, satisfying the formula, and win the game.

The paper’s solution is to introduce so-called cheat variables. These are exis-
tentially quantified variables for which conjuncts assuring their equivalence with
a specific cheat (breaking of a rule) by a specific player are added to the matrix.
Conjuncts are then added to the matrix so that a cheat by some player makes
the other player win.

Following [9], a QBF encoding for HTTT and GTTT(p, q), a generalization
of HTTT allowing multiple stones to be laid in one move [5], is proposed in [6].
Experiments on 84 instances on a 3 × 3 board both normal and torus, and 96
instances on a 4 × 4 board, shows that all 3 × 3 instances can be solved in 10
seconds but that no combination of presented solvers and preprocessors allows
to solve all 4× 4 instances in 1000 seconds.

In [18] a general corrective encoding for achievement games is presented. The
successive turns of the game are encoded, and a variable is used to determine
when the game is over. However, contrary to [9] and [6], as soon as the game is
over the board does not change anymore. This allows to check the winning con-
dition solely in the last turn, strongly reducing the number of Boolean variables.

Another innovative aspect of this encoding is that universal variables repre-
sent White’s (second player) choices in a binary encoding. Such a choice deter-
mines White’s move at his turn, except if the game is already over, or if this
choice is illegal (for instance if the position is already occupied). This allows
a White’s choice at every turn. The ladder encoding of [8] is furthermore used
to ensure a single move of a player at her turn. This enforces a single move of
White, even if his choice was illegal. All this prevents White from falsifying the
formula, while keeping the total number of Boolean variables low.

The encoding is evaluated on 20 Hex hand-crafted puzzles and 96 instances
of HTTT on a 4 × 4 board. It is shown that in terms of number of variables
and clauses this encoding of HTTT is much more compact than that of [6] and
solving time is much shorter. Furthermore, all 96 HTTT instances are solved
within a timeout of 1000s. The paper finally proposes five game challenges for
the QBF community including achieving Snaky on a 9× 9 board.

5 The Pairing Encoding

For an achievement game, we consider blocking strategies for the second player,
i.e., ensuring either a win by this second player or a draw. There is a winning
strategy for the first player exactly when there is no blocking strategy for the



Quantified Boolean Solving for Achievement Games 5

second player. Our QBF instances are hence satisfiable (SAT) exactly when the
corresponding instance in one of the previous encodings is unsatisfiable (UN-
SAT). We furthermore restrict ourselves to the following pair paving blocking
strategies.

A paving of the board by pairs, i.e., a partition of the board in pairs of
distinct cells, such that any target shape contains at least one of those pairs,
yields a so-called pair paving blocking strategy (for short a pair paving strategy)
in the following way. The second player simply chooses the cell paired with the
previous move of the first player. Since any target shape contains a pair, and
hence a second player’s stone, the first player does not win the game. Note
that the existence of a pair paving simply necessitates a string of existential
quantifiers, compared to an alternation of universal and existential quantifiers
for a general strategy and should have a positive impact on QBF solving time.

While the existence of a pair paving strategy is enough to settle the game,
its non-existence still leaves open the possibility that there could be some more
involved blocking strategy for the second player. However, similarly to [10], it is
possible to rather look for a pair paving strategy at some point of the game.

Our pairing encoding hence represents a play of the game where, at any point,
the second player can stop the game and search for a pair paving of the remaining
cells. Formally, the pairing encoding represents a game of length k, where the
winning condition checks for a paving of the non-occupied cells by pairs of cells,
such that any target shape, at any position, is canceled, i.e., contains either a
second player’s stone or a pair of the paving.

When k is the maximal play length, our winning condition reduces to checking
that any target shape, at any position contains a second player’s cell, i.e., that
the first player has lost the game. So, with maximal play length k, our instances
will be UNSAT if and only if the first player has a winning strategy. It hence
solves the status of the game but in a complementary way to the usual encodings.

For HTTT this approach should work well with the losers for which Harary
has shown the existence of a domino (hence pair) paving strategy. However,
Harary’s winners could be losers on the board sizes of our experimental section,
and there is no known pair paving strategy in these cases. Finally, Harary’s
considered only regular boards, while we also experiment on torus boards that
“wraps around” on board edges.

To simplify the presentation, we will present the encoding in HTTT’s setting.
The Pairing encoding follows the corrective encoding of [18] but for the fact that
Black/White are universal/existential players, since we are encoding a blocking
strategy, and the winning condition is the existence of a paving.

The encoding is parameterized by W , H, the width and height of the board,
and k the number of turns. Time lapses 0, 1, . . . , k, the board being initialized
at time 0 to contain no stones and moves occur at time points (turns) 1, . . . , k.
A stone is added to the board at the same time point as the move occurs. Black
hence plays at turns 1, 3, . . . , and White at turns 2, 4, . . .. There are WH cells on
the board, and we index pairs of cells by id = 1, . . . ,WH(WH−1)/2. Similarly,
we index target shapes i = 1, 2, . . ..



6 S. Boucher, R. Villemaire

The variables representing the game, and their intended meaning, are defined
as follows.

timet; the game is running at time point t (1)

moveLt,j ; j-th digit of the binary encoding of Black’s move choices (2)

movet,x,y; a stone is laid on cell (x, y) at time point t (3)

laddert,m; ladder encoding for Black’s moves (explained below) (4)

blackt,x,y; there is a black stone on cell (x, y) at time point t (5)

whitet,x,y; there is a white stone on cell (x, y) at time point t (6)

occupiedt,x,y; cell (x, y) is occupied at time point t (7)

pairid; the pair id is in the paving (8)

canceledi,x,y; shape i at position (x, y) is canceled (9)

Quantifier blocks appear in turn order as follows. In turn t = 0,

∃time0 (10)

for t = 1, . . . , k,

∃timet (11)

∀moveLt,j ; in Black’s turns t = 1, 3, . . . , (12)

∃movet,x,y∃laddert,m∃blackt,x,y∃whitet,x,y∃occupiedt,x,y (13)

and as last quantifier block

∃pairid∃canceledi,x,y (14)

The constraints are as follows, where t = 1, . . . , k, x = 1, . . . ,W , and y =
1, . . . ,H.
If the game is still running at time t, it was running at time t− 1.

timet−1 ∨ ¬timet (15)

There is no stone on the board at time t = 0.

¬black0,x,y ∧ ¬white0,x,y ∧ ¬occupied0,x,y (16)

Both players cannot own the same cell.

¬blackt,x,y ∨ ¬whitet,x,y (17)

A stone on a cell remains there at the next turn.

(¬blackt−1,x,y ∨ blackt,x,y) ∧ (¬whitet−1,x,y ∨ whitet,x,y) (18)

When the game is over, no new stones appear on the board.

(timet ∨ blackt−1,x,y ∨ ¬blackt,x,y) ∧ (timet ∨ whitet−1,x,y ∨ ¬whitet,x,y) (19)



Quantified Boolean Solving for Achievement Games 7

If a cell is played, then it is occupied.

(¬blackt,x,y ∨ occupiedt,x,y) ∧ (¬whitet,x,y ∨ occupiedt,x,y) (20)

If a cell is occupied, then it is black or white.

¬occupiedt,x,y ∨ blackt,x,y ∨ whitet,x,y (21)

When the game is over, no more moves are allowed.

timet ∨ ¬movet,x,y (22)

The move is not allowed if the cell is already occupied.

¬occupiedt−1,x,y ∨ ¬movet,x,y (23)

A move sets a stone. Here player is either black when the turn t is odd or white
if it is even (t > 0).

¬movet,x,y ∨ playert,x,y (24)

The universal player, Black, makes a move choice, specified by the moveLt,j

bits assignation and the movet,x,y variables are set accordingly. More precisely,
each cell choice (x, y) is encoded by a string of bits [x, y] of length dlog2(WH)e.
We will denote by [(x, y)]0 the set of i’s for which the i-th bit in this string is 0
and by [(x, y)]1 the set of i’s for which it is 1.

We therefore have, for Black’s turns, t = 1, 3, . . ., that if the game is not over
and the cell (x, y) not occupied at the previous turn, a choice of (x, y) (by the
moveL variables) performs a move on (x, y) (move variables).

¬timet ∨ occupiedt−1,x,y∨∨
j∈[x,y]0

moveLt,j ∨
∨

j∈[x,y]1

¬moveLt,j ∨movet,x,y (25)

By symmetry under rotations, it is sufficient to consider the case where the
first player (Black) plays on the lower left quarter in her first turn, and by
reflection (on the diagonal, see Fig. 2) this can be further reduced to the lower
left triangle of the square board. When generating clauses (25), for the first move
of the first player, only choices of moves in this triangle is hence considered.

For player, other ∈ {white, black}, player being the color of turn t’s player
and other the color of the other player, we have that a player’s stone that was
not placed at this turn, was already there at the previous turn. Similarly, the
other player’s stones were already there at the previous turn.

(movet,x,y ∨ playert−1,x,y ∨ ¬playert,x,y) ∧ (othert−1,x,y ∨ ¬othert,x,y) (26)

In order to ensure that, at each turn where the game is still running, a single
move is done, the corrective encoding [18] uses the ladder encoding of [8]. There



8 S. Boucher, R. Villemaire

are hence laddert,m variables, one for each possible move m. To ensure that a
single move is done, the move m is determined from the position of the “shift”,
from 0 to 1, in the ladder variables. Here, to ease the presentation, the moves
(or equivalently the ladder variables for a turn) are considered ordered, in some
arbitrary way. The key point is that to ensure a unique shift, the last ladder
variable is set to true, and the ladder variables are constrained to be increasing.

More precisely, we have the following constraints.
Ladder variables are increasing and when the game is running, the last ladder

variable is true.

(¬laddert,m ∨ laddert,m+1) ∧ (¬timet ∨ laddert,last) (27)

When the “shift” in the ladder variables occurs, this determines the move.
Therefore, for the first move m = first in the ladder encoding order, if the
variable laddert,first = 1, then move m is done. For a move m different from the
first, if laddert,m−1 = 0 and laddert,m = 1, then move m is done. Here (x, y) is
the destination of move m.

(¬laddert,first ∨movet,x,y) ∧ (laddert,m−1 ∨ ¬laddert,m ∨movet,x,y) (28)

Conversely, if a move is done, the “shift” in the ladder encoding occurs at
that move. Therefore, if the move m to (x, y) is done, then laddert,m = 1 and,
but for the first move, laddert,m−1 = 0.

(¬movet,x,y ∨ laddert,m) ∧ (¬movet,x,y ∨ ¬laddert,m−1) (29)

We finally add our winning pair paving condition.
We first have to ensure that if a pair of cells is in the paving, then no cell of

this pair is occupied. Hence, for a pair of cells id and (x, y) one of its cells, we
have the following constraint.

¬pairid ∨ ¬occupiedk,x,y (30)

Furthermore, no two pairs of the paving have a common cell. Therefore, for
distinct pairs id1, id2 with a common cell we have the following clause.

¬pairid1 ∨ ¬pairid2 (31)

Also, if a pair is in the paving, it cancels any shape containing it. We therefore
have, for all pairs id contained in shape i at position (x, y), the following clause.

¬pairid ∨ canceledi,x,y (32)

Furthermore, if the cell contains a white stone, then a target shape at some
position that contains this cell is canceled. We hence have, for all cells (x′, y′)
contained in shape i at position (x, y), the following clause.

¬whitek,x′,y′ ∨ canceledi,x,y (33)



Quantified Boolean Solving for Achievement Games 9

Conversely, if a target shape at some position is canceled, then either one of
its cells contains a white stone or it contains some pair. We therefore have, for
target shape i at position (x, y), C its set of cells and P the set of pairs contained
in this shape at this position, the following clause.

¬canceledi,x,y ∨
∨

(x′,y′)∈C

whitek,x′,y′ ∨
∨

id∈P

pairid (34)

Finally, any shape i at any position (x, y), is canceled.

canceledi,x,y (35)

6 Experimental Results

All experiments are run on a 2 CPU X5570 Xeon Processor, 2.93GHz, 64GB
Memory, with a timeout of 1000 seconds. We consider HTTT instances for poly-
ominoes formed by at most 6 cells that fit on the board, and this both for
normal and torus boards. We hence have 48 instances on 3× 3, 98 instances on
4× 4, and 110 instances on 5× 5 boards. We also show some results about the
Snaky polyomino. We used the following QBF solvers versions: DepQBF v6.03
[16], CAQE v4.0.1 [24], Qute v1.1 [19], QESTO v1.0 [15], and four preprocessors
(including none): QRATPre+ v2.0 [17], HQSPre v1.4 [26], and bloqqer v37 [2].
Every system is used with default command line parameters.

Table 1: 3× 3 solving time in seconds with and without preprocessor
Solver Preprocessor DYS COR Pairing

DepQBF None 12.85 1.12 0.77
QESTO None 3171.66 9.21 3.00

DepQBF QRATPre+ 7.97 0.85 0.32
QESTO bloqqer 3.47 1.65 1.69

On 3×3 boards we compare the DYS encoding of [6], the corrective encoding
COR [18] and our own Pairing encoding. We show in Table 1 the best solver, with
no processor, and the best pair (solver/preprocessor) on 3×3 boards. There was
no timeout in this case and there are exactly 8 winners and 40 losers. In all cases,
both with and without preprocessor, the Pairing encoding allows the shortest
solving time. Furthermore, confirming the results of [18], the DYS encoding is
largely less efficient. For boards of size 4× 4 and more, we hence concentrate on
the COR and Pairing encodings.

On a 4 × 4 board (Table 2), a striking observation is that, in all cases, the
Pairing encoding is more than two orders of magnitude faster than the COR
encoding, with no timeouts. Preprocessing time (Table 3) is also much shorter
for bloqqer and QRATPre+ than for HQSPre, but still, it is, for these two
preprocessors, comparable to solving time for the Pairing encoding.



10 S. Boucher, R. Villemaire

Table 2: 4× 4 solving time in seconds, numbers of Unknowns, Winners, Losers
Solver Preprocessor COR Pairing

time U W L time U W L

DepQBF None 17159.72 7 14 77 114.63 0 14 84

DepQBF bloqqer 12949.31 5 14 79 93.35 0 14 84
DepQBF QRATPre+ 14176.01 5 14 79 61.31 0 14 84

It is also interesting to compare COR and Pairing in terms of instances size.
We show in Table 4 total number of literals, clauses, and quantifiers over all
shapes for normal and torus boards. While numbers of quantifiers are similar
for both encodings, Pairing generates more literals and clauses, in particular for
torus boards.

Table 3: 4× 4 preprocessing time in seconds
COR Pairing

bloqqer HQSPre QRATPre+ bloqqer HQSPre QRATPre+

avg. 1.78 27.98 0.10 1.87 8.99 0.38
max. 2.11 65.39 0.20 2.25 40.95 0.71
total 174.03 2742.51 9.65 183.30 881.19 37.31

On 5×5 boards we tested only the solver and solver/preprocessors pairs that
gave the best performance on 4 × 4 boards (as shown in Table 2). We see, in
Table 5, that COR solves only 7 out of 110 instances, while Pairing solves 72
(70 with no preprocessor). As for run time, Pairing needs less than half the time
required by COR. Pairing hence again clearly outperforms COR.

Table 4: Total number of literals, clauses, and quantifiers on 4× 4 boards
COR Pairing

lits clauses Univ. Exist. lits. clauses Univ. Exist.

normal 554629 227944 1568 66850 675390 285428 1568 70682
torus 637683 253794 1568 70241 950037 388083 1568 75329

Run time increases rapidly with play length k and solving the game necessi-
tates a k = 25 on a 5×5 board, while k = 9 and k = 16 suffice for 3×3 and 4×4
boards, respectively. It could hence be appropriate to apply iterative deepening
that could establish a winning strategy for a smaller value of k. However, we go
a step further and combine the corrective encoding of [18] that searches for a
winning strategy for Black and our encoding that search for a blocking strategy
for White. This allows to establish, as soon as either return a SAT instance, the
status (winner/loser) of the polyomino.



Quantified Boolean Solving for Achievement Games 11

Table 6 shows the cumulative time of solving instances for increasing values
k = 0, 1, 2, . . . , 25 using the Pairing encoding for even k and the COR encoding
for odd k, stopping at the first SAT instance.

Table 5: 5× 5 solving time in seconds, numbers of Unknowns, Winners, Losers
Solver Preprocessor COR Pairing

time U W L time U W L

DepQBF None 103083.14 103 7 0 41365.22 40 10 60

DepQBF bloqqer 103213.42 103 7 0 38901.20 38 10 62
DepQBF QRATPre+ 103114.56 103 7 0 39393.55 38 10 62

Comparing Tables 5 and 6, one sees that iterative deepening combining COR
and Pairing is indeed effective. It, in fact, reduces the total number of timeouts
and solving time almost by one half, compared to Pairing that gives the best
results in Table 5.

Table 6: 5×5 iterative deepening solving time in seconds, numbers of Unknowns,
Winners, Losers

Solver Preprocessor normal torus
cum. time U W L cum. time U W L

DepQBF None 1023.71 1 7 47 21376.28 21 7 27

DepQBF bloqqer 1016.29 1 7 47 21012.67 20 7 28
DepQBF QRATPre+ 1015.34 1 7 47 21310.61 20 7 28

Table 6 further shows that there is a stark difference between normal and
torus boards. Another surprising fact on 5 × 5 instances is that preprocessors
yield very small performance gain, both in terms of solving time than in terms
of number of solved shapes. This is in stark contrast to 4× 4 and 3× 3 boards.

It is instructive to look at the distribution of the last considered k with this
iterative deepening method on 5×5 boards. Fig. 3 shows, for each k = 0, . . . , 11,
the number of polyominoes for which the first SAT instance (or timeout) is
reached for this value of k. Note that there are polyominoes settled at each
intermediate value of k, both even and odd. It follows that neither even nor odd
k’s can be avoided and both COR and Pairing are instrumental in making this
method effective.

Obviously, the big open question around HTTT is the status of Snaky on a
9× 9 board, and as stated by [18] this is a challenge to the QBF community. It
is hence interesting to see how the Pairing encoding fares with this polyomino.
However, as shown in Table 7 that shows solving time in seconds for DepQBF
on normal boards, the loser status of Snaky on an 8 × 8 board [10] is already
out of reach of our Pairing encoding. Solving Snaky on a 9× 9 board will hence
need further advances in QBF solving and encoding.



12 S. Boucher, R. Villemaire

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8 9 10 11

last k

Fig. 3: last k, DepQBF

Table 7: Snaky Pairing
board k result time

6 × 6 0 UNSAT 1.53
2 SAT 17.53

7 × 7 0 UNSAT 0.81
2 UNSAT 345.64
4 SAT 2277.39

8 × 8 0 UNSAT 0.79
2 UNSAT 1857.64
4 UNSAT 10596.75
6 UNSAT 120004.47

7 Conclusion

We showed that the QBF Pairing encoding leads to very effective QBF solving
for HTTT on 3×3 and 4×4 boards. Furthermore, iterative deepening combining
the COR and Pairing encodings can solve HTTT on 5×5 boards for most target
shapes. However, determining shapes on a 5 × 5 torus board often necessitates
higher values of k, and would require further development in QBF game solving.

On a methodological level our contribution is to draw attention to the ef-
fectiveness, in the QBF solving setting of achievement games, of considering
“dual” encodings with blocking strategies, and furthermore restricting the kind
of blocking strategy sought.

Indeed, while describing in QBF the existence of a winning strategy for the
first player is the natural approach, one can equivalently encode the existence of
a blocking strategy by the second player. This is reminiscent of the use of primal
and dual encodings [25] that have been shown to both have their advantages in
the QBF analysis of synchronous system.

Furthermore, in order to show the existence of a winning strategy, one can
as well show the existence of some specific kind of strategy, as this could lead to
further performance gain, as is the case with the Pairing encoding for HTTT.

While our results advance the QBF solving of achievement games, it still
come short of solving Snaky’s status on a 9 × 9 board. This will need further
advances in QBF solving, where “dual” encodings and restricting the kind of
sought strategy could play a role.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

2. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Auto-
mated Deduction - CADE-23. LNCS, vol. 6803, pp. 101–115. Springer (2011)

3. Csernenszky, A., Martin, R.R., Pluhár, A.: On the complexity of chooser-picker po-
sitional games. INTEGERS: Electronic Journal of Combinatorial Number Theory
11(G2) (2011)



Quantified Boolean Solving for Achievement Games 13

4. Demaine, E.D., Hearn, R.A.: Playing games with algorithms: Algorithmic combina-
torial game theory, p. 3–56. Mathematical Sciences Research Institute Publications,
Cambridge University Press (2009)

5. Diptarama, Narisawa, K., Shinohara, A.: Drawing strategies for generalized tictac-
toe (p, q). AIP Conference Proceedings 1705(1), 020021 (2016)

6. Diptarama, Yoshinaka, R., Shinohara, A.: QBF encoding of generalized Tic-Tac-
Toe. In: Quantified Boolean Formulas, QBF 2016. CEUR Workshop Proceedings,
vol. 1719, pp. 14–26 (2016)

7. Gardner, M.: Mathematical games. Scientific American 240(4), 18–28 (April 1979)
8. Gent, I., Nightingale, P.: A new encoding of all different into SAT. In: Modelling

and Reformulating Constraint Satisfaction Problems. pp. 95–110 (2004)
9. Gent, I., Rowley, A.R.: Encoding Connect-4 using quantified Boolean formulae. In:

Modelling and Reformulating Constraint Satisfaction Problems. pp. 78–93 (2003)
10. Halupczok, I., Schlage-Puchta, J.C.: Achieving Snaky. INTEGERS: Electronic

Journal of Combinatorial Number Theory 7(G02) (2007)
11. Harary, F.: Achieving the Skinny animal. Eureka 42, 8–14 (1982)
12. Harborth, H., Seemann, M.: Snaky is an edge-to-edge loser. Geombinatorics V(4),

132–136 (1996)
13. Harborth, H., Seemann, M.: Snaky is a paving winner. Bulletin of the Institute of

Combinatorics and its Applications 19, 71–78 (1997)
14. Heule, M.J.H., Szeider, S.: A SAT approach to clique-width. ACM Transactions

on Computational Logic 16(3), 24 (2015)
15. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: International

Joint Conference on Artificial Intelligence, IJCAI. pp. 325–331. AAAI Press (2015)
16. Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional

QCDCL. In: Automated Deduction - CADE 26. LNCS, vol. 10395, pp. 371–384.
Springer (2017)

17. Lonsing, F., Egly, U.: QRATPre+: Effective QBF preprocessing via strong re-
dundancy properties. In: Theory and Applications of Satisfiability Testing - SAT.
LNCS, vol. 11628, pp. 203–210. Springer (2019)

18. Mayer-Eichberger, V., Saffidine, A.: Positional games and QBF: The corrective
encoding. In: Theory and Applications of Satisfiability Testing, SAT 2020. LNCS,
vol. 12178, pp. 447–463. Springer (2020)

19. Peitl, T., Slivovsky, F., Szeider, S.: Qute in the QBF evaluation 2018. Journal on
Satisfiability, Boolean Modeling and Computation 11(1), 261–272 (2019)

20. Reisch, S.: Hex ist PSPACE-vollständig (Hex is PSPACE-complete). Acta Infor-
matica 15, 167–191 (1981)

21. Reisch, S.: Gobang ist PSPACE-vollständig (Gomoku is PSPACE-complete). Acta
Informatica 13, 59–66 (1980)

22. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of Quantified
Boolean Formulas. In: International Conference on Tools with Artificial Intelli-
gence, ICTAI 2019. pp. 78–84. IEEE (2019)

23. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: ACM Symposium on Theory of Computing (STOC). pp. 1–9.
ACM (1973)

24. Tentrup, L.: CAQE and QuAbS: Abstraction based QBF solvers. Journal on Sat-
isfiability, Boolean Modeling and Computation 11(1), 155–210 (2019)

25. Van Gelder, A.: Primal and dual encoding from applications into quantified
Boolean formulas. In: Principles and Practice of Constraint Programming, CP
2013. LNCS, vol. 8124, pp. 694–707. Springer (2013)



14 S. Boucher, R. Villemaire

26. Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre - an effective preprocessor
for QBF and DQBF. In: Tools and Algorithms for the Construction and Analysis
of Systems TACAS. LNCS, vol. 10205, pp. 373–390 (2017)


