
ValidMaker: A Tool for Managing Device
Configurations Using Logical Constraints

Sylvain Hallé, Éric Lunaud Ngoupé, Gaëtan Nijdam
Département d’informatique et de mathématique

Université du Québec à Chicoutimi, Canada

Omar Cherkaoui, Petko Valtchev, Roger Villemaire
Département d’informatique

Université du Québec à Montréal, Canada

Abstract—Configuration Logic (CL) is a formal language that
allows a network engineer to express constraints in terms of the
actual parameters found in the configuration of network devices.
There exists an efficient algorithm that can automatically check
a pool of devices for conformance to a set of CL constraints;
moreover, this algorithm can point to the part of the configuration
responsible for the error when a constraint is violated. A CL
validation engine has been integrated into a network management
tool called ValidMaker. We show on a simple use case scenario
based on Virtual Local Area Networks how representative formal
constraints can be expressed with CL and efficiently validated
with ValidMaker.

I. INTRODUCTION

The management of computer networks is an increasingly
complex and error-prone task. On the one hand, the devices
that form a network must behave as a group; however,
on the other hand, each of these devices is managed and
configured individually. The fundamental issue has remained
mostly unchanged for many years. A network engineer is
given the responsibility of a pool of devices whose individual
configurations are managed mostly by hand. Every time a new
service needs to be added to the network, he must ensure
that the configuration parameters of these devices are set to
appropriate values. This delicate operation must fulfil two goals:
implementing the desired functionality, while preserving proper
operation of existing services. This entails in particular that the
new configuration parameters must not conflict with already
configured parameters of these or other devices.

Research in the past has shown that between 40% and 70%
of changes made to the configuration of a network fail at their
first attempt, and that half of these changes are motivated by a
problem located elsewhere in the network [1]. It is reasonable
to think that these figures have not significantly changed in
the past couple of years: [2] revealed more than 1,000 errors
in the BGP configuration of 17 networks; [3] studied firewalls
from a quantitative aspect and reported that all of them were
misconfigured in some way or another.

How can one be assured that a service installed on a
network works correctly? In a prospective paper on next
generation configuration management tools, Burgess and Couch
[4] put forward the concept of aspects, similar in nature to

This work was supported by the Natural Sciences and Engineering Council
of Canada in partnership with Cisco Systems.

Aspect-Oriented Programming (AOP). An aspect is a set of
configuration parameters p1, . . . , pn with domains D1, . . . ,Dn
and a set S ⊆ D1× ·· · ×Dn of admissible values for these
parameters that can be interdependent. Possible values can be
restricted for technical reasons, policies, QoS requirements or
the semantics of the parameters. Any formal language (e.g.
logic, set theory) can be used to compactly represent S.

This task, already non-trivial at the onset, is becoming
increasingly hard because of the fulgurating evolution of the
number of devices, the complexity of the configuration, the
specific needs of each service and the sheer number of services
a network must be able to support. When one adds to this
portrait the fact that data generally traverses heterogeneous
networks owned by multiple operators, one realizes why
the advent of novel approaches to the problem of network
configuration management is vital.

In this paper, we present a network configuration validation
tool called ValidMaker, following this principle. Using a formal
language called Configuration Logic (CL), a network engineer
can express constraints in terms of the actual parameters in
the configuration of the devices; each constraint can be seen
as a specific aspect. The integration of a CL validation engine
within ValidMaker allows us to to automatically check a pool
of devices for conformance to a set of CL formulæ.

The use of a logic-based formalism for configuration
management provides unique benefits that are highlighted
in ValidMaker. First, the verification of configurations on
multiple devices can be done very efficiently, surpassing by
orders of magnitude figures available from past works and
presenting quadratic complexity in the size of the configurations.
Second, the approach enforces a clean separation between
the specification of configuration constraints and its actual
validation. Finally, in the event one of the constraints is
violated, we describe an algorithm that returns the parts of the
configuration that are incorrect as an evidence to the user. The
validation can then switch to an interactive mode where the user
can explore this evidence, backtrack, and resume validation to
locate the exact source of the error. This functionality is missing
from existing tools, which provide a mere yes/no answer. By a
simple and representative use case based on the implementation
of a Virtual Local Area Network (VLAN), we show how
ValidMaker can be used to formalize network constraints and
detect errors in a problematic VLAN configuration.

The paper is structured as follows. In Section II, we present978-1-4673-0269-2/12/$31.00 c© 2012 IEEE

related work and motivate the need for a validation methodology
using logical constraints. Section III presents the general
architecture of ValidMaker and introduces both the data model
and syntax of Configuration Logic. Section IV is the core
of the paper and shows ValidMaker’s validation capabilities
on the VLAN example. In Section V, we provide empirical
evidence that the CL engine consumes negligible resources.
Finally, Section VI concludes and announces future work.

II. CURRENT APPROACHES TO NETWORK CONFIGURATION
MANAGEMENT

The existing works that address the management and integrity
of network configurations fall into five broad categories.

A. Network Monitoring

A large number of network management solutions rely
on monitoring external parameters such as connectivity and
throughput to ensure a correct operating of the network. Some
of them, such as the Minerals project [5], use statistical or
artificial intelligence reasoning techniques to infer device mis-
configurations from these observations. Network management
tools like ManageEngine1 perform a similar kind of monitoring
on the network.

Although these solutions allow a relatively efficient detection
of anomalous behaviour, they provide limited support to trace
the cause of this behaviour back to the actual configuration
parameters. Another drawback is that errors are detected a
posteriori: unless realistic simulations are conducted before
every change made to the network, one has to wait that the
erroneous configurations be committed before discovering that
something does not work as expected.

B. Configuration Change Management

A second category of solutions includes tools that manage
changes in the configuration of devices. For example, the
Really Awesome New Cisco confIg Differ (RANCID) system
[6] periodically logs into each router of a network, retrieves
its configuration and commits it to a Concurrent Version
System (CVS) server where changes can be detected and
tracked. Many other tools, such as the open source ZipTie [7]
and the commercial Voyence [8], offer similar functionalities
for comparing configurations and maintaining the history of
configuration changes.

However, even if detecting changes in a configuration
represents a good principle, not all changes result in mis-
configurations: because of this, numerous false alarms can be
triggered. Moreover, even if the source of a misconfiguration
is pinned down to one specific parameter that has changed, the
reason of the error still has to be figured out manually by the
network engineer.

1http://manageengine.com

C. Decision Trees and Expert Systems

Another possibility for the diagnostic of configuration
problems is to pragmatically describe and standardize network
troubleshooting procedures as “decision trees” that describe
tests to make and corresponding actions to take on a system.
Each node in such a tree represents a test or an action to
perform on the system; different edges in the tree are taken
depending on the result of each test, until a working solution
is found. The use of decision trees originally required human
intervention but for the simplest tasks; recent tools like Babble
[9] and Snitch [10] can now generate scripts that can interact
with command-line tools to automate repetitive administration
tasks.

Bayesian networks extend this principle by adding proba-
bilities to the decision tree structure. This approach has been
taken by numerous real-world projects, such as BATS (Bayesian
Automated Troubleshooting System) [11], a system used by
Hewlett-Packard to troubleshoot printer problems using the
SACSO methodology [12]. ATSIG2 is an EU project developing
a concept for automation of troubleshooting processes, that
has been turned into a commercial product called 2solve; a
commercial troubleshooting tools like Knowledge Automation
System from Vanguard uses a similar approach.3

D. Reactive Rules

Several systems extend on this idea and are based on rules
of the form “if condition then action”, which allows automated
management of complex computer systems by triggering user-
defined scripts when specific conditions are met in the network.
Notable proponents of this approach include cfengine [13],
LCFG [14], PIKT [15], Bcfg2 [16] and Prodog [17]. These
works concentrate on the configuration of computers forming
a network. However, it is reasonable to think that the approach
could be extended to the configuration of network devices such
as routers and switches.

This approach is “reactive” in that the action part of a partic-
ular rule is executed only when specific conditions described in
its if clause match the configuration. Therefore every detected
misconfiguration must be matched with a corrective action.
A central —and still open— question is to ensure that the
execution of a script does not fire an unpredictable cascade of
events that never settles to a stable point. A mathematical study
of reactive rules is made in [18], where conditions are given for
actions to be convergent. Moreover, [19] argued that to be truly
used as a misconfiguration detection engine, reactive systems
must be provided with a base of rules that would amount to a
procedural encoding of the whole engine.

E. Declarative Rules

A final approach is to specify constraints that a configuration
must respect in order to be valid. The rules are assertions
about the configuration of the devices, and these assertions
are automatically checked before committing any changes.

2http://www.2operate.com/
3http://www.vanguardsw.com/products/knowledge-automation-system/cms/

http://manageengine.com
http://www.2operate.com/
http://www.vanguardsw.com/products/knowledge-automation-system/cms/

For instance, [20] uses proof plans methods and Prolog to
check orders for large computer systems parts; [21] applies a
logic based on features/values attributions pairs to versioning
in software configuration; [22] uses a logic on parse trees to
express constraints on programming language syntax for design
constraint of software components.

More recently, a prototype tool for verifying the configuration
of network routers has been presented in [23]. The rcc tool [2]
has been introduced to formalize rules about BGP configuration;
the authors concentrate on BGP routes and do not extend this
principle to the general case of formalizing misconfigurations.
In [24], a formal approach to modelling constraints for Virtual
Private Networks using first-order logic has been employed
to demonstrate traffic isolation properties. In [25], Delta-X, a
formal language for data integrity constraints is presented for
the construction of integrity guards: an integrity guard is a
piece of code executed before a data update is performed. The
guard returns true if the update will preserve data integrity.
[19], [26] uses the Alloy modelling language [27] to formalize
a set of constraints for a VPN to properly work; this set of
constraints is then converted into a Boolean formula and sent to
a satisfiability solver. The solution returned by the solver can be
converted back into the original Alloy model and constitutes
a configuration that respects the original constraints. More
recent tools, such as COOLAID [28], use a similar approach of
declarative configuration management.

The approach followed by ValidMaker falls into this category
of solutions, which is the one closest to the concept of aspects
presented in Section I. However, ValidMaker distinguishes itself
from the above cited works on a number of points. Contrarily
to [23], ValidMaker provides a formal language to input rules
of a more complex nature; as a consequence, it can provide
more detailed error messages and interactive validation of
the configuration (cf. Section IV-B). Moreover, existing tools
lack the counter-example exploration feature implemented in
ValidMaker and described in Section IV-B; they merely provide
yes/no answers regarding the validity of some configuration.

The formal language it provides to express constraints, called
Configuration Logic [29], is richer than Delta-X; it can be
used to model general dependencies between configuration
parameters and is not tied to a particular protocol or type of
device as in rcc. Contrarily to the Alloy approach, we do not
attempt to solve the broad problem of generating a configuration
fulfilling a set of constraints; we rather concentrate on the
narrower problem of checking that a given configuration
actually respects the constraints.

Although the authors in [19], [26] suggest that validation
can be indirectly performed as a by-product of their tool, we
will see in Section V that a dedicated validation algorithm is
considerably more efficient than a requirement solver, with
processing times in the order of milliseconds rather than several
minutes.

III. THE VALIDMAKER NETWORK MANAGEMENT TOOL

Following the requirements for future network configuration
tools suggested in [4], the network configuration management

Figure 1. The architecture of the ValidMaker configuration tool.

tool ValidMaker has been developed by the team of Lab
Téléinfo at Université du Québec à Montréal.4

The tool serves two main purposes. First, it levels the
heterogeneity of devices across multiple platforms by providing
a common representation of configuration information called
Meta-CLI. Second, ValidMaker allows formal constraints to
be expressed on Meta-CLI structures To this end, it provides
a language called Configuration Logic (CL) that allows a
network engineer to input custom constraints, and a CL
validation engine to automatically check a given configuration
for conformance. The constraints can impose dependencies
between many parameters of the configuration and correspond
to the definition of an aspect in [4]. To fulfil these two goals,
ValidMaker tool is composed of two modules, as shown in
Figure 1. We briefly describe these two modules.

A. Device Configuration Manager

The Device configuration manager is the part of the system
responsible for communicating with the devices, retrieving their
configuration and transforming them into Meta-CLI structures.
In reverse, Meta-CLI configurations inside ValidMaker can be
translated back into runnable configurations sent to the devices
in the proper format, according to their vendor operating system
and version number.

As explained in [30], the configuration of network devices
such as routers and switches can be represented as a tree where
each node is a pair composed of a name and a value. This
tree represents the hierarchy of parameters inherent in the
configuration of such devices. The Meta-CLI structures used in
the internal representation of configurations in ValidMaker
use this tree form. As an example, Figure 3 shows the
representation of the configuration of a switch. Configurations
are currently retrieved through a shared directory, where
device configurations are dumped to text files, imported into
ValidMaker and converted on-the-fly into Meta-CLI structures.
A number of Cisco devices is supported; the actual process by
which the configurations are converted is beyond the scope of
the present paper.

B. Configuration Logic Validation Engine

Once the device configurations are abstracted into Meta-
CLI trees of name-value pairs, ValidMaker allows the network

4A limited version of ValidMaker is freely available for academic use at
http://www.leduotang.com/sylvain/publications/2012/manfi.

http://www.leduotang.com/sylvain/publications/2012/manfi

Figure 3. A portion of a Meta-CLI configuration tree.

Figure 4. A screenshot from ValidMaker’s configuration view. The configuration of a device is abstracted as a tree of name-value pairs (left window). When
a CL constraint is violated on a given configuration, ValidMaker highlights the part of the formula that is false (center window). The user is presented a list of
tree nodes that violate that part of the formula (right window). The validation can then be resumed on one of these nodes to further explore the cause of the
violation.

Figure 2. A screenshot from ValidMaker’s configuration view. The
configuration of a switch is abstracted as a tree of name-value pairs.

engineer to express formal constraints on these trees with the
means of Configuration Logic (CL) [29].

1) Syntax and Semantics of CL: CL formulæ use the
traditional Boolean connectives of classical propositional logic:
∧ (“and”), ∨ (“or”), ¬ (“not”), → (“implies”). The notion of
path is central to CL. A path is a sequence of name-value
pairs; for example, the following is an existing path in the tree
from Figure 3:

device=switch-1, interface=fe02, encapsulation=dot1q

For the sake of simplicity, we shall represent paths in the
shorthand form p = x, where p is a list of names and x is a list
of values or variables standing for actual values. The domain
function ν is used to query the contents of a tree T according
to some path p = x. More precisely, ν(T ; p = x, p) returns the
set of all values for parameter p at the end of path p = x in
tree T .

The universal quantifier, identified by [], indicates a path
in the tree and imposes that a formula be true for all nodes
at the end of that path. For example, a formula of the form
[device = s1] s1 6= abc asserts that for every root node with
name “device” and value s1, then s1 does not equal “abc”. In
other words, no device has “abc” as the value of its top-level
node. Likewise, the existential quantifier, identified by 〈 〉,
indicates a path in the tree and imposes that a formula be
true for some node at the end of that path. Quantifiers are an
important and distinctive part of CL; as Narain observed [31],
none of the constraints described in our example below could
be expressed in Prolog or any tool based upon it, since Prolog
lacks the equivalent of the universal quantifier.

A tree T is said to satisfy some CL formulæ ϕ , and is
noted T |= ϕ , when the recursive evaluation of ϕ on T returns
true. The complete semantics of CL is summarized in Table I;

T |= ¬ϕ ≡ T 6|= ϕ

T |= ϕ ∨ψ ≡ T |= ϕ or T |= ψ

T |= ϕ ∧ψ ≡ T |= ϕ and T |= ψ

T |= ϕ → ψ ≡ T 6|= ϕ or T |= ψ

T |= 〈p = x ; p = x〉ϕ(x) ≡ T |= ϕ(k) for some k ∈ ν(T ; p = x; p)

T |= [p = x ; p = x] ϕ(x) ≡ T |= ϕ(k) for each k ∈ ν(T ; p = x; p)

T |= k1 = k2 ≡ k1 and k2 have the same value

Table I
THE RECURSIVE SEMANTICS OF CONFIGURATION LOGIC

the recursive application of these rules provides a bona fide
algorithm for validating any CL formula on any configuration
tree. It shall be noted that the evaluation of a quantifier
successively replaces the occurrences of its variable by a set of
values determined by ν ; hence the base case for the recursion
always amounts to the comparison of two hard values.

For example, consider the following CL formula:

CL Constraint 1.

[device = s1]

〈device = s1 ; vtp mode = x〉x = client
∨〈device = s1 ; vtp mode = x〉x = server

This formula reads as follows: for every root node with name
“device” and value s1, there exists a node under “device = s1”
with name “vtp mode” and value x, such that x is equal to
“client”, or that there exists a node under “device = s1” with
name “vtp mode” and value x, such that x is equal to “server”.
In the example configuration shown in Figure 4, we see that
there exists a node with name vtp mode and that its value
is server. This constraint is therefore true for that particular
device.

2) Predicates: To improve readability of CL rules, Valid-
Maker introduces the concept of predicates. The use of
predicates follows the same goal as the decomposition of a
computer program into functions: they are blocks of CL code
that can be defined as Boolean functions, and then called and
reused in many CL formulæ. Predicates are expressed in the
same way as formulæ but can contain arguments. For example,
consider the following predicate:

IsVTPClient(S) :-〈S ; vtp mode = x〉x = client

This predicate states that under the node S passed as an
argument, there exists a node whose name is “vtp mode”
and whose value is x, and where x is equal to “client”. In
other words, this predicate returns true whenever S has a child
labelled “vtp mode = client”. The predicate IsVTPServer is
defined in a similar way.

IsVTPServer(S) :-〈S ; vtp mode = x〉x = server

Equipped with these predicates, it is possible to simplify CL
Constraint 1 and rewrite it in an alternate way:

CL Constraint 1 (Alternate).

[device = s1] (IsVTPServer(s1)∨ IsVTPClient(s1))

Starting from basic, low-level predicates that refer directly
to configuration parameters, one defines increasingly higher
level predicates that progressively abstract these configuration
details to capture important functions. The alternate version of
CL Constraint 1 shows it. At the top level, network constraints
can be expressed as a set of broad policies that the network
engineer can easily manage. Therefore, the use of predicates in
ValidMaker is an easy and straightforward way to encapsulate
relationships and roles between parameters. This feature is in
line with the suggestions of [4].

ValidMaker provides an interface that allows users to input
their own constraints and predicates. It can also import a set
of predefined CL constraints associated to a particular network
service or policy. The CL validation functionality is exposed
to the user as a simple menu entry.

IV. A VALIDMAKER USE CASE SCENARIO

In this section, we develop a simple configuration example
based on the Virtual Trunking Protocol for Virtual Local Area
Networks and show how our methodology provides a general
environment for formalizing and automatically validating
constraints on actual device configurations. VLANs are indeed
recognized as a specific area of pain that requires the support
of configuration management tools, yet is often neglected in
real-world tools. The reader should keep in mind, however, that
our methodology is not tied to a particular device or protocol;
earlier works formalize constraints on Virtual Private Networks
[30] in a similar way.

A. Virtual Local Area Networks and the Virtual Trunking
Protocol

Switches allow a network to be partitioned into logical
segments through the use of Virtual Local Area Networks
(VLAN). This segmentation is independent of the physical
location of the users in the network. The ports of a switch can
be assigned to a particular VLAN. Ports that are assigned to the
same VLAN are able to communicate at Layer 2 while ports not
assigned to the same VLAN require Layer 3 communication.
There can be numerous VLANs on a single switch and all the
stations of a VLAN can be distributed on many switches. All the
switches that need to share Layer 2 intra-VLAN communication
need to be connected by a link called a trunk. The trunk joins
two interfaces, one on each switch, and these interfaces should
be encapsulated in the same mode. IEEE 802.1Q [32] and VTP
[33] are two popular protocols for VLAN trunks.

The VLAN configuration must be entered on each switch
where this VLAN is required. Otherwise, if a port is assigned
to a non-existing VLAN then the port is disabled. The Virtual
Trunking Protocol (VTP) [33] has been developed on Cisco
devices to centralize the creation and deletion of VLANs in a

Figure 5. A simple cluster of switches in the same VLAN. The links are
VLAN trunks.

network into a VTP server. This server takes care of creating,
deleting, and updating the status of existing VLANs to the
other switches sharing the same VTP domain. The clients that
are in the same VTP domain of the server will update their
VLAN list according to the update. The switches that are in
transparent mode will simply ignore the transmission but will
nevertheless broadcast it so that other switches might get it.

Consider a network of switches such as the one shown in
Figure 5 where several VLANs are available.

In order to have a working VTP configuration, the network
needs a unique VTP server; all other switches must be VTP
clients. This can be enforced by a first set of two constraints:

Configuration Constraint 1. VTP must be activated on all
switches.

Configuration Constraint 2. There is a unique VTP server.

Using Configuration Logic, these requirements can be
expressed in terms of predicates and configuration parameters.
Configuration Constraint 1 requires that every switch be either
a VTP client or a VTP server; CL Constraint 1 shown in
Section III-B asserts exactly that. The second constraint makes
sure that there is one, and only one server in the network. It
first states that there exists a device s1 which is a VTP server,
and then that every device s2 different from s1 is a VTP client.

CL Constraint 2 (UniqueServer).

〈device = s1〉(IsVTPServer(s1)∧
[device = s2] s1 6= s2→ IsVTPClient(s2))

For the needs of the example, we impose that all switches
be in the same VTP domain.

Configuration Constraint 3. All switches must be in the same
VTP domain.

This constraint becomes the following CL formula. It states
that for every pair of devices s1 and s2, the predicate “Switch-
esInSameVTPDomain” (Table II) is true. This predicate asserts
that two switches are in the same VTP domain; this is done
by checking that for two nodes S and T representing the root
of the configuration tree of two devices, every VTP domain
listed under S also appears under T .

CL Constraint 3 (SameVTPDomain).

[device = s1] [device = s2]

SwitchesInSameVTPDomain(s1,s2)

IsTrunk(I) :−
〈I ; switchport mode = x〉x = trunk

SwitchesInSameVTPDomain(S,T) :−
[S ; vtp domain = x]

〈T ; vtp domain = y〉x = y

SameEncapsulation(I1, I2) :−
[I1 ; switchport encapsulation = x1]

〈I2 ; switchport encapsulation = x2〉
(x1 = dot1q∧ x2 = dot1q)

∨ (x1 = isl∧ x2 = isl)

Table II
CL PREDICATES REQUIRED FOR THE VLAN EXAMPLE.

Finally, we must impose a technical constraint on VLAN
trunks and give its corresponding CL formula.

Configuration Constraint 4. The interfaces at both ends of a
trunk should be defined as such and encapsulated in the same
mode.

This constraint becomes in CL:

CL Constraint 4 (TrunkActive).

[device = s1] [device = s2]

[s1 ; interface = i1] 〈s2 ; interface = i2〉
(InterfacesConnected(i1, i2) → (IsTrunk(i1)
∧ IsTrunk(i2) ∧SameEncapsulation(i1, i2)))

The predicate IsTrunk (Table II) indicates that the device is
a VTP server and that a specific interface is connected to a
trunk. Finally, the predicate SameEncapsulation verifies that
the encapsulation on a VLAN trunk is either IEEE 802.11Q or
ISL, and that both ends use matching protocols. The predicate
“InterfacesConnected” is not a predicate defined in CL, but
rather a system primitive that the network can tell us about. It
returns true if the two interfaces are connected by a link.

B. Interactive Validation of CL Constraints

Once these constraints are defined (or imported), ValidMaker
offers the possibility to automatically validate them on a set
of device configurations forming a network. This validation
does not merely return true or false. Rather, the CL validation
algorithm extracts valuable information from the configuration
to explain to the user where and why a given configuration vio-
lates a constraint. This interactive counter-example exploration
is unique to ValidMaker and distinguishes it from related work
described earlier.

In order to do so, ValidMaker returns to the user a part P of
a configuration and a sub-formula ϕ not satisfied by P which
is the cause of the violation. The construction of the evidence
for a falsified CL formula follows a recursive algorithm that

depends on the structure of the formula that is false. Let T be
a configuration tree, µ be a function that associates variables
in a CL formula with the tree node it takes its value from, and
ν be the evaluation function described earlier. An evidence
is a set of tuples {(ϕ,S1), . . . ,(ϕ,Sn)}, where ϕ is a formula
and the Si are themselves evidences for the subformulæ of ϕ .
Intuitively, an evidence is meant to be read top-down, with each
of the Si interpreted as alternate explanations for the falsity
of ϕ , expressed in terms of ϕ’s subformulæ. Alternately, each
evidence can be seen as a set of configuration elements to
correct in order to restore the validity of ϕ .

At the lowest level, the evidence is made of references
to nodes n1,n2, . . . inside T , and a sub-formula stating the
relationship between these nodes that is violated. If the evidence
contains a predicate, it is treated as an atomic unit (black box).
However, at the choice of the user, it is possible to step into
a predicate and refine the evidence; ultimately, predicates can
be completely eliminated.

To this end, we define a procedure called ΞT,µ that
recursively creates the evidence for a rule given a global
configuration tree T , and a mapping µ (initially empty) between
variables and tree nodes. This procedure is detailed in Table III.
It assumes that implications ϕ → ψ have been transformed
into their equivalent form ¬ϕ ∨ψ , and that all negations in a
CL formula have been pushed down to the lowest level using
DeMorgan’s identities.5

The case of the conjunction is straightforward. For a formula
ϕ ∧ψ to be true, both ϕ and ψ must be true. It follows that
the evidence for the falsity of ϕ ∧ψ is the combination of the
evidence for the falsity of ϕ and ψ , noted ΞT,µ(ϕ)∪ΞT,µ(ψ).
Similarly, for a formula ϕ ∨ψ to be true, it suffices that either
ϕ or ψ be true. The evidence for the falsity of ϕ ∨ψ hence
creates two nodes, which represent the two possible ways by
which its validity can be restored. The remaining cases are
handled using a similar intuition. For example, a formula of
the form 〈device = x〉ϕ(x) asserts that there exists a node
device = x in the configuration, for some value x, such that
ϕ(x) is true. If the formula is false, then no such node exists:
ϕ(x) is false for all possible values of x that occur in the tree.

ValidMaker uses the structure produced by the function Ξ

internally to display its counter-examples to the user in an
interactive mode. The validation process is halted, and the user
is presented with a menu showing all the possible values of x,
as is shown in Figure 4. He can then choose one of these values
and resume the validation process on that specific branch, and
find out why the branch falsifies the formula.

V. EXPERIMENTAL RESULTS

It is known that the worst-case complexity of CL model
checking is O(|ϕ| × |T |k), where |ϕ| is the length of the
formula, |T | is the size of the configuration tree and k is
the maximal number of nested quantifiers in the formula [34];
this also applies to the computation of Ξ. For a fixed set

5Namely: ¬(ϕ ∨ ψ) = ¬ϕ ∧ ¬ψ , ¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ ,
¬ [p = x ; p = x] ϕ(x) = 〈p = x ; p = x〉¬ϕ(x), ¬〈p = x ; p = x〉ϕ(x) =
[p = x ; p = x] ¬ϕ(x).

10 100
0,01

0,1

1

10

100

C1
C2
C3
C4

Number of devices

T
im
e
p
e
r
d
e
vi
ce
(m
s)

Figure 6. Validation time of each VTP constraint in a network formed of a
varying number of devices. The graph uses a log-log scale.

of CL formulæ, the validation hence scales with respect to
the number of managed devices (and configuration size) as a
polynomial of degree at most k. This result indicates that, from a
theoretical point of view, CL validation and interactive counter-
example exploration is tractable and that its complexity remains
manageable as the configurations grow in size. However, it
remains to be shown that validation times are reasonable for
realistic configurations.

To this end, we generated sample configurations for networks
composed of a variable number of switches implementing a
VLAN. We then launched ValidMaker’s CL engine on these
networks for each the four Configuration Constraints shown
in Section IV. We give in Figure 6 the validation times for a
network composed of 10 to 80 switches. All results have been
obtained on a Pentium IV of 2.4 GHz with 512 Mb of RAM
running Windows XP Professional.

As one can see from these results, the validation times
are reasonable and do not exceed 25 milliseconds per device
for the largest network of 80 switches. More importantly,
although the theoretical upper bound predicted a growth
of O(|T |5) for Configuration Constraint 4 (which contains
five nested quantifiers once its predicates are expanded), in
actuality we observe a sub-quadratic complexity in the order
of |T |1.8. Moreover, these figures should be compared with
those mentioned in [19]. As has been explained in Section II,
Alloy tries to build from scratch a configuration that fulfils all
the constraints, instead of validating an existing configuration
against a set of rules. Using first-order logic formulæ with a
number of quantifiers similar to the CL constraints used in
this paper and a configuration of under 50 devices, the total
processing time ranges from 2 to 8 minutes. The considerable
difference in CPU time shows that validation is a problem
much more tractable than model building.

VI. CONCLUSION

The introduction of aspect-oriented configuration manage-
ment in [4] shows that formalisms are essential in order to
validate network configurations before deployment. The inte-
gration of CL into the ValidMaker configuration tool shows that
a logic following the hierarchical structure familiar to network
engineers gives a natural and effective framework to express and
verify network configuration properties. Experimental results

ΞT,µ (ϕ ∧ψ) = {(ϕ ∧ψ,{ΞT,µ (ϕ)∪ΞT,µ (ψ))}
ΞT,µ (ϕ ∨ψ) = {(ϕ ∨ψ,ΞT,µ (ϕ)),(ϕ ∨ψ,ΞT,µ (ψ))}

ΞT,µ (〈p = x ; p = x〉ϕ(x)) =
⋃

n∈ν(T ;p=x,p)

{
(〈p = x ; p = x〉ϕ(x),ΞT,µ[x→p=x,p=n](ϕ))

}

ΞT,µ ([p = x ; p = x] ϕ(x)) =

(〈p = x ; p = x〉ϕ(x),
⋃

n∈ν(T ;p=x,p)

{
ΞT,µ[x→p=x,p=n](ϕ))

}
ΞT,µ (x = y) =

{
/0 if ν(T ; µ(x)) = ν(T ; µ(y))
{(x = y,{µ(x),µ(y)})} otherwise

ΞT,µ (x 6= y) =

{
/0 if ν(T ; µ(x)) 6= ν(T ; µ(y))
{(x = y,{µ(x),µ(y)})} otherwise

Table III
THE RECURSIVE COUNTER-EXAMPLE GENERATION PROCEDURE

show that this approach is tractable in practice. The interactive
counter-example exploration feature allows network engineers
to effectively use the logic and troubleshoot configurations
before deployment to the network. Based on the promising
results obtained on initial use cases, extensions to the tool are
under way, which will take into account the decentralized nature
of configuration information and the validation of incomplete
configuration trees.

REFERENCES

[1] J. Strassner, “Bridge to IP profitability,” 2002. [Online]. Available:
http://www.intelliden.com/library/GlobalOSS_BridgetoIP45.pdf

[2] N. Feamster and H. Balakrishnan, “Detecting bgp configuration faults
with static analysis,” in 2nd Symp. on Networked Systems Design and
Implementation (NSDI), Boston, MA, May 2005, pp. 43–56. [Online].
Available: http://nms.csail.mit.edu/rcc

[3] A. Wool, “A quantitative study of firewall configuration errors,” IEEE
Computer, pp. 62–67, June 2004.

[4] M. Burgess and A. Couch, “Modeling next generation configuration
management tools,” in LISA. USENIX, 2006, pp. 131–147.

[5] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Minerals:
Using data mining to detect router misconfigurations,” Carnegie Mellon
University, Tech. Rep. CMU-CyLab-06-008, May 2006.

[6] “RANCID - really awesome new cisco config differ.” [Online]. Available:
http://www.shrubbery.net/rancid/

[7] R. Castillo, “ZipTie network inventory framework: Enabling the next
era of network management tools,” p. 10, December 2006. [Online].
Available: http://www.alterpoint.com/index.php?s=file_download&id=7

[8] “Voyence.” [Online]. Available: http://www.voyence.com/
[9] A. L. Couch, “An expectant chat about script maturity,” in LISA.

USENIX, 2000, pp. 15–28.
[10] J. Mickens, M. Szummer, and D. Narayanan, “Snitch: Interactive decision

trees for troubleshooting misconfigurations,” in SysML. USENIX, 2007,
pp. 1–6.

[11] H. Langseth and F. V. Jensen, “Decision theoretic troubleshooting of
coherent systems,” Reliability Engineering and System Safety, vol. 80,
pp. 49–62, 2003.

[12] F. V. Jensen, U. Kjærulff, B. Kristiansen, H. Langseth, C. Skaanning,
J. Vomlel, and M. Vomlelová, “The SACSO methodology for trou-
bleshooting complex systems,” AI EDAM, vol. 15, no. 4, pp. 321–333,
2001.

[13] M. Burgess, “cfengine: A site configuration engine,” Computing Systems,
vol. 8, no. 2, pp. 309–337, 1995.

[14] P. Anderson and A. Scobie, “LCFG: The next generation,” pp. 1–9,
January 2002. [Online]. Available: http://www.lcfg.org/doc/ukuug2002.
pdf

[15] “PIKT,” http://www.pikt.org/. [Online]. Available: http://www.pikt.org/
[16] N. Desai, R. Bradshaw, and C. Lueninghoener, “Directing change using

Bcfg2,” in LISA. USENIX, 2006, pp. 215–220.

[17] A. L. Couch and M. Gilfix, “It’s elementary, dear Watson: Applying
logic programming to convergent system management processes,”
in LISA. USENIX, 1999, pp. 123–138. [Online]. Available: http:
//www.usenix.org/publications/library/proceedings/lisa99/couch.html

[18] A. L. Couch and Y. Sun, “On the algebraic structure of convergence,”
in DSOM, ser. Lecture Notes in Computer Science, M. Brunner and
A. Keller, Eds., vol. 2867. Springer, 2003, pp. 28–40.

[19] S. Narain, “Network configuration management via model finding,” in
LISA. USENIX, 2005, pp. 155–168.

[20] H. Lowe, “Extending the proof plan methodology to computer configura-
tion problems,” Applied Artificial Intelligence, vol. 5, no. 3, pp. 227–252,
1991.

[21] A. Zeller and G. Snelting, “Unified versioning through feature logic,”
ACM Trans. Softw. Eng. Methodol., vol. 6, no. 4, pp. 398–441, 1997.

[22] N. Klarlund, J. Koistinen, and M. I. Schwartzbach, “Formal design
constraints,” in OOPSLA, 1996, pp. 370–383.

[23] A. Feldmann and J. Rexford, “IP network configuration for intradomain
traffic engineering,” IEEE Network, vol. 15, no. 5, pp. 46–57, 2001.

[24] R. Bush and T. Griffin, “Integrity for virtual private routed networks,”
in INFOCOM, 2003.

[25] M. Benedikt and G. Bruns, “On guard: Producing run-time checks from
integrity constraints,” in AMAST, ser. Lecture Notes in Computer Science,
C. Rattray, S. Maharaj, and C. Shankland, Eds., vol. 3116. Springer,
2004, pp. 27–41.

[26] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” J. Network Syst. Manage., vol. 16,
no. 3, pp. 235–258, 2008.

[27] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[28] X. Chen, Y. Mao, Z. M. Mao, and J. E. van der Merwe, “Declarative
configuration management for complex and dynamic networks,” in
CoNEXT, J. C. de Oliveira, M. Ott, T. G. Griffin, and M. Médard,
Eds. ACM, 2010, p. 6.

[29] R. Villemaire, S. Hallé, and O. Cherkaoui, “Configuration logic: A
multi-site modal logic,” in TIME. IEEE Computer Society, 2005, pp.
131–137.

[30] S. Hallé, R. Deca, O. Cherkaoui, and R. Villemaire, “Automated validation
of service configuration on network devices,” in MMNS, ser. Lecture
Notes in Computer Science, J. B. Vicente and D. Hutchison, Eds., vol.
3271. Springer, 2004, pp. 176–188.

[31] Proceedings of the 19th Conference on Systems Administration (LISA
2005), San Diego, USA, December 4-9, 2005. USENIX, 2005.

[32] “802.11Q: Virtual bridged local area networks standard,” p. 327, 2003,
http://standards.ieee.org/getieee802/download/802.1Q-2003.pdf.

[33] “Configuring VTP.” [Online]. Available: http://www.cisco.com/
en/US/products/hw/switches/ps708/products_configuration_guide_
chapter09186a008019f048.html

[34] S. Hallé, R. Villemaire, and O. Cherkaoui, “CTL model checking for
labelled tree queries,” in TIME. IEEE Computer Society, 2006, pp.
27–35.

[35] Proceedings of the 20th Conference on Systems Administration (LISA
2006), Washington, D.C., USA, December 3-8, 2006. USENIX, 2006.

http://www.intelliden.com/library/GlobalOSS_BridgetoIP45.pdf
http://nms.csail.mit.edu/rcc
http://www.shrubbery.net/rancid/
http://www.alterpoint.com/index.php?s=file_download&id=7
http://www.voyence.com/
http://www.lcfg.org/doc/ukuug2002.pdf
http://www.lcfg.org/doc/ukuug2002.pdf
http://www.pikt.org/
http://www.usenix.org/publications/library/proceedings/lisa99/couch.html
http://www.usenix.org/publications/library/proceedings/lisa99/couch.html
http://www.cisco.com/en/US/products/hw/switches/ps708/ products_configuration_guide_chapter09186a008019f048.html
http://www.cisco.com/en/US/products/hw/switches/ps708/ products_configuration_guide_chapter09186a008019f048.html
http://www.cisco.com/en/US/products/hw/switches/ps708/ products_configuration_guide_chapter09186a008019f048.html

	Introduction
	Current Approaches to Network Configuration Management
	Network Monitoring
	Configuration Change Management
	Decision Trees and Expert Systems
	Reactive Rules
	Declarative Rules

	The ValidMaker Network Management Tool
	Device Configuration Manager
	Configuration Logic Validation Engine
	Syntax and Semantics of CL
	Predicates

	A ValidMaker Use Case Scenario
	Virtual Local Area Networks and the Virtual Trunking Protocol
	Interactive Validation of CL Constraints

	Experimental Results
	Conclusion
	References

