
Merge-Based Computation of Minimal Generators

Céline Frambourg1, Petko Valtchev2, and Robert Godin1

1 Département d’informatique, UQAM, Montréal (Qc), Canada
2 DIRO, Université de Montréal, Montréal (Qc), Canada

Abstract. Minimal generators (mingens) of concept intents are valuable ele-
ments of the Formal Concept Analysis (FCA) landscape, which are widely used
in the database field, for data mining but also for database design purposes. The
volatility of many real-world datasets has motivated the study of the evolution in
the concept set under various modifications of the initial context. We believe this
should be extended to the evolution of mingens. In the present paper, we build up
on previous work about the incremental maintenance of the mingen family of a
context to investigate the case of lattice merge upon context subposition. We first
recall the theory underlying the singleton increment and show how it generalizes
to lattice merge. Then we present the design of an effective merge procedure for
concepts and mingens together with some preliminary experimental results about
its performance.

1 Introduction

Formal Concept Analysis (FCA) has been proved to be a suitable tool for representing
the knowledge contained in a database. It is also used as a basis for association rule
mining (ARM).

ARM from a transaction database is a classical data mining topic, whereby the most
challenging problem is the detection of informative patterns in the transaction sets. A
major difficulty with association rules is the prohibitive number of itemsets (and hence
association rules) that can be generated even from a reasonably large data set. Moreover,
this approach generates a large number of redundant rules. Formal concept analysis
(FCA) has helped to solve this problem as it introduces closed itemsets (CIs) , which
are a promising solution to the problem of reducing the number of reported association
rules. A further step in this direction is the construction of association rule bases from
CIs: an operation which largely relies on the notion of closed itemset mingens. Yet
another difficulty arises with dynamic databases where the transaction set is frequently
updated. Although the necessity of processing volatile data in an incremental manner
has been repeatedly emphasized in the general data mining literature, few incremental
algorithms for association rule generation (and hence frequent itemset detection) have
been reported so far.

CIs mingens are a lossless and concise representation of knowledge in databases.
In [8], Kryszkiewicz and Gajek explain the construction of the mingens representation
of itemsets and they also show that it is sufficient to determine all the itemsets and
their supports. The growth of databases may induce another problem in the data mining
task, which is the lack of space. To solve this problem, we propose to distribute the

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 181–194, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

182 Céline Frambourg, Petko Valtchev, and Robert Godin

computation of the lattices prior to a final merging of the results at the end. Some
assembly algorithms have been published recently [18, 16], but most of the methods do
not take care of the mingens. That is why we study the evolution of the mingen family
during the lattice assembly. To answer that question, we made an exhaustive study of
the structures used during CIs family assembly. This study is based on the results of the
incremental case that can be found in [19].

We first recall the theoretical framework underlying the lattice assembly and the
mingens (Section 2). We will then present the algorithmic aspects of the dynamic com-
putation (Section 3) and finally we will present recent algorithmic results of the prob-
lems (Section 4).

2 Closures and Mingens

2.1 FCA Basics

a b c d e f g h

1 X X X X X X X X
2 X X X X X
3 X X X X X
4 X X X X
5 X
6 X X X
7 X X X X
8 X X X
9 X

1

13 12

134

1345

17

146178

13789 12346

1346

1246

14

1378 123127

1278

12378

123456789

d c g f

cd

bc fh

abc cf fgh ef

bcd efh

abcd cdfgh abcef efgh

abcdefgh

Ø

Fig. 1. Left: Context K (adapted from [4]) with O = {1, 2, ..., 9} and A = {a, b, ..., h}. Right:
The Hasse diagram of the concept (Galois) lattice derived from K.

FCA studies the way lattices emerge out of data. It considers an incidence relation I
over a pair of sets O and A, of objects and attributes, respectively. The relation is given
by the matrix which is called a (formal) context K = (O,A, I). Moreover, I gives rise
to two ′ mappings and the composite operators ′′ define closures on P(O) and P(A),
hence each of them induces a family of closed subsets, denoted Co

K and Ca
K, respectively.

Those two families, provided with ⊆ become two complete lattices which are dually
isomorphic via ′. These lattices overlap perfectly, thus giving rise to the concept lattice3.
A pair (X,Y) of mutually corresponding subsets, i.e. X = Y ′ and Y = X ′, is called
a (formal) concept whereby X is the extent and Y is the intent. An itemset Z is called
a generator of a closed set X if Z ′′ = X . It is called a minimal generator (mingen) if

3 Also known as the Galois lattice

Merge-Based Computation of Minimal Generators 183

T ⊂ Z implies T ′′ ⊂ Z ′′ = X . The closure operator on Ca
K defines an equivalence

relation4 where intents represent the maximum of each equivalence class, and mingens
their minimum.

2.2 Mingens in the Literature

In the literature, mingens have been given different names and various properties thereof
have been exploited with or without an explicit mention of the concept. For instance,
in the database field, keysets (see [9]) or minimal keys of the sub-relations obtained by
decomposing a given relation into 3NF, represent mingens of the attribute sets corre-
sponding to the sub-relations. In early literature on closures and implications, mingens
are referred to as irreducible gaps thus alluding at their status of minima among all
non-closed elements (”gaps”) [6] within the same closure class. In a different branch of
the same closure field (see [12]), mingens are termed minimal blockers, a notion that
closely follows that of a minimal transversal of a hypergraph [1].

Remarkable properties of the mingen family include its ideal-shaped structure. In
fact, in the Boolean lattice of all the parts of the ground set of a closure family, the
mingens represent an order ideal since the family is downwards closed by the subset-of
relation. On the cardinality side, it is known that the size of the mingen family can grow
up to exponential in the dimensions of the context [10].

Finally, the mingens have been used as target but also as auxiliary structures for
lattice algorithms. For instance, the calculation of concepts in Close [11], AClose [11]
or Titanic [13] relies on the construction of all mingens. In contrast, in NextClosure [3],
the notion of mingen is not explicitly mentioned, but is nevertheless present: a concept
intent is canonically generated by its smallest prefix containing a mingen.

3 Summary of the Dynamics of the Closed and the Mingens
Computation

So far, three different paradigms of lattice construction have been proposed: batch, in-
cremental and divide-and-conquer. Here we only present the incremental and the merge
one.

3.1 Incremental Lattice Construction

The incremental lattice construction paradigm emerged as a response to evolving data-
sets. Indeed, when a new object is inserted into a dataset, the intent families of the two
underlying contexts, i.e., the one ”before” (K) and the one ”after” (K+), are tightly
related: the later is the closure by intersection of the former augmented by the new ob-
ject description, o′. The later operation is a computationally less expensive basis for
the construction of the lattice of K+ than the straightforward construction from scratch.
Moreover, as shown in [5], instead of computing all possible intersections of subsets
from Ca ∪ {o′}, only pair-wise intersections of o′ with an intent from Ca need to be

4 X, Y ⊆ A are equivalent iff X ′′ = Y ′′.

184 Céline Frambourg, Petko Valtchev, and Robert Godin

considered. Among those, some are already existing intents while others are specific to
K+. Concepts from the L are divided into three categories with respect to the intersec-
tions produced by their intents. First, some concepts serve as canonical representatives
for their intersections: These are the concepts c = (X,Y) whose intents are the clo-
sures of the respective intersections, i.e., Y = (Y ∩ o′)′′. They are further divided into
modified (denoted M(o)) and genitors (denoted G(o)), meaning that the intersection
is itself an intent in L (i.e., (Y ∩ o′)′′ = Y ∩ o′) or that this is not the case (i.e.,
(Y ∩ o′)′′ ⊃ Y ∩ o′), respectively. The remaining concepts in L are called old or un-
changed (denoted by U(o)) and have little importance in the approach. As genitor and
modified intents are the closures of the corresponding intersections with o′, each con-
cept c = (X,Y) from G(o) ∪ M(o) is the unique maximum in L among all those
generating the intersection E = Y ∩ o′.

Given L (concept set and precedence relation) and o, the incremental lattice con-
struction problem amounts to restructuring and completing the data structure represent-
ing L up to reaching a structure that represents L+. For convenience reasons, the ho-
mologous concepts5 in L+ of modified and genitors from L will be denoted by M+(o)
and G+(o), respectively. New concepts in L+ with respect to L will be denoted by
N+(o). The restructuring of L into L+ is summarized by the following facts (see [15]
for a detailed description):

– L is isomorphic to a join-sub-semi-lattice of L+, made of the homologous concepts
of those in L,

– the suborder of L+ induced by the set of new concepts N+(o) is isomorphic to the
suborder induced by G+(o), the homologous concepts of the genitors in L.

3.2 Computation of the Mingens

In a way similar to lattice construction, the incremental mingen computation amounts to
transforming the mingen family of an initial context to the one of the augmented context
(see [17]). The reasoning underlying the transformation is based on the Boolean lattice
2A and the equivalence relation induced by the intent family Ca.

First, the equivalence relation of the augmented intent family Ca+ is a refinement of
the one corresponding to Ca. The classes of the initial relation either remain stable in the
new one or are split into two new classes. Second, split classes correspond to genitors,
while modified and old have their classes stable. Thus, given a genitor c of intent Y,
the resulting two classes for Ca+ correspond to the intent of the homologous concept in
L+, i.e., Y, and to the respective new intent Y ∩ o′, respectively. Recall that Y ∩ o′ is a
former non-closed subset that becomes closed and hence its respective class for Ca+ is
made of non-closed elements that lay in the class of Y whenever Ca is considered. For
instance, Fig. 5 shows the evolution of the equivalence class of the intent cdfgh in 2A

(diagram on the top) after the insertion of a new closed set d (diagram on the bottom
left).

The above fact explains why only generators of genitor concepts need to be exam-
ined in the transformation. Indeed, on the one hand, part of those become generators of

5 A concept from a context is homologous to another one from a different context if both have
the same intent.

Merge-Based Computation of Minimal Generators 185

the respective new intent, while on the other hand, new generators are emerging for the
genitor intent. The new generators are minimal sets in the newly formed equivalence
class for Ca+ that were not minimal in the larger class from Ca. In the above example,
the initial set of generators of cdfgh is cg, d, ch. After d becomes closed, its equiva-
lence class, here consisting of d itself, is split from the former class of cdfgh. The new
set of generators of cdfgh, i.e., minima in the new equivalence class is much larger: cg,
cd, df , dg, dh, ch.

Formally, let us denote by genK() the set of mingens of a concept (intent) within
the context K (the subscript will be skipped whenever confusion is excluded). The fol-
lowing property summarizes the evolution in the mingen family between K and K+:

Proposition 1 For any c = (X,Y) in G(o), let c+ and c̄ be its homologous concept
in L+ and the generated new concept, respectively (c̄ = (X ∪ {o}, Y ∩ o′) and c+ =
(X,Y)). The sets of generators of c̄ and c+ are as follows:

– genK+(c̄) = genK(c) ∩ 2Y ∩o′
,

– genK+(c+) = min((genK(c) − 2Y ∩o′
) ∪ (genK(c) ∩ 2Y ∩o′ × {Y − o′})).

The only non-trivial aspect of the above proposition is that newly occurring mingens
in the class of the homologous concept c+ are composed of a former mingen that ”went”
to the new concept c̄ to which a single attribute is added which stems from the difference
between the genitor intent and the new one (Y ∩ o′).

1: procedure COMPUTE-MINGENS(In/Out: c, c̄ concepts)
2:
3: for all g in c.gens do
4: if g ⊆ c̄.Intent then
5: c̄.gens ← c̄.gens ∪ {g}
6: c.gens ← c.gens - c̄.gens
7: SORT(c̄.gens)
8: for all ḡ in c̄.gens do
9: new-gens ← ∅

10: for all a in (c.Intent - c̄.Intent) do
11: gen-cond ← true
12: for all g in c.gens do
13: if g ⊆ ḡ ∪ {a} then
14: gen-cond ← false
15: if gen-cond then
16: new-gens ← new-gens ∪ {ḡ ∪ {a}}
17: c.gens ← c.gens ∪ new-gens

Algorithm 1: Computation of the mingens of a new concept and of its genitor.

Algorithm 1 embodies the computation of the mingens for a pair of corresponding
concepts, genitor and new. Thus, given a genitor concept c and its corresponding new
concept c̄, it updates the set of mingens associated with the intent of c and identifies the
set of mingens for the intent of c̄.

186 Céline Frambourg, Petko Valtchev, and Robert Godin

3.3 Generalization of the Incremental Case

The restructuring of the lattice upon insertion of a single new object has been gener-
alized to the case of n such objects. The problem has been reformulated as the one
of merging two lattices corresponding to contexts that share their attribute sets. This
section describes the basic facts about lattice merge.

Product of Lattices Along Context Subposition Subposition is the horizontal as-
sembly of contexts sharing a same set of attributes [4]. Let K1 = (O1, A, I1) and
K2 = (O2, A, I2) be two contexts sharing the attribute set A. Their subposition is the
context K3 = (O1∪̇O2, A, I1∪̇I2) denoted K3 = K1

K2
. For example, for the context

K = (O,A, I) given in Fig. 1, let O1 = {1, 2, 3, 4} and O2 = {5, 6, 7, 8, 9}. The par-
tial lattices corresponding to K1 and K2, say L1 and L2, are given in Fig. 2, on the left.
In the remainder, to avoid confusion, the derivation operators ′ for the various contexts
will be replaced by the respective indexes i, e.g., 2 will stand for ′ for the context K2.

Fig. 2. Left: Factor lattices L1 and L2 of the context in Fig. 1. Right: The NLD of L3.

The lattices L1 and L2, further called the factor lattices, are related to the lattice
of the subposed context by two order morphisms. For convenience reasons, the direct
product of L1 and L2, denoted L1,2 is used in the definition of those morphisms:

Definition 1 The order morphism ϕ : L3 → L1,2 maps a concept from the global
lattice to a pair of concepts from the partial lattices by splitting its extent over the
partial context attribute sets O1 and O2:

ϕ((X,Y)) = ((X ∩O1, (X ∩O1)′), ((X ∩O2, (X ∩O2)′))

The morphism ψ : L1,2 → L3 maps a pair of concepts over partial contexts into a
global concept by the intersection over their respective intents:

ψ(((X1, Y1), (X2, Y2))) = ((Y1 ∩ Y2)′, Y1 ∩ Y2).

Merge-Based Computation of Minimal Generators 187

In other terms, the composition of factor concepts into a global one is made along
the intent dimension shared by Kj (j = 1, 2, 3): The corresponding operation may be
seen as the merge of two closure spaces on A. Each node ((X1, Y1), (X2, Y2)) from
L1,2 is sent to a concept (X,Y) from L3 such that Y = Y1 ∩ Y2 (e.g., in Fig. 2,
(c#7, c#3) is sent to (146, efh)). The underlying mapping ψ is a surjective order mor-
phism that preserves lattice joins (see [18] for details). Conversely, L3 is mapped onto
Lj (j = 1, 2) by simply projecting concept intents onAj (e.g., (127, abc) is projected to
the node (c#5, c#6)). It is noteworthy that L3 is in general only a meet-sub-semi-lattice
of L1,2.

Merge of Factor Lattices Following [18, 16], the factor merge process filters L1,2,
and keeps the nodes from the meet-sub-semi-lattice isomorphic to L3. These are the
maximal nodes in the equivalence classes induced by the homomorphism ψ on L1,2

(i.e., equivalence means nodes are sent to the same concept from L3). More specif-
ically, the maximum node in such a class, say ((X1, Y1), (X2, Y2)), is such that if
ψ((X1, Y1), (X2, Y2)) = (X,Y), thenX = X1 ∪X2 and Y = Y1 ∩ Y2. The canonical
pairs of concepts can be compared to genitors in the incremental case, hence the con-
cepts from such a pair will be called the i-genitors (i = 1, 2) of the respective concept
from L3.

The straightforward procedure for lattice merge illustrated by Algorithm 2, pre-
sented in the next section, follows the i-genitor definition together with a characteriza-
tion of the precedence relation in L3. The procedure, when applied to the lattices on the
left of Fig. 2 yields the result presented in Fig. 3.

Fig. 3. Result lattice from the merge of L1 and L2 in Fig. 2.

188 Céline Frambourg, Petko Valtchev, and Robert Godin

4 Generalization of the Incremental Case for the Assembly

4.1 Theoretical Results

Mingen computation can easily be extended to the construction of the subposition-based
product of lattices L1 and L2. We chose a straightforward approach which consists in
applying the incremental paradigm to lattice merging. First, recall that any concept in
the product L3 is created by a pair of factor concepts that play a symmetric role (the
genitors) in the generalization of the incremental paradigm. We nevertheless adopt an
asymmetric view of the factors and set L1 to the initial lattice where mingens already
exist whereas L2 is seen as a surrogate for ”new” concepts that constitute L3. Conse-
quently, when such a new concept is detected by the assembly algorithm, its mingens
will be computed with respect to its genitor in L1, i.e., the respective component of
the canonical representative in L1,2. Obviously, unlike the specific case of the incre-
mental update, there can be several new concepts per genitor. The challenge will be to
determine their mingens without interference between those.

The new concepts created during the merge respect the proposition below.

Proposition 2 The new concepts corresponding to a 1-genitor c1, {c3 ∈
C3|Π1(ϕ(c3)) = c1} where Π1 is the projection over C1 operator, have intents that
lay in the equivalence class [Intent(c1)]11 in 2A. Those new concepts will be denoted
prod1(c1) :

∀c3 ∈ prod1(c1), Intent(c3)11 = Intent(c1)

Proof. (sketch)

1. Intent(c3) ⊆ Intent(c1)
2. Let (c1, c2) be the genitor pair. Intent(c1)∩Intent(c2) = Intent(c3) and (c1, c2)

is maximal. This means that (Intent(c1), Intent(c2)) is minimal in
(2A×2A,⊆ × ⊆). The canonicity property proves that Intent(c1) and Intent(c2)
are also minimal. As Intent(c1) is closed, we have Intent(c3)11 = Intent(c1).

This equivalence class is partitioned into finer classes according to the 33 closure
and a unique new concept has the same intent as c1.

Our aim is to simulate the incremental computation of the mingen family in the
merge process. We assume that it is possible but we have to choose a strategy for the
concepts insertion. We follow some criteria for this choice, as our main goal was the
effectiveness. First, we tried to define a program that will compute the mingens with a
minimal number of computation operations, but we also wanted to have no redundan-
cies during the computation.

Three strategies may be suitable. The first one amounts to computing the concepts
during a ”top-down” lattice L3 exploration (that also means a ”bottom-up” exploration
of [Intent(c1)]11 in the 2A lattice), the second one is a ”bottom-up” lattice L3 explo-
ration (”top-down” exploration of [Intent(c1)]11) and the last one is a direct strategy,
which means that we make no use of incrementality, but that all the mingens will have
to be computed once.

Merge-Based Computation of Minimal Generators 189

Fig. 4. Example of the partitioning.

The last strategy is the ideal one as it computes the mingens with no redundancies,
but we do not have enough information to use the last strategy yet but it could be the
object of further study.

The second strategy is that whenever a new concept c3 is inserted, all its successors
of [Intent(c1)]11 in L3 have to be computed. This means that the [Intent(c3)]33 is only
really accessible at the end of all the prod1(c1) concept insertions. So, gen3(c3) may
only be established once all insertions have been made. Therefore, the second strategy
is not a suitable one except if the mingens are computed via a batch process.

The first strategy is then the only one which is suitable. We can compute the gen(c3)
set from a temporal mingens list associated to c1, that reflects the current state of the
insertion process in the [Intent(c1)]11 class. We can also say that it is as if each c3 was
inserted separately in an incremental way and in order. The geninc(c1) list, representing
the mingens of c1 which evolve during the computation, represents after each insertion
of a c3,i, the minima of [Intent(c1)]11 −

⋃

j�i

[Intent (c3,j)]33. At the end, the mingens

lists are up to date. Once the gen3(c3,i) list is computed, it will never be recomputed
again.

The mingens list of a new concept of L3 may be described as follows:

Proposition 3 Given an order (c3,1, ..., c3,n) such that ∀i, j|1 � i � j � n, c3,j �3

c3,i:

gen3 (c3,i) =

Y |Y ⊆ Intent (c3,i)

Y ∈ min

[Intent (c1)]11 −
⋃

j�i

[Intent (c3,j)]33

This strategy was chosen for consecutive insertions of the new concepts. It may be
explained by the fact that there exist an equivalence between the merge, restricted to
the concept c1, and the insertion of n new concepts in L1 where c1 is a genitor. This

190 Céline Frambourg, Petko Valtchev, and Robert Godin

approximatively amounts to inserting n new objects having the respective intents of
each c3,i. By this strategy, we insure that whenever a new c3[c1] is inserted, all the con-
cepts with a smaller intent are computed and that the mingens can be computed with
the mingens of c1. With this strategy, we are sure that the mingens of every new con-
cept from the class [Intent(c1)]11 can be computed by looking only at the mingens
of one concept, c1. These mingens will have to be updated after each insertion. Given
the set of the intents of the new concepts generated by c1, say Ca

3 ∩ [Intent(c1)]11, the
previous condition imposes that at any moment the set of already inserted concepts cor-
responds to an order ideal of that set, provided with inclusion order. A noteworthy fact
about the concrete computation method is that it perfectly fits the merge algorithm and
Algorithm 1 (with parameters c1 and c3). The resulting algorithm is described below
(Algorithm 2). Moreover, along all the insertions, the temporary set of mingens that are
to be considered for the next insertion is stored at the genitor node within L1. Indeed,
the concept corresponding to c1 in L3 (i.e., with the same intent) will be the last one to
be created since its intent is the greatest element of the equivalence class.

4.2 Implementation

The COMPUTE-MINGENS method has been associated to the merge process ([17]). The
resulting algorithm is given in Algorithm 2.

1: procedure MERGE(In: L1, L2 lattices; Out: L3 a lattice)
2:
3: L ← ∅
4: SORT(C1); SORT(C2) {Decreasing order}
5: for all (ci, cj) in L1 ×L2 do
6: I ← Intent(ci) ∩ Intent(cj)
7: if CANONICAL((ci, cj), I) then
8: c ← NEW-CONCEPT(Extent(ci) ∪ Extent(cj),I)
9: L3 ← L3 ∪ {c}

10: UPDATE-ORDER(c, L3)
11: COMPUTE-MINGENS(ci, c)

Algorithm 2: Assembling the global Concept lattice from a pair of partial ones.

The concept ci from the lattice L1 is used as a buffer for the intermediate computa-
tion. The COMPUTE-MINGENS method modifies ci’s mingens in a destructive way, i.e.
when all the concepts created from ci have been inserted in L3, the family of mingens
of ci in L1 is empty.

For example, the evolution of the equivalence class associated to cdfgh (from L1)
is depicted in Fig. 5. Indeed, the inner loop of Algorithm 2 discovers three new con-
cepts with intents d, cd, and cdfgh, respectively, and in this order. These are gradually
”inserted” in the class of cdfgh: the mingens of the new intent are computed and those
of c1 = (13, cdfgh) are updated in L1. Thus, the new intent d which corresponds to an

Merge-Based Computation of Minimal Generators 191

initial mingen of the class forces the creation of four new mingens (cd, df, dg, dh). In
contrast, the closed cd merely converts a former mingen into a closure.

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf
fghfgh

cgcg cdcfcf chchdgdf dh

dd
fgh

bg

closed

generator
inter-class

link

class border

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf
fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf
fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

Fig. 5. The evolution of the equivalence class of the closed set cdfgh in P(A) (initial state up)
during the assembly process: after the creation of the new closed d (left) and after the creation of
cd (right).

Intent(c1) geninc
i−1(c1) Intent(ci) gen(ci) geninc

i (c1)

cdfgh {d, cg, ch} d {d} {cd, cg, ch, df, dg, dh}
cdfgh {cd, cg, ch, df, dg, dh} cd {cd} {cg, ch, df, dg, dh}
cdfgh {cg, ch, df, dg, dh} cdfgh {cg, ch, df, dg, dh} {}

Table 1. The evolution of the equivalence class of the closed set cdfgh in P(A).

4.3 Performance Tests

The MERGE algorithm was implemented in Java, within the 2.0 version of the Galicia
platform6. The method has been tested as a stand-alone application and its performance
was compared with two incremental methods, one with the incremental computation of
the mingens, and the other with a batch computation of the mingens (computed after

6 See the website at: http://www.iro.umontreal.ca/∼galicia.

192 Céline Frambourg, Petko Valtchev, and Robert Godin

each object insertion). The experiments were done on a Windows PC station (Pentium
Xeon 3.06 GHz with 1.2 GB of RAM) using various subsets of the IBM transaction
database T25I10D10K. This dataset is made out of 10 000 transactions over a set of 10
000 items. It is known to be a sparse one, with an average of 28 items per transaction.
We did not use a dense dataset, as the lattices to merge contains too many concepts and
require too much resources.

In order to improve the results, we combined the COMPUTE-MINGENS algorithm
to a batch method called JEN (in [2]). In fact, when a concept is created by the bottom
node, its mingens will be computed by JEN. In all the other cases, the COMPUTE-
MINGENS algorithm is used. This combination has been motivated by the fact that JEN

computes the mingens using the information provided by the successors rather then
by the predecessors. This is particularly beneficial for large attribute sets, where the
concepts created by the bottom, may imply a lot of computation operation. For example,
for the context described previously, that contains 10 000 attributes, suppose the first
object contains 28 attributes, the mingens computation of that concept will produce 279
216 operations. The way JEN works has helped solve this problem. This method has
also been generalized in the merge case, as the partial order insure that a node is only
computed after all its successors have been computed.

Fig. 6. Cumulative CPU-time for all three algorithms on transaction batches up to 1600 drawn
from the T25I10D10K dataset.(Left) Lattice construction and computation of the mingens (Right)
computation of the mingens only.

The graphs drawn in Fig. 6 summarize our findings so far. They clearly show that
the incremental method gives currently better results than the merge process. This fact
is not surprising given the large number of concepts that the merge algorithm must
examine on each merge operation (l1 · l2, where l1 = |L1| and l2 = |L2|) and the even
larger number of mingens. However, when we extracted the mingen computation time
from the global execution time, we can see that the merge method is about as good as
the incremental method and that they are 10 times faster than the batch method used in
an incremental way.

Merge-Based Computation of Minimal Generators 193

The results show that the incremental mingen computation method and its gener-
alization seem promising. It means that provided a good merge algorithm for lattice
construction, where the mingens computation can be applied, we would be able to have
a better execution time than batch algorithms.

5 Conclusion

The work presented here builds on a previous study of the incremental maintenance of
the mingens family of a context. We investigated the case of lattice merge upon context
subposition and showed a way to extend the incremental update of the mingen family to
this more general case. To that end, first, a precise characterisation of the lattice struc-
tures involved in mingen computation/update was provided. The characterization was
then embedded into a concrete update method for both concepts and mingens. The per-
formances of the new method were compared to those of two other methods performing
concept and mingen construction: an incremental lattice builder (ADD-OBJECT) cou-
pled to a batch procedure for mingen computation (JEN), and a purely incremental
lattice and mingen extraction. Although the overall performances of the later method
has proven superior to the other two, when only mingen construction cost is considered,
merging is as good as one-by-one incremental reconstruction. This fact rises the hopes
that with an efficient lattice merge technique, e.g., one that takes advantage of effec-
tive decentralization of both data and computation resources, there can be a significant
improvement in the speed of the global method computing both concepts and mingens.
Such efficient methods have already been designed for lattice merge upon context ap-
position, i.e., in the dual case of the one considered here, in both sequential [14] and
parallel [7] algorithmic settings.

Acknowledgments

This research was supported by the authors’ individual NSERC grants as well as by the
FQRNT team grant.

References

[1] C. Berge. Hypergraphs: Combinatorics of Finite Sets. North Holland, Amsterdam, 1989.
[2] A. Le Floc’h, C.Fisette, R. Missaoui, P. Valtchev, and R. Godin. Jen : un algorithme efficace

de construction de générateurs pour l’identification des règles d’association. numéro spécial
de la revue des Nouvelles Technologies de l’Information, 1(1):135–146, 2003.

[3] B. Ganter. Two basic algorithms in concept analysis. preprint 831, Technische Hochschule,
Darmstadt, 1984.

[4] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations. Springer--
Verlag, 1999.

[5] R. Godin, R. Missaoui, and H. Alaoui. Incremental Concept Formation Algorithms Based
on Galois (Concept) Lattices. Computational Intelligence, 11(2):246–267, 1995.

[6] J.L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant
d’un tableau de données binaires. Mathématiques et Sciences Humaines, 95:5–18, 1986.

194 Céline Frambourg, Petko Valtchev, and Robert Godin

[7] Jean François Djoufak Kengue, Petko Valtchev, and Clémentin Tayou Djamegni. A parallel
algorithm for lattice construction. In B. Ganter and R. Godin, editors, roceedings of the 3rd
Intl. Conference on Formal Concept Analysis (ICFCA’05), Lens (FR), (14-18 February)
2005, pages 248–263, 2005.

[8] Marzena Kryszkiewicz and Marcin Gajek. Concise representation of frequent patterns
based on generalized disjunction-free generators. In PAKDD, pages 159–171, 2002.

[9] D. Maier. The theory of Relational Databases. Computer Science Press, 1983.
[10] H. Mannila and K.-J. Räihä. On the complexity of inferring functional dependencies. Dis-

crete Applied Mathematics, 40(2):237–243, 1992.
[11] N. Pasquier. Data Mining : Algorithmes d’extraction et de réduction des règles

d’association dans les bases de données. Ph. d. thesis, Université Blaise Pascal,Clermont-
Ferrand II, 2000.

[12] J. Pfaltz and C. Taylor. Scientific discovery through iterative transformations of concept
lattices. In Proceedings of the 1st International Workshop on Discrete Mathematics and
Data Mining, pages 65–74, Washington (DC), USA, April 2002.

[13] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg Concept
Lattices with Titanic. Data and Knowledge Engineering, 42(2):189–222, 2002.

[14] P. Valtchev and V. Duquenne. Towards scalable divide-and-conquer methods for comput-
ing concepts and implications. In E. SanJuan, A. Berry, A. Sigayret, and A. Napoli, edi-
tors, Proceedings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM’03):
Knowledge Discovery and Discrete Mathematics, Metz (FR), 3-6 September, pages 3–14.
INRIA, 2003.

[15] P. Valtchev, M. Rouane Hacene, and R. Missaoui. A generic scheme for the design of effi-
cient on-line algorithms for lattices. In B. Ganter A. de Moor, W. Lex, editor, Proceedings
of the 11th Intl. Conference on Conceptual Structures (ICCS’03), volume 2746 of Lecture
Notes in Computer Science, pages 282–295, Berlin (DE), 2003. Springer-Verlag.

[16] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: generalizing the
incremental methods. In H. Delugach and G. Stumme, editors, Proceedings of the ICCS’01,
volume 2120 of Lecture Notes in Computer Science, pages 290–303, 2001.

[17] P. Valtchev, R. Missaoui, and R. Godin. Formal Concept Analysis for Knowledge Discovery
and Data Mining: The New Challenges. In P. Eklund, editor, Concept Lattices: Proceedings
of the 2nd Int. Conf. on Formal Concept Analysis (FCA’04), volume 2961 of Lecture Notes
in Computer Science, pages 352–371. Springer-Verlag, 2004.

[18] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois
(concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.

[19] P. Valtchev, R. Missaoui, M. Rouane-Hacene, and R. Godin. Incremental maintenance of
association rule bases. In Proceedings of the 2nd Workshop on Discrete Mathematics and
Data Mining, San Francisco (CA), USA, May 2003.

	Introduction
	Closures and Mingens
	Summary of the Dynamics of the Closed and the Mingens Computation
	Generalization of the Incremental Case for the Assembly
	Conclusion

