
Distributed Firewall Anomaly Detection Through
LTL Model Checking

Sylvain Hallé and Éric Lunaud Ngoupé
Université du Québec à Chicoutimi, Canada

Email: shalle@acm.org, eric-lunaud.ngoupe@uqac.ca

Roger Villemaire and Omar Cherkaoui
Université du Québec à Montréal, Canada

Email: {villemaire.roger,cherkaoui.omar}@uqam.ca

Abstract—An anomaly in a firewall is a relationship between
two of its rules that may hint at a possible misconfiguration of
its filter. While checking anomalies within a single firewall is
well understood, identifying anomalies across multiple firewalls
in a network is a much harder problem that has only been
studied for restricted cases. In particular, we show that the
correct identification of anomalies must take into account the
routing function performed in each node of the network. We
introduce a formal model of firewalls and routing tables that
generalizes past work on the topic; in particular, we show how
the detection of anomalies in this model reduces to the model
checking of particular instances of Linear Temporal Logic for-
mulæ. An implementation of an anomaly detector that leverages
existing model checkers reveals that distributed anomalies can
be identified at a reasonable cost.

Index Terms—firewall; rules; Linear Temporal Logic; model
checking

I. INTRODUCTION

The management of network devices is an intrinsically
complex and error-prone task. While each piece of equipment
may be analyzed and deemed correct when considered in
isolation, the combined interaction of multiple such elements
may give rise to unforeseen and often undesirable side effects.
Network firewalls are no exception in this respect. Their
overall behaviour results from the subtle interaction of tens
of filtering rules, and it has long been recognized that an
improper configuration of these rules may compromise the
correct enforcement of an organization’s security policy.

It has hence become desirable to develop tools and techniques
to analyze firewall rule bases and identify so-called anomalies:
relationships between rules that hint at a potential misconfigu-
ration. In Section II, we illustrate on a simple example a set of
widely-accepted anomalies; more importantly, we argue that,
when considering multiple firewalls dispersed throughout an
arbitrary network, the correct discovery of anomalies must take
into account the routing tables present in every node. However,
in Section III, we shall see that research on anomalies in
the past has mostly concentrated on single firewalls, and that
distributed anomalies have only been studied for restricted
cases.

In this paper, we describe a reduction of the problem of
checking distributed firewall anomalies to the problem of model
checking in Linear Temporal Logic (LTL). Our formal model,
described in Section IV, generalizes previous work on the

subject in three different respects:
1) The detection of anomalies takes into account the

interplay between firewall rules and each node’s routing
table. An anomaly between two rules is not reported if
no packet can visit those rules in the correct order, given
the network’s routing pattern.

2) The network considered can have an arbitrary topology,
and is not restricted to firewalls arranged in a regular
tree structure.

3) The anomalies studied in past literature merely become
particular instances of LTL formulæ. As such, any other
anomaly expressible as an LTL formula can be readily
verified by our framework.

In Section V, we report on experiments made on the imple-
mentation of an anomaly detector based on that model, and
leveraging existing software called model checkers. We show
that, despite its increased generality, our detector accurately
spots anomalies in complex networks made of thousands of
firewall rules on the order of minutes.

II. FIREWALL RULE ANALYSIS

In order to secure a corporate network or some subnetwork
within it, network traffic is usually filtered according to such
criteria as origin, destination, protocol and service. Typically
firewalls are equipped with filters specifying which packets
should be forwarded and which should be discarded.

Figure 1 shows a simple setup for firewalls distributed across
a network. The network is composed of a number of nodes,
each made of an ingress firewall component filtering traffic
from outside the node’s subnet, and of a routing component
responsible for patching the traffic to the next hop based on
a routing table. A filter is a sequence of rules that are tried
in order, up to the first matching one. A rule consists of a
condition, which is a region of the packet’s space (in our
example, we only show the destination address field), and of a
decision —usually accept (>) or deny (⊥). Each packet hence
goes through the rules in sequence up to the first matching
condition, whose decision determines whether the packet is
forwarded or discarded. In the following, we shall use the
notation x.y to designate filter rule y of node x.

The packet is then processed by the routing component,
which sends it to the next hop according to its destination
address. A special symbol, labelled #, does not stand for any
actual node. When # occurs as the destination of a routing978-1-4673-0269-2/12/$31.00 c© 2013 IEEE

1 [5,8] : ⊥
2 [0,1] : ⊤
3 [6,8]: ⊥
4 [2,5]: ⊤
5 [9,9]: ⊤

[0,3] #
[4,8] Device 2
[9,9] Device 3

I Next hop

1 [5,6] : ⊤
2 [0,4] : ⊤
3 [7,8] : ⊥
4 [9,9] : ⊤
5 [3,5] : ⊤

[0,3] Device 1
[4,8] #
[9,9] Device 1

I Next hop

[0,8] Device 1
[9,9] #

I Next hop

Node 1

Node 2

Node 3

1 [5,8] : ⊤
2 [2,4] : ⊤
3 [9,9] : ⊤
4 [0,1]: ⊥

Figure 1. A network of firewalls and routers. The firewall filter and routing table for each node is shown.

rule, it indicates that the packets leave the network. This
symbolizes either that the node is directly connected to the
destination, or that the next hop is a node outside the network
under consideration. While in our setup filtering is done before
routing, the opposite order can easily be taken into account
by reversing the order of those two steps throughout. Since
the state of routing tables may vary with time through the
use of dynamic routing protocols such as RIP and OSPF, we
shall assume in the following that the tables model an over-
approximation of the possible paths in the network.

A. Anomalies

Configuring a filter is a well-known error-prone task. Net-
work management researchers have introduced filter properties,
called anomalies, which either reveal or hint to a possible mis-
configuration. In particular, Al-Shaer’s work [1], [2] considered
the following cases, involving a pair of rules.

1) Shadowing: A rule r1 is shadowed if there is a rule r2,
preceding r1 in the filter, that already blocks all packets covered
by r2. This anomaly can occur either within a single firewall, or
across firewalls: for instance in Figure 1, rule 1.2 is shadowed
by rule 3.4. This entails that a packet with destination address
0 will be rejected if it enters through Node 3, while Node 1
would have accepted it.

2) Spuriousness: Spuriousness is the opposite of shadowing:
this anomaly occurs when some rule in a firewall allows traffic
that a later rule will reject. For example rule 3.1 and rule
1.1 present a spuriousness anomaly: a packet with destination
address 5 will be rejected right away if it enters the network
through Node 1, while the same packet entering at Node 3
will be accepted, and routed to Node 1 where it will then be
rejected.

3) Redundancy: A rule is redundant if it is shadowed by a
rule with the same decision. If both rules lie within the same
firewall, the redundant rule can be removed without changing
the packets that are accepted. This is the case for rule 1.3
which is shadowed by rule 1.1. In the case of distributed
firewalls, however, discovering a redundancy anomaly does not
entail that the rule may be removed immediately; one has to
inspect further and check whether the firewall receives its traffic
exclusively and directly from the upstream firewall containing
the duplicate. For example, if Node 3 received traffic solely
from Node 1, then rule 3.3 3 would merely repeat a decision
already taken by rule 5 in Node 1, and could be removed.

4) Correlation: Finally, correlation happens when a later
rule matches some packet already matched by r while having
a different decision.

As was stressed by [1]–[3], anomalies do not entail that the
firewalls present errors; they only hint at potential misconfigu-
rations, on the grounds that the administrator’s intent may be
ambiguous.

B. The Impact of Routing

In the case of firewalls distributed across a network, it does
not suffice to compare the rules in a pairwise fashion as the
previous definitions seem to imply. Obviously, one must take
into account the topology of the network to determine whether
two rules r,r′ can be processed in that order. In our example,
it does not make sense to conclude that rule 1 in Node 3
shadows Rule 3 in Node 2, as no traffic ever goes through
Node 3’s firewall followed immediately by Node 2. Rather,
that traffic must flow through Node 1 in between —and all
traffic destined to Node 2’s rule 3 will be discarded by Node
1’s rule 1 beforehand. Hence the sequence in which firewalls
can be visited matters in the analysis.

2

Not only is this sequence relevant, but the actual routing
function performed in each node is also important to discover
rule anomalies. For example, it would seem natural to declare
that rule 2.1 and rule 1.1 present a spuriousness anomaly.
However, one shall remark that the packets matching rule 1
in Node 2 are never routed to Node 1: Node 2 is directly
connected to those destinations. Simply comparing the rules,
without taking into account the actual routing information,
makes us falsely conclude to the presence of an anomaly.

Similarly, one might conclude that Rule 1.1 shadows Rule
3.1; this, however, is not true, as the only packets that may hop
from Node 1 to Node 3 are those with destination address 9;
therefore neither of the rules involved in the anomaly apply to
that traffic, and we are this time witnessing “false shadowing”.
Finally, rule 1.4 seems to make rule 2.5 redundant; however
only packets in the interval [4,8] flow from Node 1 to Node 2;
the projection of rule 1.4 over this range no longer covers the
entire interval of rule 2.5, and hence redundancy was falsely
concluded.

These examples show that an appropriate framework for
the detection of anomalies in firewall rules should model the
nodes’ routing tables, and take this information into account
to automatically discard candidate pairs of rules that do not
correspond to a possible path in the network. As a matter
of fact, one has to intersect the first rule’s interval with the
interval of every routing rule fired along the path to the second
rule, in order to correctly conclude that an anomaly is indeed
present.

III. RELATED WORK

The detection of anomalies in firewall rules has been the
subject of a number of related works in the past. We shall
first dismiss works such as [4], for which errors amount to
the presence (or absence) of specific rules inside firewalls;
examples of such errors include “Allowing TCP on port 23” or
“Outbound POP3”. In contrast, the firewall anomalies we are
concerned with correlate fields and decisions of two different
entries in a firewall rule base.

The remaining works can be divided in two categories,
whether they attempt to discover anomalies within a single
firewall, or consider the distributed case.

A. Intra-Firewall Anomalies

The Firewall Policy Adviser [3] is one of the earliest tools for
firewall analysis. It uses Binary Decision Diagrams (BDDs) to
represent rules, as is the case for FIREMAN [5]. This approach
has been evaluated experimentally, detecting anomalies in a
800-rule filter in less than 3 seconds. Alternatively, a tree
structure that represents a spatial decomposition of regions
into non-overlapping axis-parallel regions is used in [6] in a
prototype tool. Special decision tree data structures have also
been introduced in [7], [8] to process sequences of regions,
but with neither theoretical nor experimental evaluation.

While these tools are efficient at detecting a predefined
set of firewall anomalies, their algorithms are hard-coded
and built-in. To detect different patterns in rule bases, one

therefore has to modify the existing tools, and implement the
algorithms that detect the desired patterns. In contrast, the
Margrave tool [9] allows a user to write queries in a first-
order language; however, this language is closer to a scripting
language, and ultimately amounts to the user programming the
desired detection mechanism.

It was suggested in [10] that anomalies rather be expressed
as formulæ in a more general language called Visibility Logic.
Alas, VL is a relatively new concept, and verification of VL
formulæ currently works only for single firewalls.

B. Inter-Firewall Anomalies

In contrast with intra-firewall anomalies, very few works
tackled the problem of detecting inter-firewall configuration
anomalies. Since the presence of multiple firewalls brings up
the question of paths in the network, a first class of related
works used model checking techniques; [11] models the path
of a packet into a network to check, for example, that two
given endpoints are reachable, or to discover QoS violations.
A similar approach is followed by [12], which uses a Boolean
satisfiability solver to check two properties on multi-firewall
rule base: 1) reachability (for each rule, there exists a packet
that fires that rule) and 2) acyclicity (no packet returns to a
firewall that already processed it).

Both these frameworks model the path of individual packets
into a network. This approach, however, is not appropriate for
the discovery of the rule anomalies considered in the present
paper. For example, discovering that some packet is accepted
in some firewall A and gets re-accepted by the next firewall
B does not reveal a redundancy anomaly. Rather, redundancy
requires that all packets accepted by the same rule in B are
also accepted by the same rule in A. The discovery of firewall
anomalies requires reasoning on intervals, not packets.

This is the approach followed by Al-Shaer’s work [1], [2],
which presents an extension of the Firewall Policy Adviser
for the distributed case. The algorithm computes whether a
single pair (r1,r2) of rules exhibits any of the aforementioned
anomalies. Checking an entire firewall rule base involves
repeating the process for every possible pair of rules along
every possible path in the network. The same principle is
used in another firewall analysis tool called Prometheus [13].
We shall see in Section V how this approach presents severe
scalability issues; they were mitigated by the fact that the
case study considered a small number of firewalls arranged
in a directed tree, thereby considerably limiting the number
of possible paths in the network. Moreover, in neither case,
the routing information is used to compute the presence of
anomalies, thereby leading to the false positive issue described
earlier.

Finally, recent work by Rupali [14] discusses inter-firewall
anomalies but only provides experimental results for intra-
firewall analysis.

IV. A FORMAL MODEL OF DISTRIBUTED FIREWALLS

To address the issues mentioned above, we shall define in
this section a new formal model for the detection of firewall

3

anomalies. The model can be seen as a hybrid of the two main
approaches discussed above: the system manipulates intervals of
values, but reasons over them using model checking techniques.
In line with our example in Figure 1, the presentation is built
by taking into consideration a single packet field (the packet’s
destination address). Other fields can later be added to the
model in a straightforward way.

A. Firewall and Routing Tables

Let A= {0,1, . . . ,k} be a range of contiguous numbers stand-
ing for values of some packet field, where maxA = k denotes
the upper bound of the range. Let I = {(x,y) ∈ A2 : x≤ y} be
the set of valid intervals over A. The set of firewall rules is
defined as RF = I×{>,⊥}; that is, each rule is a tuple (i,x),
where i∈ I is an interval and x is either “accept” (>) or “reject”
(⊥). The set of firewalls F = (RF)

∗ is the set of all possible
sequences of rules taken from RF . In the following, instance of
firewalls will be denoted f , while firewall rules will be denoted
as f .

It shall be noted that this representation of intervals is more
general than, e.g. [2], which assumes hierarchical intervals,
where only some rightmost string of bits can vary (such as in
10.10.10.*); consequently, if two intervals are not disjoint, one
is necessarily included within the other —intervals can never
partially overlap. In contrast, our model supports arbitrary
intervals. Hence, it can be applied without modification to any
packet field, including those that are not hierarchical in nature,
such as port ranges.

A similar treatment can be made for routing tables. Let D
be a set of device (or node) names. Since we assume that the
single packet field stands for its destination address, the set of
routing rules can hence be defined as the set RR = I×D. That
is, given a destination range, a routing rule gives the next hop
for a packet whose field lies in that range. The set of all routing
tables is then R = (RR)

∗. In the case where a routing table
contains two rules (I,d),(I′,d′) ∈ RR such that I∩ I′ 6= /0 and
d 6= d′, the conflict is interpreted as a non-deterministic choice:
packets whose destination lies in I∩ I′ may be forwarded either
to d or to d′.

A network node is made of an ingress firewall and a routing
table. The set of network nodes is therefore NN =F×R. Finally,
a network N is a function from node names to network nodes;
formally, N : D→ NN ; hence the expression N(a) returns the
node (f ,r)∈NN consisting of the firewall and routing table for
the node named d. We will abuse notation and write N(d) = /0
to denote the fact that N contains no device named a. Similarly,
we shall write n ∈ N to denote that there exists a device name
d ∈ D such that n = N(d). We assume the network to be
consistent: for each tuple (d,(f ,r)) ∈ N and for each routing
rule (i,x) ∈ r, either N(d) 6= /0 or x = # —that is, every routing
rule leads to a next hop that exists in the network or has a
packet leave altogether.

For a list r = r0,r1, . . . of routing (resp. firewall) rules, we
denote r[k] as the k-th routing (resp. firewall) rule of r (i.e.
rk). The length of r will be written |r|. We will also assume
that each firewall rule in the network is given a unique global

number, and let K be the set of such numbers. K will also be
overridden as a function RF → K; given some rule r in some
firewall of some network node, we denote by K(r) the unique
number associated to that rule.

B. From a Network to a Kripke Structure

From a network N formalized as above, we then proceed to
build a special kind of finite-state machine M that will be used
for verification purposes. Intuitively, each state in M stands for
one of the firewall rules in the nodes of N; the states will be
connected in such a way that a path in M represents a possible
sequence in which the firewall rules may be processed.

Somewhere along a path, the system takes a “snapshot” of
the current rule, and memorizes that snapshot for the remainder
of the trace. That snapshot contains the rule’s interval bounds
and decision. The choice of whether to take a snapshot is
non-deterministic; this entails that, for every possible sequence
of rules r1,r2, . . . ,rm in N and every rule ri in that sequence,
there exists a trace in M that follows the same rules in the
same sequence and that takes its snapshot at rule ri.

Using this mechanism, an anomaly in the firewall rules will
hence express a property of the states along some path of M,
where the snapshot of a past rule and the fields of the current
rule are in a specific relationship. To represent that information,
we define the structure of M in terms of the following 8 state
variables:
• χ ∈ K is the unique number associated to each rule;
• ρL,ρR ∈ A are respectively the left and right bounds of

the rule’s interval;
• ρD ∈ {>,⊥} is the rule’s decision;
• ιL, ιR ∈ A and ιD ∈ {>,⊥} are called freeze variables; they

carry the same meaning as their ρ counterparts, and are
used to memorize (or “freeze”) the values of some past
rule for later comparison;

• ιF ∈ {>,⊥} is an auxiliary variable that indicates whether
the other ι have already frozen some rule or are still
uninitialized.

Formally, we build a Kripke structure M = 〈S,S0,δ ,L〉,
where S is a set of states, S0 a set of initial states, and δ ⊆ S2

a transition relation. Each state is defined uniquely by the
values taken by each state variable; the function L, called a
state labelling, associates to each state s and each state variable
a value in their respective domains. Hence the expression
L(s3,ρD) designates the value in A of state variable ρD in state
s3.

To completely characterize M, one needs to define S0 and
the transition relation δ .

1) Initial States: We first assume that traffic may enter the
network from any network node. Therefore, the first state of a
trace in M should correspond to an encoding of the topmost
firewall rule of any node, hence deciding on the possible values
for χ , ρL, ρR and ρD. In the first state of the trace, no snapshot
has yet been taken, hence ιF = ⊥ in all initial states of the
structure. Since the snapshot interval has not been constrained
in any way, the whole range of values are possible, and therefore
ιL = 0 and ιR = maxA. This can be formalized as follows:

4

Definition 1 (Initial states). Let a,a′ ∈ A, x ∈ {>,⊥}, k ∈ K
be arbitrary values and s ∈ S be the state of M uniquely
defined as: L(s,χ) = k, L(s,ρL) = a, L(s,ρR) = a′, L(s,ρD) = x,
L(s, ιL) = 0, L(s, ιR) = maxA, L(s, ιD) =⊥, L(s, ιF) =⊥. Then
s is an initial state of M if and only if there exists a network
node n = (f ,r)∈N such that r[0] = ((a,a′),x) and K(r[0]) = k.

To take into account the fact that some nodes may not be
entry points to the network, it suffices to impose that n be
designated as an ingress node using some additional marking,
which we omit from the presentation.

2) Transition Relation: The transition relation describes how
the system may move from one state to another. We need to
distinguish between two different cases. The first case occurs
when the current state s encodes any firewall rule of some node,
except the last. Since firewall rules are handled sequentially,
the next state encodes the next rule in that node’s firewall,
which determines the next values for χ , ρL, ρR and ρD. If a
snapshot has already been taken (i.e. ιF => in the current state
s), the next state retains the values of that snapshot, thereby
fixing ιL, ιR and ιD. On the contrary, if no snapshot has been
taken, the system can non-deterministically move to a next
state with still no snapshot, or freeze the values of the current
rule into its variables ιL, ιR and ιD. This can be formalized as
a first part of the transition relation:

Definition 2 (Non-final rules). Let δ1 ⊆ S2 be some transition
relation. Let s,s′ ∈ S be two states of M, n = (f ,r) be some
network node of N. Let f = ((aL,aR),x), f ′ = ((a′L,a

′
R),x

′) be
two firewall rules such that f = f [i], f ′ = f [i+1] for some i ∈
[0, | f |−2]. Moreover suppose that L(s,χ) = K(f), L(s,ρL) =
aL, L(s,ρR) = aR and L(s,ρD) = x. The transition (s,s′) is part
of δ1 if and only if L(s′,χ) = K(f ′), L(s′,ρL) = a′L, L(s′,ρR) =
a′R, and either of the following holds:

1) L(s, ιF) = > and L(s′, ιF) = >, L(s′, ιL) = L(s, ιL),
L(s′, ιR) = L(s, ιR), L(s′, ιD) = L(s, ιD); or

2) L(s, ιF) =⊥ and either L(s′, ιF) =⊥, L(s′, ιL) = L(s, ιL),
L(s′, ιR) = L(s, ιR), L(s′, ιD) = L(s, ιD), or L(s′, ιF) =>,
L(s′, ιL) = max(L(s, ιL),a′L), L(s′, ιL) = min(L(s, ιR),a′R),
L(s′, ιD) = x′

It shall be noted in case 2 of the above definition that
the freezing of some rule’s interval into the state variables
is actually its intersection with whatever interval is already
encoded in the freeze variables (hence the use of max and min).
This is necessary, for conditions on the packet’s interval may
have already started to add up if the system has gone through
a routing table at least once. An example was given in Figure
1; a packet entering in Device 2 and moving to Device 1 must
lie in the interval [0,3]; therefore, taking a snapshot of Device
1’s rule 4 according to that path should result in the interval
[2,3] (rather than [2,5]) being frozen for later comparison.

The second case to be considered is when the current rule
is the last of the node’s firewall. As with the previous firewall
states, a snapshot of the current rule’s interval may be taken if
no interval has yet been frozen. Then, to represent the routing
of packets across the network, the next possible rule must be

taken according to the node’s routing table and constraints
gathered on the snapshot interval (whether frozen or not). Any
routing rule whose interval intersects with that of the snapshot
interval qualifies as a possible next hop; the system should then
transition to the topmost firewall rule of this next hop. Finally,
the hypotheses on the snapshot interval must be updated by
intersecting it with the selected routing rule’s interval, as was
explained above.

This intuition can be formalized as a second part of the
transition relation:

Definition 3 (Final rules). Let δ2 ⊆ S2 be some transition
relation. Let s,s′ ∈ S be two states of M, n = (f ,r) and
n′ = (f ′,r′) be two network nodes of N, such that N(x) = n′

for some node name x ∈ D. Let f = ((aL,aR),d) be a
firewall rule such that f = f [i], for i = | f |−1. Suppose that
L(s,χ) = K(f), L(s,ρL) = aL, L(s,ρR) = aR and L(s,ρD) = d.
Let f ′ = ((a′L,a

′
R),d

′) be a firewall rule such that f ′ = f ′[0].
The transition (s,s′) is part of δ2 if and only if:
• There exists a routing rule r = ((bL,bR),x) ∈ r such that
[b1,b2]∩ [L(s, ιL),L(s, ιR)] 6= /0, and

• L(s′,χ) = K(f ′), L(s′,ρL) = a′L, L(s′,ρR) = a′R, and
• Either of the following holds:

1) L(s, ιF) = L(s′, ιF), L(s′, ιL) = max(L(s, ιL),bL),
L(s′, ιR) = max(L(s, ιR),bR), L(s′, ιD) = L(s, ιD), or

2) L(s, ιF) = ⊥, L(s′, ιF) = >, L(s′, ιD) = d,
L(s′, ιL) = max(L(s, ιL),aL,bL), L(s′, ιR) =
max(L(s, ιR),aR,bR)

Finally, we represent the fact that a packet leaves the network
by adding transitions to a sink state, whenever the destination
of the routing rule is # or as soon as ιL > ιR in the current
state (indicating that no packet can ever reach that point due to
conflicting conditions). We omit the formal definition of this
last condition. The total transition relation for M is then given
as δ1∪δ2.

C. Firewall Anomalies as LTL formulæ

With the Kripke structure M defined above, the verification
of distributed firewall anomalies amounts to the verification of
specific conditions on the values of state variables along every
possible path of the system. Rather than devise a dedicated
algorithm to search for those anomalies in M, we shall express
each anomaly as an expression in some forme of logical
language called Linear Temporal Logic (LTL) [15].

Formally, a trace s of M is a sequence of states s0,s1, . . .
such that for every i≥ 0, (si,si+1) ∈ δ . Informally, s is the list
of states visited by starting at some s0 ∈ S and only following
transitions defined by δ .

The basic building blocks of LTL formulæ, called ground
terms, are inequalities over the values of state variables with
respect to some current state. For example, the expression ρL ≤
ιL indicates that, in some current state s∈ S, L(s,ρL)≤ L(s, ιL).

On top of these propositional variables, LTL allows Boolean
connectives ∨ (or), ∧ (and), ¬ (not), bearing their usual
meaning and temporal operators to express constraints on the
sequence of states. The temporal operator G means “globally”;

5

s |= v1 ? v2 ≡ L(s,v1)?L(s,v2)

s |= ¬ϕ ≡ s 6|= ϕ

s |= ϕ ∧ψ ≡ s |= ϕ and s |= ψ

s |= ϕ ∨ψ ≡ s |= ϕ or s |= ψ

s |= ϕ →∨ψ ≡ s 6|= ϕ or s |= ψ

s |= X ϕ ≡ s1 |= ϕ

s |= G ϕ ≡ m0 |= ϕ and s1 |= G ϕ

s |= F ϕ ≡ m0 |= ϕ or s1 |= F ϕ

s |= ϕ U ψ ≡ m0 |= ψ or both

m0 |= ϕ and s1 |= ϕ U ψ

Table I
THE SEMANTICS OF LTL OPERATORS. THE SYMBOLS v1 AND v2 REPRESENT

ARBITRARY STATE VARIABLES OR CONSTANTS; ? IS ANY OPERATOR IN
{≤,≥,=} AND ϕ AND ψ ARE ARBITRARY LTL FORMULÆ.

the formula Gϕ means that formula ϕ is true in every state
of the trace, starting from the current state. The operator F
means “eventually”; the formula Fϕ is true if ϕ holds for
some future state of the trace. The operator X means “next”; it
is true whenever ϕ holds in the next state of the trace. Finally,
the U operator means “until”; the formula ϕ Uψ is true if ϕ

holds for all states until some state satisfies ψ .
The fact that a formula ϕ holds for some trace s, noted

s |= ϕ , can be computed recursively as defined in Table I. A
Kripke structure M is said to be a model of ϕ (noted M |= ϕ)
when ϕ holds for every trace starting at one of M’s initial
states.

Using this logic, it is possible to convert the firewall
anomalies described in Section II into LTL formulæ.

1) Shadowing and Spuriousness: We recall that a rule r is
shadowed when its decision is accept and there exists a previous
rule blocking some traffic and whose interval completely covers
that of r. In the Kripke structure M, this will be the case when
an interval has been frozen (i.e. ιF = >), the bounds of the
frozen interval cover that of the current rule (i.e. both ιL ≤ ρL
and ιR ≥ ρR), when the frozen decision is ⊥ and that of the
current rule is >. The absence of such an anomaly can be
stated by the fact that, globally along any trace, those four
conditions can never be fulfilled simultaneously by the same
state:

G¬(ιF =>∧ ιL ≤ ρL∧ ιR ≥ ρR∧ ιD =⊥∧ ιD =>) (1)

Spuriousness is expressed like shadowing, with decisions
reversed:

G¬(ιF =>∧ ιL ≤ ρL∧ ιR ≥ ρR∧ ιD =>∧ ιD 6=⊥) (2)

2) Redundancy: Redundancy can be expressed as a variant
of the previous formulæ where the decision of both rules
involved must match:

G¬(ιF =>∧ ιL ≤ ρL∧ ιR ≥ ρR∧ ιD = ρD) (3)

3) Correlation: A rule r is correlated when there exists a
subsequent rule, having a different decision from r, and whose
interval overlaps that of r. In the Kripke structure M, this will

be the case when an interval has been frozen (i.e. ιF =>) and
when the frozen decision is different to that of the current rule
(i.e. ιD 6= ρD). Moreover the bounds of the frozen interval must
overlap that of the current rule; this occurs when at least one
of ιL ≤ ρL and ιR ≤ ρR is true, and at least one of ιL ≥ ρL and
ιR ≥ ρR is true. Again, the absence of such an anomaly can
be stated by the fact that, globally along any trace, those four
conditions can never be fulfilled simultaneously:

G¬(ιF =>∧ (ιL ≤ ρL∨ ιL ≤ ρL)

∧ (ιL ≥ ρL∨ ιR ≥ ρR)∧ ιD 6= ρD) (4)

A formal proof of the correctness of this construction is
omitted due to lack of space.

V. IMPLEMENTATION

The results in the previous section provide a straightforward
workflow for the detection of anomalies in a network of
firewalls. For a given network N, it suffices to build the
corresponding Kripke structure M, and then to decide whether
M |= ϕ , with ϕ any of the LTL formulæ (1)–(4). If ϕ does not
hold in M (that is, M 6|= ϕ), then there exists a counter-example
trace1, starting from some initial state and leading into a state
that satisfies the undesirable conditions stated by ϕ —thereby
showing why it is false.

Our presentation, however, has not yet described how M |= ϕ

can be computed. A frontal approach to this problem would
amount to enumerate all traces s in M and compute s |= ϕ

separately for every such trace. This would follow the strategy
used in [1]. It is easy to see that this approach hardly scales for
networks of even small sizes: for a network of n nodes, there
exist up to ∑

n
k=0 k! non-cyclic paths to check, hence yielding

a super-factorial complexity.
The interest of our construction rather lies in the fact that,

when properties on paths are expressed as Linear Temporal
Logic formulæ, there exists a much simpler, PSPACE-complete
algorithm that can compute M |= ϕ without the need for
enumerating every trace. Moreover, existing and heavily-
optimized software called model checkers can be leveraged to
take care of the actual verification. Therefore, no dedicated
algorithm needs to be designed from this point on.

A. Experimental Setup

To assess the feasibility of the approach, we implemented
a distributed firewall anomaly detector as a Java application
made of approximately 1,100 lines of code.2 Its schematics are
described in Figure 2. The anomaly detector takes as input a
set of text files describing the firewall rules and routing table of
each node in the network. These files are then processed by an
Encoder, which is responsible for creating a Kripke structure
corresponding to that network by applying the construction
described in Section IV.

1This is not the case for some other temporal logics, such as CTL and
CTL∗.

2http://github.com/sylvainhalle/DistriCheck

6

Anomaly detector

Firewall rules
Routing table

Encoder

Decoder

Kripke structure

NuSMV

Counter-example
trace

Anomaly explanation

Node 1

Firewall rules
Routing table

Node n

. . .

Anomalies expressed
as LTL formulæ

Figure 2. Schematics of the distributed firewall anomaly detector.

- Starting at Node 1
- Considering firewall rule 2 on Node 1: [1-5] accept
- Going to Node 2 through routing rule 2:
Node 1 -> [2-6] -> Node 2

- The considered interval becomes restricted to [2-5]
- Going to Node 3 through routing rule 1:
Node 2 -> [2-6] -> Node 3

- Shadowing anomaly with firewall rule 2 on
Node 3: [2-5] accept vs. [3-4] reject

Figure 3. Explanation produced by the distributed firewall anomaly detector.

The Kripke structure is then piped to the standard input of
an external model checker. For the present paper, this external
software is NuSMV 2.5.4 [16], an open source, state-of-the-
art model checker for LTL. Each anomaly to be checked on
the network is expressed as an LTL formula and appended
to the NuSMV model. As we have seen, these formulæ are
independent from the actual network to verify: the same
expressions are added upon every invocation of NuSMV.

The model checker is then run as a background command
line process, and its output is collected by the verifier. If the
given LTL formula is true, then no anomaly has been found
and the verifier ends with that verdict. If the formula is false,
NuSMV provides, without any further work, a (finite) counter-
example trace for that formula; actual values of every state
variable are given for every state of the trace. A Decoder
takes care of reading that counter-example, discover transitions
corresponding to firewall rules, snaphots, and routing rules,
and translate that counter-example back into an explanation for
the reported anomaly. Figure 3 shows an explanation produced
by the tool on the network of Figure 1.

B. Results and Discussion

We then measured the performance of the anomaly detector
by analyzing a variety of synthesized network configurations.
In all the experiments described, we programatically generated
text files containing the firewall and routing table of every node
in a network. The tool then followed the workflow shown in

0.1

10

1,000

T
im

e
(s

)

Total number of rules in network

50 100 150 250200

2-2-2 3-3-3

Figure 4. Verification time for two tree configurations, with an increasing
number of firewall rules in the network (log-log scale).

Figure 2. The loading of text files, generation of the Kripke
structure and interpretation of the counter-example trace take in
the order of milliseconds and are hence negligible in the total
running time. The processing times are therefore measured
as the elapsed time between the cold-start of NuSMV until
the termination of its system process. All times have been
computed on an AMD Athlon II X4 running at 3.0 GHz under
Ubuntu 12.04.

We first repeated the experiments described in [2] and
generated sets of random firewalls arranged in a four-tier,
directed tree structure. Each upstream firewall in this structure
is linked to exactly two or three downstream firewalls, thus
yielding a hierarchy of the form 2-2-2 or 3-3-3. The traffic
flows in a single direction: no packet is ever routed back to
an upstream firewall. The running times are shown in Figure
4, for nodes of increasing firewall sizes.

The linear slope of the log-log plot, both for the 2-2-2 and
the 3-3-3 case indicates that, for a fixed network topology, the
detection of anomalies is polynomial in the total number of
firewall rules. In the case of the 2-2-2 hierarchy (15 network
nodes), it takes between roughly 1 and 10 seconds to analyze
the firewall rule base; this time varies approximately between
2 and 20 minutes for the 3-3-3 hierarchy (40 nodes).

We also repeated the experiment, this time fixing the number
of firewall rules, and varying the number of network nodes.
We generated random routing tables for each of the nodes,
therefore resulting in arbitrary topologies instead of the fixed
hierarchy of the first experiment. The running times are shown
in Figure 5. The plot shows verification times varying between
1 second and 16 minutes, depending on the number of nodes
and the fixed number of rules used for the experiment.

The results obtained can be used as the basis for the compar-
ison of existing methods. We shall first discard experimental
results reported for intra-firewall anomalies or for anomalies
along a single path in the network [3], [5], [10], [14], which
amount to a much simpler problem.

For firewalls arranged as a 3-3-3 hierarchy, [2] reports an
analysis time of 180 seconds, and 20 seconds with additional
optimizations. These figures however, have been reportedly
computed on a 400 MHz Pentium III computer. A conservative

7

0.001

1

1,000
T

im
e

(s
)

Number of nodes in network

1 5 10 20

50 rules 100 rules

Figure 5. Verification time for randomly generated topologies, with a fixed
number of firewall rules and an increasing number of nodes rules in the
network (log-log scale).

approximation based on the runtime ratio of each processor
in the SPEC benchmarks,3 yields a speed-corrected running
time of 12 seconds for the basic version, and 1.3 second for
the optimized version.

We have seen, however, that those faster running times are
achieved at the expense of precision and generality. First, the
content of routing tables is not modelled by [2] —thereby
leading to potential false positives as described in Section II.

Moreover, the optimized technique only applies when the
considered network is a directed tree; for any other network,
only the generic technique, which performs a separate analysis
on every path, is applicable. For example, the 2-2-2 hierarchy
contains 15 nodes; assuming an arbitrary topology of those
same 15 nodes, the generic method should potentially verify
more than 15! ≈ 1012 paths. At this rate, the tool should be
more than one hundred million times faster on every path to
achieve the same running time as the model checking approach.

Another basis for comparison is [12], as part of the routing
information is taken into account in the model of the network.
For a random network of 3,000 rules, checking cyclicity is
reported to take 7 seconds, and reachability 450 seconds. It shall
be noted, however, that the properties checked are simpler than
firewall anomalies, and only model the path of single packets.
We have discussed earlier how this approach is not appropriate
for the detection of anomalies, which require the propagation
of rules’ intervals and their comparison to other rules later on.

VI. CONCLUSION

Early experimental results on the use of model checking
to the detection of patterns in firewall rules indicate that the
approach can spot firewall anomalies in reasonable time for
networks of realistic sizes. However, two factors unrelated
to performance make the approach even more appealing.
First, existing anomalies studied in the literature are specific
formulæ in Linear Temporal Logic; as such, any other anomaly
expressible as an LTL formula is readily handled by our

3http://www.spec.org/. The computed ratio is 13.9 for a single core (our
tool does not take advantage of multiple cores and runs on a single processor)
and has been rounded to 15.

framework. Moreover, our approach takes into account routing
tables and possible paths between firewalls, and can analyze
arbitrary network topologies without the need for explicit
enumeration of every possible trace.

Future improvements include the optimization of the rep-
resentation of intervals in the model, and the use visibility
logic, rather than Linear Temporal Logic, to express the rules.
The freeze variables of the Kripke structure are actually used
to simulate the modal operators available in Visibility Logic.
Designing a model checking algorithm where VL constraints
would be checked natively might lead to better performances
than the LTL design proposed here.

REFERENCES

[1] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in INFOCOM, 2004.

[2] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classifi-
cation and analysis of distributed firewall policies,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 10, pp. 2069–2084, 2005.

[3] E. S. Al-Shaer and H. H. Hamed, “Firewall policy advisor for anomaly
discovery and rule editing,” in IM, ser. IFIP Conference Proceedings,
G. S. Goldszmidt and J. Schönwälder, Eds., vol. 246. Kluwer, 2003,
pp. 17–30.

[4] A. Wool, “Firewall configuration errors revisited,” Tel Aviv University,
Tech. Rep. arXiv:0911.1240v1, 2009.

[5] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“FIREMAN: A toolkit for firewall modeling and analysis,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2006,
pp. 199–213.

[6] Y. Yin, R. Bhuvaneswaran, Y. Katayama, and N. Takahashi, “Analysis
methods of firewall policies by using spatial relationships between filters,”
in ICSCN, 2007, pp. 348–354.

[7] A. Liu and M. Gouda, “Complete redundancy detection in firewalls,” in
Proceedings of the 19th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security, ser. Lecture Notes in Computer Science,
vol. 3654. Springer, 2005.

[8] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[9] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The Margrave tool for firewall analysis,” in LISA, R. van Drunen, Ed.
USENIX Association, 2010, pp. 1–18.

[10] B. Khorchani, S. Hallé, and R. Villemaire, “Firewall anomaly detection
with a model checker for visibility logic,” in NOMS. IEEE, 2012, pp.
466–469.

[11] A. El-Atawy and T. Samak, “End-to-end verification of QoS policies,”
in NOMS. IEEE, 2012, pp. 426–434.

[12] A. Jeffrey and T. Samak, “Model checking firewall policy configurations,”
in POLICY. IEEE Computer Society, 2009, pp. 60–67.

[13] R. M. Oliveira, S. Lee, and H. S. Kim, “Automatic detection of
firewall misconfigurations using firewall and network routing policies,”
in IEEE DSN Workshop on Proactive Failure Avoidance, Recovery, and
Maintenance (PFARM), 2009.

[14] R. Chaure, “An implementation of anomaly detection mechanism for
centralized and distributed firewalls,” International Journal of Computer
Applications, vol. 7, no. 4, pp. 5–8, September 2010, published By
Foundation of Computer Science.

[15] A. Pnueli, “The temporal logic of programs,” in FOCS. IEEE, 1977,
pp. 46–57.

[16] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in CAV, ser. Lecture Notes in
Computer Science, E. Brinksma and K. G. Larsen, Eds., vol. 2404.
Springer, 2002, pp. 359–364.

[17] 2012 IEEE Network Operations and Management Symposium, Maui, HI,
USA, April 16-20, 2012. IEEE, 2012.

8

