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Abstract—User-centric overlapped clustering, relying on base
station (BS) cooperation, is a promising architecture for densely
deployed BSs in millimeter-wave (mmWave) networks. In this
architecture, a user can be served by a set of cooperating BSs
which reduces the interference received from neighboring BSs.
This paper studies the problem of maximizing the number of
served users in a dense mmWave network while guaranteeing
the quality of service (QoS) required by each UE, defined by
a received signal quality. Since the formulated problem is NP-
hard, two near-optimal solutions are proposed that perform
clustering and resource allocation. The first is a heuristic al-
gorithm that builds the clusters by greedily associating the user
with as many BSs as needed. The second approach is a binary
particle swarm optimization (PSO) algorithm adapted to our
constrained problem. Simulations confirm that the proposed
algorithms approach the optimal solution with substantially lower
computational complexity.

Index Terms—mmWave, user-centric, user association, chan-
nel/power allocation, particle swarm optimization (PSO).

I. INTRODUCTION

Recently, the number of cellular network users and the size
of exchanged data have dramatically increased. As a result,
cellular networks face several challenges, including availabil-
ity, affordability, and challenging demands for high speed and
low latency. However, end users always seek to benefit from
excellent connectivity, even in high-density situations. Regular
heterogeneous networks consisting of macrocells and several
small cells sometimes cannot meet these requirements [1]. In
order to remedy this, new technologies have emerged including
the use of millimeter wave (mmWave) communications, which
offer short range directive propagation and larger frequency
bands [2]. In addition, a dense deployment of base stations
(BSs) may result in significant capacity improvement [3].
However, the challenge is to mitigate the interference caused
by overlapping BSs coverage. Thus, this paper investigates a
user-centric approach, where each user equipment (UE) can
be jointly served by a cluster of BSs.

With the densification of wireless networks, user-centric
approaches are seen as promising design principles that can
satisfy the high quality of service (QoS) requirements of
UEs. As a result, several works studied these approaches
from different perspectives. The work in [4] investigated the
problem of orthogonal training resource allocation for a user-
centric cooperative network. It proposed an allocation scheme
for large-scale networks that minimizes the overhead costs of
training, based on graph theory. The proposed scheme achieves
more interesting results than systems with fixed clustering.

The problem of resource allocation in ultradense networks
(UDNs) based on a user-centric architecture is studied in [5],
[6], and [7]. In fact, UDNs face challenges, including limited
availability of orthogonal resource blocks (RBs) and traffic
load balancing. To tackle these challenges, [5] proposes to
maximize the spectral efficiency by optimizing the clustering
and resources allocation under RB constraints. First, a new
distributed user-centric overlapped clustering is developed.
Then, the orthogonal RBs are allocated to the clusters, based
on graph coloring, in order to attenuate the resulting inter-
cluster interference. The work in [6] maximizes the weighted
sum rate under wireless backhaul constraints in UDNs, while
considering the user-centric clustering in access links. In
[7], a distributed scheme is proposed to approximate the
joint optimization of two subproblems: user-centric overlapped
clustering and resource allocation based on graph coloring.
Their two-step distributed solution confirmed the superiority
of the user-centric joint clustering design. Unlike this work,
both [6] and [7] do not consider frequency band allocation,
nor communications over mmWave frequencies.

The work in [8] studies a user-centric dense network over
mmWave, where access points and blockages are randomly
distributed. Stochastic geometry is used to perform an analysis
of coverage probability and ergodic capacity under three
different small-scale fading distributions. Performance analysis
shows that BS cooperation can provide high coverage perfor-
mance and noticeable capacity gain in the region where the BS
density is low. The authors in [9] also use stochastic geometry
to analyze the probability of coverage and the average spectral
efficiency, with mmWave communications. They provide a
user-centric clustering approach that selects dynamically the
BSs based on the user’s channel states. However, they do not
consider user association; they assume a Poisson Point Process
(PPP) model and focus on studying a typical user.

In this work, our goal is to maximize the number of associ-
ated users under QoS constraints. The studied problem is first
formulated as a mixed integer nonlinear program and is shown
to be NP-hard. Therefore, two approaches performing clus-
tering, user association and power allocation are proposed to
solve efficiently the computational complexity vs. performance
trade-off. The first approach is called the greedy association
and power allocation algorithm (GAPA). It proceeds in two
separate phases: the first phase builds clusters by associating
the user with as many BS as necessary to satisfy the SINR
constraints, whereas the second phase performs an independent
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power allocation for each obtained association. The second
approach is a particle swarm optimization (PSO) algorithm.
Since the optimization variables modeling user association and
frequency allocation are binary, we design a binary PSO where
particles are represented by binary three-dimensional matrices.
The proposed algorithm ensures the feasibility of the particle
in all iterations through a repairing mechanism. Computational
complexities of the two proposed algorithms are calculated and
shown to be much lower than the one of the optimal algorithm.

The rest of this paper is organized as follows. The system
model is presented in Section II. Section III formulates the
problem. Section IV details the proposed heuristic solution.
The adapted particle swarm optimization is presented in sec-
tion V. The simulation results that compare the two proposed
algorithms with several benchmarks are provided in Section
VI and the conclusions are finally offered in Section VII.

II. SYSTEM MODEL

We consider a dense network that uses mmWave frequency
bands, composed of U users and B BSs. Let U = {1, ..., U}
and B = {1, ..., B} denote respectively the sets of users
and BSs. We assume that each BS uses C channels where
C = {1, ..., C} denotes the set of channels. A channel can be
reused for serving multiple users and only one channel can be
assigned to each user. We consider a user-centric architecture
where each user is associated and served by one or multiple
BSs that jointly transmit the same data. This joint transmis-
sion allows to guarantee a good quality of transmission and
hence to satisfy the user signal-to-interference-plus-noise ratio
(SINR) requirement. Having more than one channel, a BS can
serve multiple users and may belong to different clusters at
the same time, thus creating a user-centric and overlapped
clustering architecture. An example of this architecture with 6
users, 10 BSs, and 3 channels per BS is shown in Figure 1.

Figure 1. An example of user-centric overlapped clustering.

We notice, for instance, in Figure 1 that UE4 is served by
BS1, BS2 and BS3 on channel 1 and that BS1 also serves UE2
on channel 2. That means BS1 is simultaneously a member

of the two clusters serving UE4 and UE2. Since the channels
can be reused, intrachannel communications will interfere with
each other.

In this paper, all BSs are equipped with directional beam-
forming antenna arrays. The gain pattern of an antenna array is
described according to the model in [10] and [9]. The antenna
gain G(θ) is expressed as:

G(θ) =

{
GM , |θ| ≤ θT /2
GS , otherwise

(1)

where GM and GS are the directional gains in the main
lobe and the side lobes, respectively, θ denotes the angle of
direction and θT is the beam width of the main lobe.

Since signals are transmitted over mmWave frequencies,
they are more sensitive to blockages. We assume the line-
of-sight (LOS) ball model [11], where the LOS probability
function is modeled as PLOS(d) = (d < R) where
is the indicator function, d is the distance separating the
transmitter and receiver, and R is the maximum length of a
LOS link. Furthermore, as pointed out in [12], LOS and Non-
LOS links present different results on the transmitted signals
and different path loss exponents due to high penetration loss
in the mmWave bands. Therefore, we consider the same path
loss modeling as in [12], including different exponents αL and
αNL for LOS and NLOS propagations respectively.

Note that the distribution of the small-scale fading is also
different in LOS and NLOS links. The channel coefficient
is assumed to follow a Nakagami-m probability distribution
where m indicates the degree of fading severity. In fact,
fading in mmWave LOS links is less severe and, therefore,
is modeled by a relatively high fading severity [9]. Therefore,
the small-scale channel gain is a Gamma random variable, that
is, h ∼ Γ(m, 1

m ) where Γ(.) is the Gamma function and the
Nakagami parameter m is equal to mL or mNL depending on
whether the propagation is LOS or NLOS, respectively.

In the considered joint transmission scheme, a set of BSs
jointly transmit the same data to the user. Hence, the signal
power received at user u served on channel c, is given by [9]:

Su,c =
∑
b∈Gu

pc,bGMhu,c,bPL(du,b), (2)

where Gu is the serving BS cluster of user u, pc,b denotes
the transmit power of BS b on channel c, PL(du,b) and du,b
are the path loss and the distance between BS b and user u,
respectively, hu,c,b is the small-scale channel gain between BS
b and user u over channel c.

Let Iu,c denote the set of users served on the same channel
c as user u. The interference power received by user u on its
allocated channel c, can be given by:

Iu,c =
∑
v∈Iu,c

∑
n∈Gv

pc,bG(θn)hu,c,nPL(du,n), (3)

where θn and G(θn) are, respectively, the angle and the
directional gain of the interference from the nth BS. Therfore,
the SINR of user u on channel c, is given by:
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γu,c =
Su,c

N0 + Iu,c
, (4)

where N0 is the power of thermal noise.

III. PROBLEM FORMULATION

The objective of this work is to maximize the number of
associated UEs, i.e., the number of users who receive an SINR
greater than or equal to a threshold. The optimization variables
are the C × B matrix P = [pc,b], the U × C × B matrix
X = [xu,c,b], and the U × C matrix Y = [yu,c], where the
elements of X and Y are defined as:

xu,c,b =

{
1, user u is served by BS b on channel c,
0, otherwise.

(5)

yu,c =

{
1, channel c is assigned to user u,
0, otherwise.

(6)

Thus, the SINR received at user u on channel c is given by:

γu,c =

∑
b∈B xu,c,bpc,bGMhu,c,bPL(du,b)

N0 +
∑
f∈U
f 6=u

∑
b∈B

xf,c,bpc,bG(θb)hu,c,bPL(du,b)
(7)

Let γTh denote the SINR threshold and PT the total power
available at each BS. The studied problem is formulated as :

maximize
X, Y, P

∑
u∈U

∑
c∈C

yu,c (8a)

s.t. γu,c ≥ yu,c.γTh,∀u ∈ U , c ∈ C (8b)∑
c∈C

xu,c,b ≤ 1,∀u ∈ U , b ∈ B (8c)∑
u∈U

xu,c,b ≤ 1,∀c ∈ C, b ∈ B (8d)

yu,c − xu,c,b ≥ 0, ∀u ∈ U , c ∈ C, b ∈ B (8e)∑
c∈C

yu,c ≤ 1,∀u ∈ U (8f)∑
c∈C

pc,b ≤ PT ,∀b ∈ B (8g)

xu,c,b ∈ {0, 1},∀u ∈ U , c ∈ C, b ∈ B (8h)
yu,c ∈ {0, 1},∀u ∈ U , c ∈ C. (8i)
pc,b ≥ 0, ∀c ∈ C, b ∈ B (8j)

Constraints (8b) ensure that the SINR required by served
user is satisfied. Constraints (8c) ensure that only one channel
is assigned per user. Constraints (8d) indicate that channel
c in BS b is assigned to a single user. Constraints (8e) and
(8f) ensure that a user is served on the same channel by all
associated BSs. Constraints (8g) ensure that the sum of all the
power portions allocated by a BS do not exceed its maximum
power. Finally, constraints (8h), (8i) and (8j) ensure that xu,c,b
and yu,c are binary variables and that the power portions take
only positive values.

In the following, we discuss the NP-hardness of the formu-
lated problem. First, it is easy to prove that it is in class NP,
since given a user association and channel/power allocation
solution, it can be easily verified in polynomial time. Next,
consider a special case of our problem, which is a one-to-one
association where each user can be served by a single BS and
where all BSs are using the same channel, that is, C = 1.
This special case of the problem is equivalent to the problem
formulated in [13] which has been proven to be NP-hard. We
therefore deduce that our problem (8) is also NP-hard.

IV. THE GREEDY ASSOCIATION AND POWER ALLOCATION
ALGORITHM (GAPA)

Due to the high computational complexity of the studied
problem, this section proposes a heuristic algorithm that solves
the problem in two phases in a greedy fashion. The main idea
of this algorithm is to proceed one channel at a time while
running phase 1 to obtain user association, then phase 2 to
perform power allocation. Phase 1 associates the users one
by one, prioritizing the BSs with the best channel gain, until
the SINR is satisfied. In this phase, the transmission power
allocated to the channel in each BS is assumed to be the
maximum available power. Phase 2 calculates and allocates
the available power based on the output of phase 1.

Algorithm 1 GAPA algorithm
Input: U , C,B, B,P = [pb,c], t, γTh.
Output: X and P

1: X← 0 , Y← 0.
2: for c ∈ C do
3: Phase 1: User Association
4: for u ∈ U do
5: Sort t in descending order according to channel’s

gain for u on c
6: i← 0
7: repeat
8: b← t[i]
9: if

∑
u∈U xu,c,b < 1 then

10: xu,c,b ← 1
11: for f ∈ U with f 6= u do
12: if (yf,c = 1) ∧ (γf,c < γTh) then
13: xu,c,b ← 0

14: i← i+ 1
15: until (γu,c ≥ γTh) ∨ (i = B)
16: if γu,c ≥ γTh then
17: yu,c = 1
18: else
19: for b′ ∈ B do
20: xu,c,b′ ← 0

21: Phase 2: Power Allocation
22: for each user u associated in step 1 do
23: for b ∈ B do
24: Compute pc,b
25: Update P
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The proposed greedy algorithm is presented in Algorithm
1. Let t be a vector that contains all BSs indices. Also, each
element of the power matrix P is initialized with PT .

The algorithm proceeds one channel at a time and performs
phases 1 and 2, successively, over exactly C iterations. Phase 1
proceeds user by user and associates the uth user with as many
BSs as necessary to satisfy the requested SINR threshold γTh
starting with the BS with the best channel gain. In addition,
phase 1 makes sure that the current association does not
disturb the previous associations by performing at most U
additional iterations. The worst-case computational complexity
of this phase is O(BU2). Phase 2 then proceeds, for each
associated user, by calculating the power required for each
BS, starting with the one experiencing the highest channel
gain. As the BSs are already sorted in Phase 1, there is no
extra complexity incurred in Phase 2. Furthermore, once the
SINR of the considered user is satisfied at a given step of the
phase, there is no need to consider more BSs. The worst-case
computational complexity of this phase is O(BU). Therefore,
the overall worst-case complexity of GAPA is O(CBU2).

V. PARTICLE SWARM ASSOCIATION ALGORITHM

This section proposes a particle swarm optimization (PSO)
algorithm to efficiently solve the studied problem with a
computational complexity comparable to that of GAPA. PSO
is an optimization metaheuristic based on the collaboration of
a group of poorly intelligent individuals. These individuals can
have a complex global organization using very simple rules of
movement in the search space. At each iteration, the particles
move according to their current positions, their best positions,
and the best global solution.

A. Solution representation

Input: A swarm of particles L, where the position πl of
particle l is a three-dimensional U × C × B binary matrix,
whose elements are given by:

πl(u, c, b) =

{
1, user u is served on channel c by b,
0, otherwise.

(9)

Fitness function: To measure the quality of the association,
ft(πl) evaluates the number of associated users of particle i.

Output: gbest that is a U × C × B binary matrix corre-
sponding to the particle that maximizes the fitness function.

Stopping criteria: The algorithm terminates when a max-
imum number of iterations is performed or all users are
associated.

Particle velocity: Each particle l in iteration k moves with
velocity vkl in the search space. This velocity is given by
a three-dimensional matrix of size U × C × B, where each
element of the matrix is restricted to [vmin, vmax]. After each
move, the velocity is updated as follows:

vk+1
l (u, c, b) = ωkvkl (u, c, b)

+ w1r1 × (pbestkl (u, c, b)− πkl (u, c, b)) (10)

+ w2r2 × (gbestk(u, c, b)− πkl (u, c, b))

where pbestkl (u, c, b) is the particle best recorded position until
iteration k, gbestk(u, c, b) is the global best, r1 and r2 are
uniform random numbers in [0, 1], w1 and w2 are weighting
coefficients for the personal best and global best (also known
as social and cognitive parameters) and finally, ωk is an inertia
factor where ωk = 1+β

β+k , with β a randomly chosen value.
We use the piece-wise linear function to force velocity

values to be inside the allowable interval of values,

h(vk+1
l (u, c, b)) =


vmax, if vk+1

l (u, c, b) > vmax

vmin, if vk+1
l (u, c, b) < vmin

vk+1
l (u, c, b), otherwise.

(11)

Since the particles are binary valued, we use the sigmoid
function [14] that is given by sig(y) = 1

1+e−y to force the real
values obtained after moving a given particle to fall between
0 and 1. Then each element πk+1

l (u, c, b) is set to 1 if and
only if

sig(h(vk+1
l (u, c, b))) < random[0, 1] (12)

Conditions: The particle positions are updated according
to the calculated velocity only if (8d)–(8g) are respected.
Otherwise, all particle elements are forced to be equal to zero.

Note that the SINR constraints and power allocation are not
taken into account when updating the particle positions, and
hence the obtained associations may not respect the constraints
(8b). Thus, a repair function [15] is used to test the SINR
condition and allocate the necessary power using GAPA phase
2. In this case, the function repairs the particle to find a feasible
solution by setting the particle elements to zero.

Algorithm 2 PSO algorithm
Input: a swarm of L particles
Output: gbest = the best particle

1: Initialize the particles positions
2: Initialize the particles velocities randomly
3: Initialize pbest0l for all particles with

pbest0l (u, c, b) = π0
l (u, c, b)

4: Evaluate each particle with ft(π0
l )

5: Initialize gbest0 for all particles with

ft(gbest
0(u, c, b)) = max

i
{ft(pbest0l (u, c, b))}

6: Set iteration number k ← 1
7: while (Stopping criteria is not reached) do
8: Update velocity according to (10)
9: Update particles positions according to (11) and (12)

10: Ensure that constraints (8c)–(8g) are respected
11: Repair the positions if necessary
12: Measure fitness
13: Update pbest and gbest
14: k ← k + 1

B. Initialization

Three approaches are tested in this work:
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• RandomInit: the algorithm generates L random particles,
according to the discrete uniform distribution, respecting
constraints (8c)–(8g).

• HeuristicInit: the algorithm generates L − 1 random
particles, according to the discrete uniform distribution,
respecting constraints (8c)–(8g) and add a Lth particle
corresponding to the GAPA solution.

• HeuristicModInit: It is similar to HeuristicInit, but re-
places a given number of particles with a close to GAPA
solutions, i.e. setting random elements to 1.

C. Computational complexity

The adapted PSO algorithm is presented in Algorithm 2.
In the initialization phase, the algorithm generates L particles
and L velocities in O(UCBL) steps. Next, for each iteration,
it updates the particle positions in O(UCB), verifies the
conditions in O(UC2B2) steps and calls the repair function
whose complexity frepair depends on the employed strategy.
The total computational complexity for the PSO algorithm is
thus equal to O((UC2B2 +O(frepair))KL).

VI. SIMULATION RESULTS

This section presents several simulation results illustrating
the performance of the two proposed algorithms, GAPA and
PSO. They are compared to three benchmarks namely the
optimal solution (OPT), the one-to-one association (1to1-A)
and the random algorithm (RA). The optimal performance
is obtained using the APOPT (Advanced Process OPTimizer)
solver of GEKKO package under Python. The 1to1-A algo-
rithm, with computational complexity of O(CBU2), does not
consider overlapping clustering and assumes that a user may
be associated with at most one BS. Also, the RA selects a
random user at each iteration and tries the association. The
computational complexity of the RA is O(CBU).

We consider that U UEs are uniformly distributed in a
squared area of size A. The BSs are distributed considering
that the simulation area is organized in hexagons and each BS
is placed in the center of a hexagon. By default, C = 4 unless
otherwise specified. The PSO algorithm is initialized according
to HeuristicInit approach since it is found through simulations
that it converges faster than RandomInit and HeuristicModInit.
The remaining simulation parameters are shown in Table I.

Figure 2 shows the percentage of associated UEs versus the
number of BSs with U = 10. We notice that the performance
of PSO and GAPA are very close to the optimal solution with
a slight advantage to the former algorithm. This is expected
since GAPA has a smaller complexity and is used as an
initilization particle for the PSO.

The high computational complexity of OPT prevents us
from considering a value of U greater than 10. Therefore, in
order to illustrate the performance of the proposed algorithms
for a larger value of U , Figure 3 shows the percentage of
associated UEs versus the number of BSs with U = 20,
γth = 13dB, and C = 3 or C = 5. We observe that
both proposed algorithms significantly outperform 1to1-A and
RA (based on Figure 2). Hence, a well designed clustering

Table I
SIMULATION PARAMETERS.

Notations Description Value
A Simulation area 100m ×100m
γTh SINR threshold 10 dB
PT BS transmit power 30dBm [9]
W Channel bandwidth 200MHz

Noise power spectral density -174dBm/Hz
R Maximum LOS link length 10m

(mL,mNL) LOS and NLOS Nakagami parameter (3, 2) [9]
(αL, αNL) LOS and NLOS path loss exponent (2.2,4) [9]
(GM , GS) BS antenna arrays parameters (20 dB,0 dB)

θT Beam width 45◦

L Number of particles in the swarm 2U
K Number of iterations (PSO) U × C ×B

vmax, vmin Maximum, minimum velocity (PSO) 4,−4
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Figure 2. Percentage of associated users for U = 10.

algorithm guarantees good performance with a limited increase
in computational complexity.

Figure 4 shows the number of associated UEs while varying
the total number of UEs with B = 4. Here again, we observe
that GAPA performs very well even when increasing the
number of UEs U , with a worst case performance gap of
3.3% compared to OPT. On the other hand, PSO performance
are very close-to-optimal and clearly improves GAPA solution
as U gets larger. As in Figures 2 and 3, the two proposed
algorithms significantly outperform the two other benchmarks.

Figure 5 shows the percentage of associated UEs while
varying the SINR threshold. We set the other parameters as
U = 10, B = 4 and C = 3 or 5. As the SINR threshold gets
higher, the number of associated users decreases because of
the system limited resources. However, even for high SINR
threshold values, the performance of GAPA and PSO remains
close to optimal and both take advantage of adequate BS
clustering and adapted power allocation. They thus clearly
outperform 1to1-A solutions.
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VII. CONCLUSION

In this paper, we investigated the user-base station associ-
ation and the channel/power allocation problem considering
user-centric dense network that employs mmWave commu-
nications. The formulated integer non-linear problem is to
maximize the number of associated users under the constraint
of guaranteeing quality of service, defined by SINR threshold,
for each user. Since this problem is shown to be NP-hard, two
low-complexity algorithms were proposed, namely the greedy
association and power allocation algorithm and the particle
swarm optimization algorithm. Numerical results showed that
our proposed algorithms solve differently the performance/-
complexity tradeoff but they both achieve close to optimal
performance with a highly reduced computational complexity.
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