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Abstract—By pushing computation to the mobile network edge,
Multi-access Edge Computing (MEC) has been an enabler for the
stringent latency and energy requirements of the new Internet of
Things (IoT) services. On the other hand, ultra-dense heteroge-
neous networks with wireless backhaul have been proposed as a
low-cost solution, allowing Network Operators (NOs) to extend the
network capability, by deploying densified close-proximity small-
cells and hence supporting a large number of low-latency low-
energy IoT devices. In this paper, we study the problem of IoT
task offloading in a MEC-enabled heterogeneous network, which
to the best of our knowledge, is the first attempt to thoroughly
explore the task offloading problem in a heterogeneous network
with MEC support and wireless backhaul. We jointly optimize the
offloading decision, transmission power, and the allocation of radio
and computational resources, with the objective of minimizing
the devices energy consumption, while respecting their latency
deadline. We mathematically formulate our problem as a non-
convex mixed-integer program, and due to its complexity, we
propose an iterative algorithm based on the Successive Convex
Approximation (SCA) method for providing an approximate
solution on the original problem. Through numerical analysis, we
perform simulations based on multiple scenarios, and find out how
NOs can respond to the requested load and help in minimizing
the total devices energy consumption.

I. INTRODUCTION

The world is witnessing a fast expansion of smart objects

such as sensor-embedded wearable devices, enabling them to

sense real-time information [1], culminating into the concept of

Internet of Things (IoT) [2]. The introduction of IoT however

is disrupting the existing communication processes, necessi-

tating new models to be established. Mobile Cloud Computing

(MCC), which was the go-to solution for alleviating the load of

the energy-sensitive devices [3], incurs a long communication

delay and a huge amount of network bandwidth, rendering

it inadequate for meeting the strict requirements imposed by

many IoT services. Multi-access Edge Computing (MEC) [4]

has emerged as a solution for enabling IoT services, by moving

the computation and storage to the network edge as small

computation units denoted as cloudlets [5], allowing devices

to compute their latency-sensitive tasks.

Meanwhile, heterogeneous networks were introduced for

allowing Network Operators (NOs) to extend the network edge

capability, by deploying low-power Small-Cells (SCs) close to

the end-users, and connected to a Macro-Cell (MC) [6]. More-

over, the Ultra-Dense Network (UDN) concept was introduced

as an improvement, where SCs deployment is further densified

to accommodate the immense amount of traffic generated in

5G networks [7]. This model constitutes a perfect solution

for the large number of IoT devices, since it can respond to

their low-energy low-latency requirements, and provide better

coverage and higher data rates. Moreover, equipping the SCs

with cloudlets will further decrease the load by alleviating the

load on the MC-cloudlet, creating a multi-tier MEC-enabled

ultra-dense network where cloudlets are located at multiple

tiers [8]. This forms an ideal model for actualizing IoT-based

services, such as self-driving which requires processing real-

time images using the cellular network.

In this paper, we present a novel solution for realizing

energy-efficient task offloading for MEC-based IoT in den-

sified heterogeneous networks. We present a framework that

aims at minimizing IoT devices’ energy consumption while

respecting their latency deadline, by optimizing the devices

offloading decision, and the joint allocation of transmission

power, radio and computational resources while managing the

resulting interference. To the best of our knowledge, this is

the first attempt at studying a MEC-enabled heterogeneous

network with wireless backhaul, leveraging cloudlets located

at different tiers. We formulate the problem as a non-convex

mixed-integer program, and apply multiple transformations to

convert it into a more tractable form. We then present a low-

complexity iterative algorithm based on the successive convex

approximation (SCA) technique, for obtaining an approximate

solution on the original problem. Through numerical results,

we validate the performance of our proposed algorithm, and

perform varying simulations and analyze the produced results.

The remainder of this paper is structured as follows: in

section II we present the related work. In section III we present

our system model and we mathematically formulate our non-

convex problem. Section IV presents our solution approach

to transform the non-convex problem into a more tractable

form, and presents our iterative SCA-based algorithm. Section

V presents and analyzes the numerical results for validating our

solutions. Finally, section VI concludes the paper.

II. LITERATURE REVIEW

The following studies addressed task offloading in a two-

tier MEC-enabled system. [9] used a central cloud as a second

level computing node, and allocated computational and radio

resource. In [10], a multi-BS model is studied with one cloudlet,

and the allocation of BSs caching and Resource Blocks (RBs)

are optimized. The following studies addressed task offloading

in a heterogeneous network. In [11] and [12], a cloudlet was

considered on the MC where computational resources were

allocated to the offloaded tasks, while radio resources where

allocated on the uplink channel as a continuous spectrum in

[11], and as discrete RBs in [12] while considering spectrum

reuse and negligible backhaul delay. In [13], considering one

SC connected to a cloudlet-enabled MC with limited backhaul

capacity, the offloading decision and the uplink RBs allocation
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were optimized. In [14], an algorithm is proposed for optimiz-

ing the radio resources allocation and the UEs-to-SCs mapping,

in addition to caching and computational resources on the SCs,

and transmission power allocation. In [15], the RAN downlink

radio resources are orthogonally allocated to UEs, while also

optimizing the UE to BS association and caching decisions on

all BSs while respecting the UEs computation and commu-

nication rate requirements. Also, [16] proposed a solution to

minimize UEs’ latency with respect to energy constraint when

offloading tasks in a UDN system, by optimizing the offloading

decision and the computational resources allocation.

Our work differs from [11] and [12] in that cloudlets are

co-located on all BSs, and the network has a wireless backhaul

communication. Also, unlike [13], we consider a multi-SC

model where cloudlets are co-located on all BSs, and optimize

the radio resource allocation in the network backhaul, and

unlike [14] and [15], we consider the Orthogonal Division

Multiple Access (OFDMA) model so that radio resources are

allocated as discrete RBs, and also consider frequency reuse

among SCs which increases the spectrum efficiency and hence

the transmission rates. Finally, unlike [16], we optimize UEs

transmission power and radio resources allocation, and we

consider the backhaul communication. The innovation of our

solution can be characterized by considering a heterogeneous

network with low-cost wireless backhaul requiring the man-

agement of OFDMA radio resources, and also considering

cloudlet-enabled SCs which would make the solution more

practical for IoT-based services. We jointly allocate radio and

computational resources, which would result in a improved

solution as compared to the related works.

III. SYSTEM MODEL

MC RAN

SC RAN

Network Core

CloudSC

Macro-cell

SC RAN

SC
Wireless Backhaul Link

SC RAN

SC

Cloudlet

Fig. 1: System model.

A. Spatial Model

As depicted in Figure 1, we consider a MEC-enabled hetero-

geneous network that consists of S single-antenna SCs indexed

by S = {1, ..., S}, and are coexisted within the coverage of

one multi-antenna MC with index 0. Each cell j ∈ {0 ∪ S}
has U User Equipments (UEs) in its coverage, indexed by

Uj = {1, ..., U}. SC UEs are denoted by SUEs, and MC UEs

are denoted by MUEs. For ease of presentation, we denote

by F = S + U as the number of units transmitting to the

MC indexed by F = {S;U0}. We consider the UEs to have

computational tasks, and they need to communicate wirelessly

when offloading these tasks.

B. Communication Model

We consider the uplink communication used by SUEs and

MUEs for task offloading in the SCs RAN, and a wireless

backhaul for the communication between the SCs and MBS

for task migration. We ignore the downlink communication

knowing that the output size is in general much smaller than

the task input size [12], [13], e.g. face recognition. We consider

an OFDMA multiplexing system with perfect channel state

information (CSI), where the radio spectrum is separated into

B OFDMA resource blocks (RBs), indexed by B = {1, ..., B}.

We adopt a split-spectrum approach, i.e. B = {B1;B2}, where

B1 is the set of RBs dedicated for the communication between

SUEs and their SCs, and B2 is the set of RBs dedicated for the

communication between MUEs (and SCs) with the MC.

1) SUEs–SCs Communication: We denote by x =
{xi,j,b, ∀j ∈ S, i ∈ Uj , b ∈ B1} as the binary decision variables

indicating if RB b is assigned to SUE i for the communication

with SC j, where the value is 1 in case the RB is assigned, and

is 0 otherwise. When task i is offloaded, multiple RBs can be

assigned to SUE i. By denoting pi,j,b ≥ 0 as the optimization

variable indicating the power allocated for the transmission

from SUE i ∈ U to SC j ∈ S on RB b ∈ B1, pb = {pi,j,b, ∀j ∈
S, i ∈ Uj}, p = {pb, ∀b ∈ B1}, and hi,j,l,b as the channel gain

from SUE i to SC l on RB b which includes fading and path

loss components, the uplink transmission rate for SUE i in the

range of SC j on RB b is defined using the Shannon capacity as

ri,j,b(pb) = log
(

1 +
pi,j,b|hi,j,j,b|

2

∑
l∈S\

∑
k∈Ul

pk,l,b|hk,l,j,b|2+N0

)

, where

N0 is the white noise power level. As it can be seen, the inter-

cell interference perceived is caused by the SUEs transmissions

in the nearby SCs on the same RB b, knowing that frequency

reuse is adopted among SCs to achieve high spectrum effi-

ciency. Thus, the achievable rate for SUE i is:

ri,j(p) =
∑

b∈B1

ri,j,b(pb) (1)

In addition, by denoting P = {P i,j , ∀j ∈ S, i ∈ Uj} as the

maximum power budget for all SUEs in dBm, the following

constraints are imposed to govern a proper relationship domain

of the involved variables:
∑

i∈Uj

xi,j,b ≤ 1 ∀j ∈ S, b ∈ B1 (2a)

pi,j,b ≤ xi,j,bP i,j ∀j ∈ S, i ∈ Uj , b ∈ B1 (2b)
∑

b∈B1

pi,j,b ≤ P i,j ∀j ∈ S, i ∈ Uj (2c)

where (2a) ensures orthogonal radio resource allocation in

the SCs RAN, (2b) assures no transmission power on a non-

assigned RB, and (2c) is for respecting the SUEs’ power.

2) Communication with the MC: Communication with the

MC is needed by MUEs to offload their tasks, and by SCs

in case they are migrating offloaded tasks from their SUEs.

Without loss of generality, we consider Zero-forcing (ZF) as the

method applied for signal processing on the MC [17], assuming
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that its number of antennas, denoted by N , is able to support

simultaneous connections from the transmitting units F on a

given RB b, i.e. F ≤ N . By denoting ρi,b ≥ 0 as the variable

for deciding the power allocated for transmission from MUE (or

SC) i ∈ F to the MC on RB b ∈ B2, ρi = {ρi,b, ∀b ∈ B2}, and

ρ = {ρi, ∀i ∈ F}, the uplink transmission rate for MUE (or

SC) i on RB b, is defined as Ri,b(ρi,b) = log
(

1 +
ρi,b

||wi,b||2N0

)

,

where wi,b ∈ C
N×1 is the ZF receive beamforming row vector

obtained from matrix wb ∈ C
F×N , where wb = (hTb hb)

−1hTb
is the pseudo-inverse of the channel state matrix hb ∈ C

N×F

for RB b, which includes fading and path loss components. It

follows that the achievable rate for MUE (or SC) i is:

Ri(ρi) =
∑

b∈B2

Ri,b(ρi,b) (3)

In addition, by denoting ρ = {ρi, ∀i ∈ F} as the maximum

power budget for all MUEs (and SCs) in dBm, and r = {ri,j ≥
0, ∀j ∈ S, i ∈ Uj} as the fraction of the achievable rate on

SC j assigned for migrating task i to the MC, the following

constraints are imposed:
∑

b∈B2

ρi,b ≤ ρi ∀i ∈ F (4a)

∑

i∈Uj

ri,j ≤ Rj(ρj) ∀j ∈ S (4b)

where (2c) is for respecting the MUEs (and SCs)’ power

threshold, and (4b) ensures the sum of all partitioned rates on

an SC j does not exceed its achievable rate.

C. Computation Model

Each UE i ∈ Uj in the range of cell j ∈ {0 ∪ S} has a task

represented by the tuple {Di,j , Ci,j , Li,j}, concatenating: Task

input size Di,j (bits), computational demand Ci,j (CPU cycles),

and required latency deadline Li,j (ms). The SCs and MC are

equipped with cloudlets for supporting local computation. The

offloading decision can be modeled using the binary variables

y = {yi,j , ∀j ∈ {0 ∪ S}, i ∈ Uj} and z = {zi,j , ∀j ∈ S, i ∈
Uj}. When yi,j is equal to 1, task i will be offloaded to its

associated cell j, otherwise it will be executed on the local

device. In addition, for the SUEs, when zi,j is equal to 1, task i

will be further migrated to the MC, otherwise it will be executed

on the local SC j cloudlet. Next, we model the latency and

energy consumption resulting from the computation of task i,

which depends on whether that task was executed locally, or

offloaded to the SC or MC cloudlet.

Local Computation: We denote by f loc
i,j as the local com-

putation capability in cycles/second on UE i in the range of

cell j. When task i is executed locally, the resulting latency is

defined as Lloc
i,j =

Ci,j

f loc
i,j

. The resulting energy consumption for

UE i in the range of cell j is defined as Eloc
i,j = Ci,jE

cyc
i,j , where

E
cyc
i,j is a constant representing the consumed energy per CPU

cycle, which depends on the UE circuit architecture and can be

obtained by the measurement method in [18].

Cloudlet Computation: The latency for SUE and MUE

i ∈ Uj incurred from transmission to the associated cell j is

given by Lsue
i,j (p) =

Di,j

ri,j(p)
and Lmue

i (ρi) =
Di,0

Ri(ρi)
, respectively,

which depends on the achievable rate in the SC RAN.

The energy consumption resulting from task transmission

to cell j for SUE and MUE i ∈ Uj is given by Esue
i,j (p) =

∑

b∈B1

pi,j,bdi,j,b
ri,j,b(pb)

and Emue
i (ρi) =

∑

b∈B2

ρi,bφi,b

Ri,b(ρi,b)
, respec-

tively, where di,j,b ≥ 0 and φi,b ≥ 0 are the decision variables

indicating the data chunk allocated for the transmission on RB

b. In addition, the following constraints hold:
∑

b∈B1

xi,j,bdi,j,b ≤ Di,j ∀j ∈ S, i ∈ Uj (5a)

∑

b∈B2

φi,b ≤ Di,j ∀i ∈ U0 (5b)

which are used to make sure the whole task is transmitted using

the resource blocks, for the SUEs and MUEs, respectively.

Increasing the transmission power for a given UE will decrease

the upload latency, but this will result in an increased energy

consumption. By denoting sj ∈ {0; 1} as an indicator returning

1 if cell j is a SC and 0 if it is a MC, the energy consumption

for UE i in the range of cell j can be defined as

Ei,j(p;ρi) = sjE
sue
i,j (p) + (1− sj)E

mue
i (ρi) (6)

In case task i is for an SUE and is being further migrated to

the MC through the backhaul, the migration latency is also

considered, which depends on the SC assigned rate, and is

defined as L
mig
i,j (ri,j) =

Di,j

ri,j
. Whether the offloaded task i ends

up on the SC or MC, it needs to be executed on the associated

cloudlet. We denote by f = {fi,j ≥ 0, ∀j ∈ S, i ∈ Uj} as

an optimization variable which represents the computational

resources allocated for tasks cloudlet computation. The result-

ing execution latency is given by Lcld
i,j(fi,j) =

Ci,j

fi,j
. Allocating

more computational resources to task i will decrease its com-

putation latency, but this will limit the resources availability for

executing other offloaded tasks on that cloudlet, which will in

turn increase their computation latency.

D. Problem Formulation

Our objective is to minimize the total energy consumption for

all UEs while respecting their required latency. This is done by

optimizing the tasks offloading decision, the transmission power

and radio resources allocation for the UEs and SCs, as well

as the computational resources allocation on each cloudlet. By

denoting χ1 = {y, z,x,p,ρ, r,f ,d,φ}, the joint transmission

power and computational/radio resources allocation for IoT task

offloading problem in heterogeneous networks, denoted as P1,

is formulated as

min
χ1

∑

j∈{0∪S}

∑

i∈Uj

(1− yi,j)E
loc
i,j + yi,jEi,j(p;ρi) (7a)

s.t. (1− yi,j)L
loc
i,j + yi,j(L

sue
i,j (p) + Lcld

i,j(fi,j))

+ zi,jL
mig
i,j (ri,j) ≤ Li,j ∀j ∈ S, i ∈ Uj (7b)

(1− yi,0)L
loc
i,0 + yi,0(L

mue
i (ρi) + Lcld

i,0(fi,0)) ≤ Li,0 ∀i ∈ U0 (7c)

xi,j,b ≤ yi,j ∀j ∈ S, i ∈ Uj , b ∈ B1 (7d)

zi,j ≤ yi,j ∀j ∈ S, i ∈ Uj (7e)

zi,jri,j(p) ≤ ri,j ∀j ∈ S, i ∈ Uj (7f)
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∑

i∈Uj

(1− zi,j)fi,j ≤ F j ∀j ∈ S (7g)

∑

j∈S

∑

i∈Uj

zi,jfi,j +
∑

i∈U0

fi,0 ≤ F 0 (7h)

(2), (4), (5) (7i)

yi,j , zi,j , xi,j,b ∈ {0, 1} (7j)

pi,j,b, ρi,b, ri,j , fi,j , di,j,b, φi,b ≥ 0 (7k)

where (7a) is minimizing the total energy consumption (in

millijoule) for all UEs. Constraints (7b) and (7c) respect the

tasks’ latency deadline. (7d) makes sure an RB can be only

assigned to offloading UEs. (7e) is to make sure a given SUE

task can be migrated to the MC only if it was offloaded.

(7f) prevents the backhaul from being a bottleneck when

migrating a task to the MC, and hence adds a major significance

by ensuring transmission stability in the wireless backhaul.

Constraints (7g) and (7h) are for respecting the computational

resources capacity, denoted by F j , on the SCs and MC cloudlet,

respectively. This problem always has a feasible solution by

computing UEs tasks locally but with a much higher assumed

energy consumption. Therefore, all UEs will try first to either

offload to their associated SC, or further migrate to the MC for

cloudlet computation. It can be seen that the following terms

in problem (7) are non-convex: the energy function (6) used in

(7a), the latency functions used in the latency constraints (7b)

and (7c), and the SC and MC rate functions (1) and (3) used in

constraints (4b) and (7f). In addition, constraint (7j) implies that

(7) is an integer optimization problem. In fact, the formulated

problem (7) is a non-convex Mixed-Integer Nonlinear Program

(MINLP), which is generally difficult to solve.

IV. PROPOSED LOW-COMPLEXITY ALGORITHM

Due to the high complexity of the proposed non-convex

MINLP problem, in this section, we propose to approach

a solution of (7) with a more pragmatic, efficient, and low

computational complexity algorithm.

A. Big-M based Equivalent Linear Transformation

Let us start first by equivalently transforming problem (7)

into a more tractable form using the well-known big-M tech-

nique, where M ≫ 1, to facilitate the difficulty of handling the

binary-related objective function and constraints. Specifically,

we introduce the non-negative slack variables oi,j , qi,j , ti,

ui,j , vi,j , wi,j , to substitute the terms yi,jEi,j(p;ρi) in (7a),

yi,j(L
sue
i,j (p)+L

cld
i,j(fi,j)) in (7b), yi,0(L

mue
i (ρi)+L

cld
i,0(fi,0)) in

(7c), zi,jL
mig
i,j (ri,j) in (7b), zi,jri,j(p) in (7f), and zi,jfi,j in

(7g)–(7h), respectively. The new slack constraints for variables

o = {oi,j ≥ 0, ∀j ∈ S, i ∈ Uj} can be presented as

oi,j ≤ yi,jM (8a)

(yi,j − 1)M + Ei,j(p;ρi) ≤ oi,j (8b)

oi,j ≤ Ei,j(p;ρi) (8c)

The same technique can be applied for linearizing the other

terms, where each constraint will be linear with respect to the

involved variables. We note the non-linear constraints resulting

from the big-M transformations as follows:

(yi,j − 1)M + Lsue
i,j (p) + Lcld

i,j(fi,j) ≤ qi,j (9a)

qi,j ≤ Lsue
i,j (p) + Lcld

i,j(fi,j) (9b)

(yi,0 − 1)M + Lmue
i (ρi) + Lcld

i,0(fi,0) ≤ ti (9c)

ti ≤ Lmue
i (ρi) + Lcld

i,0(fi,0) (9d)

(zi,j − 1)M + L
mig
i,j (ri,j) ≤ ui,j (9e)

ui,j ≤ L
mig
i,j (ri,j) (9f)

(zi,j − 1)M + ri,j(p) ≤ vi,j (9g)

vi,j ≤ ri,j(p) (9h)

respectively. By denoting χ2 = {χ1;o, q, t,u,v,w}, problem

P1 after applying the big-M based equivalent transformation,

denoted as P2, can be casted as

min
χ2

∑

j∈{0∪S}

∑

i∈Uj

(1− yi,j)E
loc
i,j + oi,j (10a)

s.t. (1− yi,j)L
loc
i,j + qi,j + ui,j ≤ Li,j ∀j ∈ S, i ∈ Uj (10b)

(1− yi,0)L
loc
i,0 + ti ≤ Li,0 ∀i ∈ U0 (10c)

xi,j,b ≤ yi,j ∀j ∈ S, i ∈ Uj , b ∈ B1 (10d)

zi,j ≤ yi,j ∀j ∈ S, i ∈ Uj (10e)

vi,j ≤ ri,j ∀j ∈ S, i ∈ Uj (10f)
∑

i∈Uj

fi,j − wi,j ≤ F j ∀j ∈ S (10g)

∑

j∈S

∑

i∈Uj

wi,j +
∑

i∈U0

fi,0 ≤ F 0 (10h)

(2), (4), (5), (8), (9) (10i)

yi,j , zi,j , xi,j,b ∈ {0, 1} (10j)

pi,j,b, ρi,b, ri,j , fi,j , di,j,b, φi,b ≥ 0 (10k)

where the equivalence between (7) and (8)–(10) is omitted due

to lack of space. In the next subsection, we reveal the factors

that make the formulated problem P1 non-convex by separating

the convex and non-convex constraints.

B. Successive Convex Approximation (SCA) Method

At this point, we observe that the underlying issues which

make (10) a non-convex MINLP problem, and hence difficult to

solve, are due to the existence of functions Ei,j(p;ρi), L
sue
i,j (p),

and ri,j(p), which are non-convex with respect to p and ρi,

in constraints (8b)–(8c), (9a)–(9b), and (9g)–(9h), respectively.

Also, the existence of functions Lmue
i (ρi), Lcld

i,j(fi,j), and

L
mig
i,j (ri,j), forming a difference of convex (DC) form, which

renders constraints (9b), (9d), and (9f) as non-convex. It is

worth noting that constraint (4b) is recognized as a convex

exponential cone due to the existence of the log function

Ri,b(ρi,b), and can be easily approximated by a system of sec-

ond order cone constraints, similar to the transformation done in

[19] from (12) to (13) in Section III. Also, functions Lmue
i (ρi),

Lcld
i,0(fi,0), and L

mig
i,j (ri,j) in (9c) and (9e) are convex functions

of the form f(x) = A
x

, and constraints (9c) and (9e) can be

easily linearized by introducing a set of rotated quadratic cones.

Those conversions ensure the resulting problem is a standard
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Mixed-Integer Second-Order Cone Program (MISOCP), where

a modern dedicated solver such as MOSEK [20] can solve the

problem efficiently in each iteration. We address next the non-

convex constraints, where we approximate (10) into a series of

approximated MISOCP problems. Then, we develop a SCA-

based MISOCP algorithm to iteratively solve until convergence.

1) Constraints (9g) and (9h): After some Algebraic manip-

ulation, function ri,j(p) can be rewritten as follows:

ri,j(p) =
∑

b∈B1
log







γ̆i,j,b(pb)
︷ ︸︸ ︷
∑

l∈S\

∑

k∈Ul

pk,l,b|hk,l,j,b|
2 +N0 + pi,j,b|hi,j,j,b|

2







︸ ︷︷ ︸

r̆i,j,b(pb)

− log







γ̂j,b(pb)
︷ ︸︸ ︷
∑

l∈S\

∑

k∈Ul

pk,l,b|hk,l,j,b|
2 +N0







︸ ︷︷ ︸

r̂j,b(pb)

(11)

In order to resolve the DC form in (9g), ri,j(p) should be

convexified. Thus, we are motivated by the inner-approximation

method in [21] to approximate r̆i,j,b(pb) by its upper-bounded

convex function R̆i,j,b(pb;p
(n)
b ) around the point p

(n)
b as

R̆i,j,b(pb;p
(n)
b ) = r̆i,j,b(p

(n)
b ) +

γ̆i,j,b(pb)−γ̆i,j,b(p
(n)
b

)

γ̆i,j,b(p
(n)
b

)
(12)

Similarly, to resolve the DC form in (9h), ri,j(p) should

be made concave. We also approximate function r̂j,b(pb) by

its upper-bounded convex function R̂j,b(pb;p
(n)
b ) around the

point p
(n)
b . By replacing function ri,j(p) by its approximates,

constraints (9g) and (9h) can now be written as

(zi,j − 1)M +
∑

b∈B1

(

R̆i,j,b(pb;p
(n)
b )− r̂j,b(pb)

)

≤ vi,j (13a)

vi,j ≤
∑

b∈B1

(

r̆i,j,b(pb)− R̂j,b(pb;p
(n)
b )
)

(13b)

Constraints (13) are now convex due to the log functions, and

constraints (13) can be easily linearized similar to (4b).

2) Constraints (9a), (9b), (9d), and (9f): First, By introduc-

ing the non-negative slack variables θi,j , ξi,j , and τi, constraints

(9a), (9b), and (9d) can be equivalently rewritten as

(yi,j − 1)M +
Di,j

θi,j
︸︷︷︸

L̆sue
i,j

(θi,j)

+Lcld
i,j(fi,j) ≤ qi,j (14a)

qi,j ≤
Di,j

ξi,j
︸︷︷︸

L̂sue
i,j

(ξi,j)

+Lcld
i,j(fi,j) (14b)

ti ≤
Di,0

τi
︸︷︷︸

L̂mue
i

(τi)

+Lcld
i,0(fi,0) (14c)

θi,j ≤
∑

b∈B1

(

r̆i,j,b(pb)− R̂j,b(pb;p
(n)
b )
)

(14d)

∑

b∈B1

(

R̆i,j,b(pb;p
(n)
b )− r̂j,b(pb)

)

≤ ξi,j (14e)

∑

b∈B2

Ri,b(ρi,b) ≤ τi (14f)

where (14d) and (14e) are directly converted into their linear

form following the approximations done in (12), and constraint

(14a) can be easily linearized as it falls in the same category

as constraints (9c) and (9e). Therefore, constraints (14b), (14c)

and (14f) are non-convex and need to be addressed.

The non-convexity of (14f) is caused by the existence of

concave function Ri,b(ρi,b) on the left side of the inequality,

causing a DC form. To address (14f), we approximate function

Ri,b(ρi,b) by its upper-bounded convex function R̃i,b(ρi,b; ρ
(n)
i,b )

around the point ρ
(n)
i,b as

R̃i,b(ρi,b; ρ
(n)
i,b ) = Ri,b(ρ

(n)
i,b ) +

ρi,b − ρ
(n)
i,b

ρ
(n)
i,b + ||wi,b||2N0

(15)

The non-convexity of constraints (9f), (14b), and (14c) is

also due to a DC form. In fact, with a slight abuse of notation

x, all of these functions have the same form, and can be

represented by f(x) = A
x

. To linearize the aforementioned

constraints, we also approximate function f(x) by its upper-

bounded convex function f̃(x;x(n)) around the point x(n) as

f̃(x;x(n)) = A
x(n) −

A
(x(n))2

(x−x(n)). At this point, constraints

(9f), (14b), (14c), and (14f) can now be written in a linear

form, by replacing functions L
mig
i,j (ri,j), L̂

sue
i,j (ξi,j), L

cld
i,j(fi,j),

L̂mue
i (τi), L

cld
i,0(fi,0), and Ri,b(ρi,b) by their approximates.

3) Constraints (8b) and (8c): For addressing function

Ei,j(p;ρi), we introduce the non-negative slack variables ζi,j,b,

ψi,j,b, νi,j,b, βi,j,b, ηi,b, µi,b, κi,b, and αi,b, and equivalently

rewrite both constraints as

(yi,j − 1)M + sj
∑

b∈B1

β2
i,j,b

ζi,j,b
+ (1− sj)

∑

b∈B2

α2
i,b

ηi,b
≤ oi,j (16a)

oi,j ≤ sj
∑

b∈B1

(

ν2i,j,b

ψi,j,b

)

︸ ︷︷ ︸

Êsue
ijb

(νijb;ψijb)

+(1− sj)
∑

b∈B2

(

κ2i,b

µi,b

)

︸ ︷︷ ︸

Êmue
ib

(κib;µib)

(16b)

di,j,b ≤
β2
i,j,b

pi,j,b
(16c)

φi,b ≤
α2
i,b

ρi,b
(16d)

ν2i,j,b ≤ di,j,bpi,j,b (16e)

κ2i,b ≤ φi,bρi,b (16f)

ζi,j,b ≤ r̆i,j,b(pb)− R̂j,b(pb;p
(n)
b ) (16g)

R̆i,j,b(pb;p
(n)
b )− r̂j,b(pb) ≤ ψi,j,b (16h)

ηi,b ≤ Ri,b(ρi,b) (16i)

R̃i,b(ρi,b; ρ
(n)
i,b ) ≤ µi,b (16j)

where (16g), (16h) and (16j) are converted into a linear form,

following the approximations in (12), and (15). Constraints

(16a) and (16e)–(16j) are convex, where (16a), (16e), and (16f)

can be easily converted to quadratic cones. Constraints (16b),

(16c), and (16d) are non-convex having a DC form.

With a slight abuse of notations x and y, these functions
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have the same form, and can be represented by g(x) =
x2

y
. To linearize constraints (16b), (16c), and (16d), we ap-

proximate function g(x) by its upper-bounded convex func-

tion g̃(x, y;x(n), y(n)) around the points x(n) and y(n) as

g̃(x, y;x(n), y(n)) = 2x(n)x
y(n) − (x(n))2

(y(n))2
y. Constraints (16b), (16c),

and (16d) can now be written in a linear form, after replacing

the non-convex functions by their approximates.

C. SCA-based Algorithm

The MISOCP approximation of problem (10) still pauses

scalability limitations, due to the mixed-integer nature of the

problem, which is caused by (7j). To solve that problem, we

adapt a similar approach to [22], and relax the integrality

constraint of the binary variables y, z, and x. For instance,

for relaxing variable y, by defining slack variable δ
y
i,j ≥ 0, we

introduce the following constraints which will force y to take

binary value with a penalty term added to the objective:

0 ≤ yi,j ≤ 1 (17a)

0 ≤ yi,j − h̃(yi,j ; y
(n)
i,j ) ≤ δ

y
i,j (17b)

By employing all conic transformations, an approximated

MI-SOCP of the mixed-integer non-convex problem (10), de-

noted by P̃(n), can be formulated at the nth iteration as

min
χ

∑

j∈{0∪S}

∑

i∈Uj

(

(1− yi,j)E
loc
i,j + oi,j +Aδ

y
i,j

)

(18a)

s.t. (2), (4), (5), (8a), (9c), (9e), (10b), (10c),

(10d), (10e), (10f), (10g), (10h), (13), (14a), (18b)

(14d)–(14e), (16a), (16e)–(16j), (17). (18c)

pi,j,b, ρi,b, ri,j , fi,j , di,j,b, φi,b ≥ 0 (18d)

where A > 0 is the penalty parameter.

By denoting Φ
(n) = {y(n), z(n),x(n),p(n),ρ(n), ξ(n),f (n),

τ (n), r(n),ν(n),ψ(n),κ(n),µ(n),β(n),α(n)} and χ(n) =
{y⋆, z⋆,x⋆,p⋆,ρ⋆, ξ⋆,f⋆, τ ⋆, r⋆,ν⋆,ψ⋆,κ⋆,µ⋆,β⋆,α⋆},

the pseudo-code for the corresponding SCA algorithm is given

in Algorithm 1. We note that the convergence analysis has

been omitted due to lack of space.

Algorithm 1 SCA-based MISOCP Algorithm.

1: Initialize:

2: n = 0;

3: Choose an initial point Φ(n);

4: repeat

5: Solve P̃(n) to obtain the optimal solution at the nth

iteration χ⋆;

6: Update Φ
(n) = χ(n);

7: n = n+ 1;

8: until Convergence of the objective of P̃(n).

V. NUMERICAL RESULTS

In this section, we present the numerical results for our

joint transmission power and computational/radio resources

allocation problem. We consider a heterogeneous network with

a set of cloudlet-enabled SCs connected to a MC, having one

user in the range of each cell. The channel gain h follows an

exponential distribution with mean 1. Both the beamforming

vector norm ||w||2 and the noise power level are normalized

to 1. RB bandwidth is set to be 5 megahertz, data size D is

set to be 100 kilobits, computational demand C is set to be

100 megacycles, latency bound L is set to be 50 milliseconds,

cloudlets capacity F is set to be 10 gigahertz, and UEs power

threshold P i,j is set to be 30 dBm. For the other parameters,

instance A uses 3 SCs and 10 RBs, instance b uses 15 SCs

and 10 RBs, and instance C uses 6 SCs and 50 RBs. The

convergence criteria of Algorithm 1 is established when ǫ, i.e.

the difference of objective value between Γ(n) and Γ(n+1) of

the approximated problem, is ǫ ≤ 10−3.

In Figure 2(a), we use instance A to study the convergence

behavior of the SCA-based iterative algorithm. The algorithm

starts with a very high objective (the total UEs energy con-

sumption) due to the binary approximation in (17), causing the

violation term to be very high at first. Within few iterations,

the objective decreases rapidly, reaching small ǫ values, until

convergence with objective equal to 46.466 millijoule.

In Figure 2(b), we compare our SCA-based algorithm with

the No-Interference (SCA-NI), and the Worst-Case Interference

(SCA-WCI) approaches. The SCA-NI considers a given RB to

not being used by any other SUE in the neighboring cells, so

the interference on this block will amount to 0. On the other

hand, SCA-WCI considers the highest possible interference on

each RB, which results from the maximum transmission power

over the strongest channel in each neighboring cell. Adopting

one of these two approaches allows the algorithm to generally

have a better performance and be more scalable. As it can be

seen however, this comes with the cost of a degraded solution:

the BCI and WCI approaches give lower and upper bounds on

our approximate solution with a significant gap. This indicates

that adopting the approximate solution without relaxations

has a notable advantage over the other relaxation methods,

since the lower and upper bounds are relatively large. The

objective generally increases when the latency bound decreases,

especially for the SCA-based algorithm. This is because a lower

latency bound forces UEs to spend more power for decreasing

the upload time to keep up with the required latency, incurring

more transmission energy in the process. For the other relaxed

approaches, they are less sensitive to latency bound changes.

This is mainly because the interference amount is identical in

both cases, causing the transmission rate to depend only on

the signal strength, and hence causing it to change slightly,

while in the SCA case the amount of interference will also be

diminished, adding more effect on the transmission rate and

hence energy. The change in the objective value will also be

more significant for bigger instances including more users.

In figure 2(c), we study the effect of cloudlet computational

capacity and UEs latency bound on the objective, while using

instance A with RB bandwidth capacity = 3 MHz. Here,

we make two observations. First, having cloudlets with lower

computation capacity leads to a higher objective. Second,

increasing the latency bound leads to a lower objective. The first

observation can be explained by the fact that lower computation
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Fig. 2: Performance Evaluation

capacity leads to a higher computation latency, forcing the

upload latency to be smaller for keeping up with the latency

bound. This means that UEs have to increase their transmission

power in order to meet that latency, leading to a higher energy

and hence a higher objective. Also, when there is enough

capacity on the MBS cloudlet, UEs will migrate their task

there incurring additional transmission latency in the process,

and hence limiting the available task upload time. On the other

hand, increasing the latency bound does the opposite effect,

which means that UEs can occupy less computational resources,

and also decrease their transmission power in a way that will

minimize the overall consumed energy. It can be seen in the

figure that the first part of the lines are steeper. We remark here

that when the latency bound is too low, devices will be forced

to choose local computation which will incur a higher energy,

and hence the high objective in the figure.

Figure 2(d) shows how the number of users in the network

affects the objective. We used instance B having 15 SCs serving

one SUE each. The objective clearly increases whenever the

number of users in the network goes up. This is because more

users have to compute their task, and hence will consume

energy that results from either local device execution, or from

the allocated transmission power on the assigned resource

blocks. In this case, NOs have to consider increasing cloudlets

capacity in order to accommodate the number of users requests,

and help in decreasing the UEs energy.

VI. CONCLUSION

In this paper, we studied the problem of MEC computational

and radio resources allocation for enabling IoT services in

ultra-dense networks. Our objective was to decrease the total

UEs energy consumption resulting from local computation and

task transmission. We presented a low-complexity SCA-based

algorithm for providing an approximate solution on the original

problem. Through numerical results, we showed the efficiency

of our solution, and performed multiple simulations following

different scenarios. Our work can be further extended to con-

sider other cases, like studying the effect of users mobility, as

well as exploring the problem of load balancing among the

cloudlets in a heterogeneous network.
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