
www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-1 

Chapter 2 

2. Software Development Tools 
 

 

 

 

The goal of this chapter is to present the main characteristics of the 
MSP430 Integrated Development Environments (IDEs), both from TI 
and from third parties. Due to the wide range of hardware platforms 
available, special attention will be given to Code Composer 
Essentials and IAR Embedded Workbench IDE. The basic functions 
and step-by-step project development will be given for each tool. 
Topics covered will be the structure and management (source files, 
compiling, assembling and linking operations) of projects developed 
in both C (mainly) and/or Assembly language. 

 

 

 

Topic Page 

2.1 Introduction ................................................................... 2-2 

2.2 Code Composer Essentials IDE........................................ 2-2 

2.2.1 Installing CCE............................................................ 2-3 

2.2.2 Introduction to CCE IDE ............................................ 2-7 

2.2.3 Lab1: “Hello World” Beginner’s project ................... 2-37 

2.3 IAR Embedded Workbench IDE..................................... 2-59 

2.3.1 IAR EWB main features ........................................... 2-59 

2.3.2 Lab1: “Hello World” Beginner’s project ................... 2-59 

2.4 Third party MSP430 IDEs .............................................. 2-69 

 

 

 



Software Development Tools 

2-2 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

2.1 Introduction 

During the development of the laboratory exercises, the software 
development tools will be used to make use of the microcontroller 
features. The introduction to the MSP430 microcontroller makes use 
of the TI’s Code Composer Essentials (CCE v3) and IAR Systems’ 
Embedded Workbench - Kickstart Version. These Integrated 
Development Environments (IDEs) allow applications to be written, 
compiled, assembled, linked, debugged and run on MSP430 
hardware. 

 

 

2.2 Code Composer Essentials IDE 

TI recently launched Code Composer Essentials v3. This IDE’s latest 
version (version 3) supports all available MSP430 devices. It is 
available as a: 

 Free upgrade for existing v2 users; 

 Professional version ($499), the main features being: 

 Unlimited code size; 

 Can be ordered from the MSP430 web page; 

 Supported by TI Software Support. 

 Evaluation Version (Free): 

 16 kB limit on C / unlimited ASM code size; 

 Download from MSP430 web page; 

 Supported by TI Software Support. 

 

 

The new features of CCE v3 include: 

 Free 16 kB code-limited version; 

 Supports the large memory model (Place data >64k); 

 Enhanced Compatibility with IAR C-code: 

 #pragma (ISR declarations), most intrinsics. 

 GDB Debugger replaced by TI proprietary debugger that allows 
faster single stepping; 

 Hardware Multiplier libraries (16-bit and 32-bit multiplies); 

 CCE v2 project support (auto convert); 

 Breakpoints: 

 Extended Emulation Module (EEM) support via unified 
breakpoint manager; 

 Using of EEM (predefined Use Cases); 

 Unlimited Breakpoints. 

 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-3 

2.2.1 Installing CCE 

Eclipse is a software development platform, developed in Java, 
which allows it to be used on different operating systems. One of its 
main features is that it is fully based on plug-ins, which gives it 
great versatility. This tool was originally developed by IBM, who 
have applied considerable financial resources and afterwards 
released it to the Open Source community. This makes it one of the 
most universal software development tools. There are a large 
number of institutions, both public and private, that support the 
development of this tool. A typical release of Eclipse comes with the 
components needed for the development of JAVA applications (JDT - 
Java Development Tools). In addition, others plug-ins are also part 
of the default version, the important ones being: 

 Concurrent Version System (CVS): For control of code versions 
in production. 

 Plug-in Development Environment (PDE): Relevant for those 
who want to expand the functionality of IDE through plug-ins. 

 JUnit: Framework for code validation and test. 

 

 

In addition to allowing the development of Java applications, Eclipse 
also allows the development in other programming languages. This 
requires the proper installation of their plug-ins or, alternatively, 
choosing a release that already includes them. The plug-in CDT 
(C/C++ Development Tools) enables the development of C/C++ 
code, but there are other extensions for Python or Cobol 
programming languages. Information relevant to the use of Eclipse 
can be found on its homepage located at http://www.eclipse.org/. 
On this site, in addition to the latest releases of Eclipse, resources to 
support those who are starting up using this tool can also be found. 

 

The modular feature of Eclipse encourages its use as a basis for 
rapid and effective development of other tools. Using a common 
platform, the learning curve is rapid and simultaneously provides the 
reuse of modules already developed. Users of Eclipse can be divided 
into three communities: 

 Committers: Community responsible for the official tool’s 
development; 

 Plug-in developers: Community that expands the capabilities of 
the tool through the development of plug-ins. 

 Users: Community that uses the tool developed by the two 
previous communities. 

 

 

Code Composer Essentials (CCE) version 3 is based on Eclipse 
release 3.2 (Callisto). On the market there are hundreds of plug-ins 
that can be added in order to enhance or optimize a particular 
aspect of CCE. One of the available repositories for plug-ins 
developed for the Eclipse is the Eclipse Plugin Central located at 
http://www.eclipseplugincentral.com/. This development tool has 
advanced capabilities to support the development of applications for 
the MSP430 family. Among them are the support for the use of 



Software Development Tools 

2-4 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

breakpoints, either hardware or software. CCE supports code 
debugging activities, with support for features such as code step-by-
step execution, or fast and efficient access to registers and memory 
locations. There is complete compatibility between the C 
programming language syntax used and the great diversity of code 
examples available. 

 

CCE supports all elements of the MSP430 family. It also includes the 
expanded memory devices, MSP430X. Different programming 
languages such as assembly, C and C++ are supported. 

 

 

CCE installation 

Most of the installation of CCE is automated. It is only necessary to 
provide some user indications as to how the program installation 
should continue. The installation process begins with the welcome 
window shown in Figure 2-1. 

 

Figure 2-1. CCE installation process - Welcome window. 

 

 

 

The installation process starts with the acceptance of the software 
license agreement, as shown in Figure 2-2. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-5 

Figure 2-2. CCE installation process – Software license agreement window. 

 

 

 

The first question asked by the software installer is the directory on 
the local disc where to install the software. It is recommended to 
accept the directory suggested by the application. 

 

Figure 2-3. CCE installation process – Installation directory window. 

 

 

 

Two different installation procedures are available. In the Typical 
installation procedure, the tool is installed with all the default 
options. The installation procedure Custom allows the user to select 



Software Development Tools 

2-6 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

the components to install. It is recommended to select the typical 
installation, as shown in Figure 2-4. 

 

Figure 2-4. CCE installation process – Installation procedure window. 

 

 

 

Whichever installation procedure was chosen in the previous 
window, the components installed are listed in the next installation 
window (see Figure 2-5). 

 

Figure 2-5. CCE installation process – Installed components window. 

 

 

The installation process begins as shown in Figure 2-6. 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-7 

Figure 2-6. CCE installation process – Installation process evolution window. 

 

 

 

2.2.2 Introduction to CCE IDE 

 

The introductory overview in the use of CCE will continue with a 
practical example, addressing some of its main features. Let us 
begin by building a project. This project will be configured with 
respect to the hardware, i.e., the MSP430 family device. 

 

 

Launching the workbench 

The term “Workbench” refers to the integrated development 
environment of all tools necessary for the development and 
management of projects. When CCE is started, it asks the user 
where they want to locate the work directory (workspace). If this 
will be always the same, this question can be inhibited in future 
openings of CCE by choosing the inhibit option for this window. If it 
is necessary to change the location of the workspace in future 
projects, select Window > Preferences. This menu allows access 
to the CCE preferences configuration. CCE’s start and stop can be 
configured in the General > Start and Shutdown option. The 
organization of the various configuration options presented depends 
on to the modules installed. Some time should be spent here, 
opening the various options and identifying where to set general 
aspects of the tool such as: general appearance, editor, shortcut 
keys, etc. The CCE preferences window is shown in Figure 2-7. 

 

 

 

 



Software Development Tools 

2-8 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-7. CCE workbench – Preferences window. 

 

 

 

After choosing the location where the workspace will be stored, it 
opens by default in the project construction perspective. The 
concept associated with a perspective is important for the correct 
understanding of CCE operation. A perspective provides that for a 
given task there is an organization of windows most appropriate to 
its implementation. Changing perspective involves reformulating the 
workspace for a new Windows configuration that promotes the 
development of particular task. There are two major perspectives: 
C/C++ for editing, management and compilation of projects, and 
Debug for debugging the applications. The working perspective is 
selected in the upper right hand corner of the application. 

 

 

By default, the windows included in the C/C++ perspective are: 
C/C++ Projects (to manage the projects); Editor (to edit files); 
Outline (to view data); Console (to send messages); Problems 
(identifies problems found in the project). The icons associated with 
the various tasks that can be performed in this perspective are 
shown together in Table 2-1. 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-9 

Table 2-1. Tasks icons and description – C/C++ perspective. 

Button Description Button Description 

 Open a new perspective  Save the active editor contents 

 Save the contents of all editors  Save editor contents under a new name or location 

 Opens the search dialog  Print editor contents 

 Open a resource creation wizard (New)  Open a file creation wizard 

 Open a folder creation wizard  Open a project creation wizard 

 Open the import wizard  Open the export wizard 

 Run incremental build (Build All)  Run a program 

 Debug a program  Run an external tool 

 Cut selection to clipboard  Copy selection to clipboard 

 Paste selection from clipboard  Undo most recent edit 

 Redo most recent undone edit  Navigate to next item in a list 

 Navigate to previous item in a list  Navigate forwards 

 Navigate backwards  Navigate up one level 

 Add bookmark or task  Open a view's drop down menu 

 Close view or editor  Pin editor to prevent automatic reuse 

 Filter tasks or properties  Go to a task, problem, or bookmark in the editor 

 Restore default properties  Show items as a tree 

 Refresh view contents  Sort list in alphabetical order 

 Cancel a running operation  Delete selected item or content 

 Last edit location  Toggle Mark Occurrences 

 Assembly instruction only   

 

 

By default, the windows included in the Debug perspective are: 
Debug (provides information concerning the debug process); Editor 
(to edit files); Variables/Expressions (to evaluate variables and 
expressions values during debug); Console (console to send 
messages); Registers/Breakpoints (to evaluate the contents of 
registers and to define code breakpoint); and 
Disassembly/Memory (to evaluate the assembly code and 
memory map occupation). The icons associated with the various 
tasks that can be performed in this perspective are shown together 
in Table 2-2. 



Software Development Tools 

2-10 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Table 2-2. Tasks icons and description – Debug perspective. 

Icon Command Description 

 
Create New Create a new project, folder, or file. 

 
Save Save the content of the current editor. Disabled if the editor does not contain 

unsaved changes. 

 
Print Prints the content of the current editor. 

 Build All Compiles all files for all projects in workbench. 

 
Enable/Disable 
Breakpoints 

Enables or disables a breakpoint at the specified location. 

 
Toggle Breakpoint Toggles a breakpoint at a specific address selected in the Edit window. 

 
Change Build 
Configuration 

Lists available build configurations to choose. 

 New C/C++ Project Creates a new C/C++ project. 

 
New C/C++ Source 
Folder 

Creates a source folder within the current project. 

 
New C/C++ Source 
File 

Creates a source file within the current project. 

 
New C/C++ Class Creates a C++ class within the current project. 

 
Debug Active Project Debugs the current active project. 

 Launch TI Debugger Launches the TI specific debugger. 

 
Debug Launches the Debug dialog box. 

 
Run Launches the Run dialog box 

 
External Tools Launches the External Tools dialog box 

 
Open Type Brings up the Open Type selection dialog to open a type in the editor. The Open 

Type selection dialog shows all types existing in the workspace. 

 
Search Launches the C/C++ Search dialog box 

 
Select Working Sets Selects a working set from the list to be the active one. Working sets group 

elements for display in views or for operations on a set of elements. 

 
Next Annotation Selects the next annotation in the resource that is currently active in the editor 

area. Supported in the Java editor. 

 
Previous Annotation Selects the previous annotation in the resource that is currently active in the 

editor area. Supported in the Java editor. 

 
Go to Last Edit 
Location 

Returns editor view to the last line edited, if the file that was last edited was 
closed it will be re-opened. 

 
Back Navigates back through open files. 

 
Forward Navigates forward through open files. 

 

 

Creating a Project 

Select the option File> New > Managed Make C\ASM Project 
(recommended) to create a project. Other project options are 
available, but with the above option, the project process creation is 
more automated. The Figure 2-8 shows the window where the 
option should be selected. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-11 

Figure 2-8. CCE workbench – Project creation process window. 

 

 

After choosing this option, a procedure for the creation of projects 
for the MSP430 family of microcontrollers is provided. The user must 
answer the first question concerning the project’s name. By default, 
all the project files are stored within a folder, with the name of the 
project in the directory chosen for the workspace. The New Project 
window is shown in the Figure 2-9. 

 

Figure 2-9. CCE workbench – New project name window. 

 



Software Development Tools 

2-12 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Afterwards, some additional settings are made to the project, such 
as whether there is any dependency of this project on another. If 
this condition is true, the dependency should be established through 
the window shown in Figure 2-10. 

 

Figure 2-10. CCE workbench – Project dependency window. 

 

 

 

Information indexing functionality is part of the C/C++ Project. It 
uses a parser to create a database of the contents of the project 
files. This feature is used during the information search, the project 
navigation, and in the content assistant. The indexing task is 
performed in the background and reacts to changes in content such 
as: C/C++ project creation or deletion; file creation or deletion; file 
import; content of files changes. 

 

There are three options for setting up the operation of this 
functionality: 

 Without Project contents indexing (No Indexer); 

 Fast C/C++ or, 

 Full Indexer C/C++ Indexer). 

 

These two last options differ mainly in the required processing time 
of the indexing task and results quality. The configuration window of 
this feature is displayed in Figure 2-11. 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-13 

Figure 2-11. CCE workbench – Project indexing window. 

 

 

In the final window displayed during the project’s creation procedure 
(see Figure 2-12), the device with which the project is being 
developed must be chosen. By choosing the device, the appropriate 
linker command file and supporting libraries are selected 
automatically. 

 

Figure 2-12. CCE workbench – Device selection window. 

 

 

The project’s creation can then be finalised by choosing the option 
Finish. At any time, it is possible to go back to previous windows by 
choosing the option Back. 

The next step is to add the source code file to the project. Choose 
File > New > Source File. In this menu the option to create .C 
type file should be selected, as shown in Figure 2-13. 



Software Development Tools 

2-14 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-13. CCE workbench – Source code file creation procedure. 

 

 

The name of the file is then requested in the window as shown in 
Figure 2-14. Do not forget to add the file extension such as 
“myfile.c” so that it is recognized as a C file. 

 

Figure 2-14. CCE workbench – Source code file creation window. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-15 

The project is automatically selected as the default project. Although 
the workspace allows several projects to be opened simultaneously, 
it allows only one of them to be active. To select an active project, 
its name must be selected with the mouse’s right button in C/C++ 
Project view, in order to show the context menu. Then the option 
set as active project must be selected. From here, the expression 
[Active-Debug] will appear. In the context menu there are other 
options to manage the project: add or remove files, import or export 
resources, edit the properties and so on. 

 

Figure 2-15. CCE workbench – Set as an active project window. 

 

 

 

At this point, it is possible to start editing the project’s source code. 
CCE has all the capabilities inherited from the Eclipse edition. Adding 
the file lab1.c, which already exists, is done through the option add 
file to project. This file can be found in Project > add file to 
project, as in the context menu of the view C/C++ Projects. The 
file lab1.c can be removed from the project by simply selecting it in 
the view and selecting the option delete. Note that when the file is 
removed, it will be cleared from the directory. 

 

 

 

 



Software Development Tools 

2-16 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Code Editor 

The text editor included in CCE is a versatile tool and very effective 
for helping with the code editing task. The C/C++ perspective is 
shown in Figure 2-16. 

 

Figure 2-16. CCE workbench – C/C++ perspective. 

 

 

 

The text editor has a set of features that allow speeding up the code 
editing process. An overview of the text editor is shown in Figure 2-
17. 

 

Figure 2-17. CCE workbench – Text editor window. 

 

 

 

On the left hand side of the text editor there is a bar. Several 
colourful icons indicate different options. The text editor identifies a 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-17 

bookmark , a breakpoint , add a task , search , a error 
mark , a warning , and a information . 

 

Code editing is greatly facilitated using features such as search and 
replace. To accomplish this task, the user must select Edit > 
Find/Replace. In addition to the normal features of search and 
replace, the option Search > File allows the use of more elaborate 
expressions. For example, it provides the global replacement in all 
files of a specific directory. The search and replace tasks previously 
performed can be found on the drop-list. 

 

CCE can regularly save the opened files for editing in order to 
prevent losses caused by system crashes. To use this function, 
select Window > Preferences > General > Workspace and 
specify the time interval at which this task should be performed 
automatically. The project can also be saved whenever it goes 
through project build. 

 

The content wizard is a very effective tool to support the writing of 
code. It is possible to automatically insert a code structure model, 
previously defined, as an alternative to writing it out completely (see 
an example in Figure 2-18). To insert a model of a structure, it is 
only necessary to write the first letters in the text editor and then 
press the Ctrl + Space keys in order to display a list of the 
corresponding models. The options in the list can be reduced by 
continuing writing the structure name. The Arrow Up and Arrow 
Down keys can be used to select the desired model and by pressing 
the Enter key to accept the selection. At any time the Esc key 
allows editing to continue without the use of the content wizard. 

 

 

Figure 2-18. CCE workbench – Content wizard. 

 

 

 

The behaviour of this feature can be configured in Window > 
Preferences. In Figure 2-19 shows the configuration page of the 
content wizard. 



Software Development Tools 

2-18 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-19. CCE workbench – Preferences window. 

 

 

 

The search range can be restricted to only the edited file and to the 
files included therein (Search current file and included files), or 
alternatively a search can be in the whole project (Search current 
project). Automatic model insertion is allowed, as long as it is the 
only one at the options list (Insert single proposals 
automatically). The user may also request that the suggestions list 
is presented in alphabetical order (Present proposals in 
alphabetical order). Another aspect that can be configured is 
related to the time (in milliseconds) that the content wizard delays 
to suggest a list (delay), or the duration of the validity of the 
suggestion (Content Assist Parsing timeout). 

 

In addition to the sequence of Ctrl + Space keys, the content 
wizard can also be set automatically when the following characters 
are typed: ".", "->" or "::". 

 

CCE is already provided with a set of models. However, it is possible 
to create new models by opening the models editor. Expand the 
C/C++ perspective in Window > Preferences, and select Editor > 
Templates. The option New must be selected to create a new 
model (see Figure 2-20). 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-19 

Figure 2-20. CCE workbench – New template window. 

 

 

 

A name must be given for the new model. The context in which the 
model is valid should be selected. In the Description field a brief 
description of the model can be added. The model itself is described 
in the Pattern field. To insert a variable, use the Insert Variable 
option. 

 

One way to learn how to create models, or even how to customize 
existing models, can be achieved using the model editing feature 
(see Figure 2-21). To access this feature, the Editor > Templates 
option must be chosen, and is visible after expanding the C/C++ 
perspective in Window > Preferences. 

 

Figure 2-21. CCE workbench – Edit template window. 

 

 

 

The procedures to check on this page are identical to those 
described earlier for building new models. 

 

The CCE supports the following intrinsic functions for the MSP430 
family devices: 

 void __no_operation(void); 

 void __enable_interrupt(void); 



Software Development Tools 

2-20 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 void __disable_interrupt(void); 

 unsigned short __get_interrupt_state(void); 

 void __set_interrupt_state(void); 

 void __op_code(unsigned short); 

 unsigned short __swap_bytes(unsigned short); 

 void __bic_SR_register(unsigned short); 

 void __bis_SR_register(unsigned short); 

 unsigned short __get_SR_register(void); 

 void __bic_SR_register_on_exit(unsigned short); 

 void __bis_SR_register_on_exit(unsigned short); 

 unsigned short __get_SR_register_on_exit(void); 

 void __set_SP_register(unsigned short); 

 unsigned short __get_SP_register(void); 

 unsigned short __bcd_add_short(unsigned short, unsigned 
short); 

 unsigned long __bcd_add_long(unsigned long, unsigned long); 

 void __data20_write_char(unsigned long, unsigned char); 

 void __data20_write_short(unsigned long, unsigned short); 

 void __data20_write_long(unsigned long, unsigned long); 

 unsigned char __data20_read_char(unsigned long); 

 unsigned short __data20_read_short(unsigned long); 

 unsigned long __data20_read_long(unsigned long); 

 

 

File history 

Another of the features included in CCE allows comparisons between 
two files or previous versions of it, using file history stored during 
the work sessions. This feature allows searching and integrating the 
different versions between files. 

 

The file to compare with the local history must be selected in one of 
the navigation views. In the context menu (select the file, mouse 
right button click), choose the Compare With > Local history 
option. In response to this selection, the Compare With Local 
History window is opened. A previous state presented in the Local 
History list can be chosen. The text comparison editor will then be 
open. The navigation between changes is made through the buttons 
Select Next Change and Select Previous Change.  

 

It is possible to recover a resource that has been cleared of the 
workspace. The procedure is as follows: the project to which is to be 
restored to a previous state must be chosen in the navigation view. 
In the context menu, the Restore from Local History... option 
should be chosen. The Restore From Local History window will 
open on the right hand side of the screen. It will display all the files 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-21 

that were previously part of the project. The last file version, or any 
of those previous, can be fully recovered by choosing it in the Local 
History list. The restore will be done after clicking Restore. 

 

The file history feature can be configured according to Project needs. 
In the preferences page General > Workspace > Local History, it 
is possible to establish the number of days that a particular file 
history should remain available and the maximum number of entries 
per file. If the defined value is exceeded, the oldest changes are 
removed in order to provide memory space for the latest. The 
maximum size available to store the file history can also be defined. 
If its size is exceeded, the file history ceases to be performed. 

 

 

Import and Export functionality 

CCE has the capability to import and export different types of 
information. In the context menu of the view C/C++ Projects it is 
possible to activate the import process choosing the option Import. 
This process allows importing resources such as those listed in the 
following figure (Figure 2-22). 

 

 

Figure 2-22. CCE workbench – Import options window. 

 

 

 



Software Development Tools 

2-22 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Following the instructions given by the import wizard: Archive File 
(imports files stored in a compressed file); Import Breakpoints 
(imports a breakpoints scenario previously defined in another or in 
the same project); Existing Project into Workspace (imports a 
project into the actual workspace); File System (imports a file); 
Preferences (imports the CCE configuration preferences), etc. 

 

When the Export option from the context menu is selected, the 
window with the export procedures is displayed, as shown in Figure 
2-23. 

 

Figure 2-23. CCE workbench – Export options window. 

 

 

 

Similar to the import procedure, the resources belonging to a Project 
can be exported: Archive File; Export Breakpoints; File System, 
Preferences, etc… 

 

 

Project Configuration details 

The project configuration defines a set of options to build it. The 
options defined at this level are applied to all the files of the project. 
CCE allows setting different options for building at different stages of 
the project. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-23 

Building a project is a process that generates new features starting 
from the existing ones, or updates them if they already exist. In the 
workspace, different builds for different types of projects, or for 
different stages of development can be invoked. The different build 
types are: 

 An Incremental build uses a build held earlier. Thus, from a 
past build state, it applies the necessary changes to the resources 
that have been changed; 

 A Clean Build ignores all previous builds as well as problems or 
errors that led to them. This type of build will transform all 
resources in accordance with the set of rules in the project build 
configuration. 

 

The project builds can be done in two different ways. The behaviour 
configuration can be defined in Window > Preferences > General 
> Workspace: 

 Automatic builds are always incremental and are always carried 
out throughout the workspace. Whenever there is resource 
alteration, it will initiate a build process. This option may be 
disabled in Window > Preferences > General > Workspace; 

 A manual build is always triggered by the user. This type of 
project build option can be clean or incremental, and can be applied 
on a group of project files, or to the whole workspace. 

 

 

The order in which the build is processed is configurable. If the 
project contains mentions to another project, the CDT (C/C++ 
Development Tools) must first build the initial project. The order in 
which the build takes place may be selected in Window > 
Preferences > General > Workspace > Build Order. 

 

In order to bring the various parts of a project together, it is 
necessary to build the project using a configuration stored in a file. 
There are several build files available, giving different build 
alternatives, so the build file most appropriate to the stage of the 
project must be selected. The CDT can automatically generate build 
files whenever a Managed Make C project or Managed Make 
C++ project is created. Each project is therefore created with two 
default settings: Debug and Release. Other additional settings can 
be configured. Whenever a project is created or an existing project 
is opened, the first configuration in the list of alphabetically sorted 
items, is taken as active. 

 

The project’s compiler and linker definition options are complex. 
Therefore, it is recommended to carefully read the documentation 
related to the compiler and to the assembler/linker.  

After the project’s creation, it must be configured for the appropriate 
compiler, linker and debugging options. By selecting the option 
Properties from the context menu of the view C/C++ Project, the 
project’s configuration window is displayed (Figure 2-24). The 
compiler, linker and debug options can be defined here. 

 



Software Development Tools 

2-24 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-24. CCE workbench – Configuration window. 

 

 

 

The management of build configurations is found under the option 
C/C++ Build, accessed via the Manage button. Through it the 
management features can be accessed (see Figure 2-25). 

 

 

Figure 2-25. CCE workbench – Manage window. 

 

 

 

It is possible to create new build configurations, delete the existing 
ones or modify their names. The name of the modified configuration 
is selected in configuration. 

The C/C++ compiler used by the project is controlled by the 
project’s properties. To view the project properties in the dialog box 
that appears, the page C/C++ Build allows control of the variety of 
configurations, including: 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-25 

 Build Options: specifies the options that affect all project files. 
This dialog page allows selection of the appropriate options, 
including those for compiling and linking. It is also possible to 
specify whether the compiler uses Stop On Error or Keep Going 
On Error. The second option allows the compiler to build all 
projects referenced, even if the current project contains errors. The 
build command specifies the make file to use. 

 

 

The MSP430X devices allow data to be located anywhere in the 20-
bit address space. By enabling this option, the compiler will use 
instructions that need a larger space for their storage. Hence, the 
memory space occupied by the final program will be greater. The 
option (- large_memory_model) is valid only when the project is 
intended as a MSP430X device defined by the compile option (- 
vmspx). The programs for MSP430X processors should be compiled 
with RTS libraries supplied for that purpose (rts430xl.lib and 
rts430xl_eh.lib). 

 

 

The compilation option (- silicon_version) selects the CPU version 
using the 4 least significant processor’s identification digits. If this 
option is not used, the compiler will construct the default code for 
the device. 

 

 

In the process of linking, if all references to the multiplication 
routines of integers are to be replaced by the routines versions that 
use the hardware multiplier option (- use_hw_mpy), the device 
multiplier’s length must be specified. To use the 16-bit hardware 
multiplier, present in most devices, choose the option 16. For 
devices belonging to the F4xx family, which has a 32-bit multiplier 
module, chose the option 32. Finally, for the new 5xx family, which  
also has a 32-bit multiplier, use the F5 option. The default option is 
16-bit hardware multiplier module. 

 

The model used for the initialization of static variables in the C 
program can be specified as: None, Link using ROM autoinitialization 
model (- rom_model), or link using RAM autoinitialization model (- 
ram_model). The C/C++ compiler produces tables of data for 
automatic initialization of global variables. These tables are placed in 
the section identified by .cinit. 

 

The memory space reserved for the passing of arguments by the C 
routines is defined in (--arg_size). The space reserved for the 
dynamic allocation of memory by the program is defined in the 
option (--heap_size). The system stack size used by the program is 
set by the option (--stack_size). See Figure 2-26. 

 

 

 



Software Development Tools 

2-26 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-26. CCE workbench – Memory space configuration. 

 

 

The device for which the project is intended is configured in the 
Properties> TI Building Setting. The window is in every way 
identical to that presented in the project’s creation (Figure 2-27). 

 

Figure 2-27. CCE workbench – Device configuration. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-27 

The project debugging is carried out as specified in the window TI 
Debug Settings. With the Setup tab, using the option connection, 
the method of connecting to the device is established, either parallel 
port or USB port. The Debugger tab can be used to specify whether 
to load the all application (Load program) or just load the project’s 
symbols (Load symbols only). These options can be used to 
choose between loading the entire program, or just the symbols. 
This last option is valid when the development environment cannot 
load the software, such as in the case of the software runs in ROM. 

 

 

Using the Target tab, it is possible to define various aspects related 
to  the device. Thus, it is possible to enable the use of IO functions 
in Enable CIO functions use, or establish the starting point for the 
code execution when a reset occurs or a program is loaded. In the 
MSP430 properties, it is possible to specify the supply voltage and 
the types of breakpoints: software or hardware. The memory 
storage process can also be defined using this tab (Figures 2-28 to 
2-30). 

 

Figure 2-28. CCE workbench – Device options configuration. 

 

 



Software Development Tools 

2-28 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-29. CCE workbench – Device options configuration: TI Debug Settings – Target: 
Generic. 

 

 

Figure 2-30. CCE workbench – Device options configuration: TI Debug Settings – Target: 
MSP430 properties. 

 

 

 

The first time that the project is built, the Project > Build All 
option must be selected. The project build status can be examined in 
the Console window. If there is a problem, the Problems window 
will list them all. After a successful build of the project, the output 
file can be automatically loaded into the device. 

 

Alternatively, a project can be built at the beginning of the debug 
session. The option Debug Active Project will recompile the 
project and launch the debugger, using the device information 
defined in the project options. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-29 

Note that an attempt to update the firmware can occur when the 
debugger is used for the first time, after a software release has been 
installed or a new USB interface is used. 

 

Finally, the active perspective must be switched to the Debug 
perspective. This operation can be carried out with the perspective 
selection buttons located on upper right corner of the workspace 
window, or alternatively, by selecting Window > Open 
Perspective > Debug. 

 

When the project is debugged, the errors are identified on the right 
hand side of the editor as red marks while the problems are 
identified as white marks. A mark is added on the left hand side of 
the editor to the lines that contain an error. When this mark is 
selected, the compiler provides information about the error.  

When the project is made (make option), the resources used can be 
accessed on Properties > C/C++ Build > MSP430 Linker V3.0 
> Linker Output in the option Produce list of input and output 
sections. 

 

 

Introduction to Debug with CCE 

TI’s debugger generates an output file as a result of building the 
project. To debug a project after a build, it is only necessary to 
perform the following steps: 

 Select the project as active, or click Run > Debug Active 

Project or select the icon . The debug perspective is open and it 
is possible to debug the code; 

 This resets and suspends the execution of code on the device. 
Running this command, the content of all status registers is 
modified to the power-up state defaults in accordance with the 

device specifications. The reset command  is enabled by 
> Reset CPU; 

 To start a program execution, once loaded into the device's 
memory, select the option Run > Run (F8), or click on the button 

. Program execution will take place until the program finds a 
breakpoint; 

 The program execution may be suspended at any time by using 
the command Run > Halt, or by clicking the button ; 

 To re-start the execution of the application use the command 

Run > Restart, or click . This action does not modify the 
execution stage of the device. It only restores the PC to the 
application’s starting point loaded into memory; 

 The Set PC to Cursor feature moves the execution of the 
application to a particular point in program memory. The execution 
of this command only modifies the contents of the PC register. No 
instruction will be executed in order to reach this point. The 
command can be found in the context menu of the C/C++ 
perspective in Set PC to Cursor; 



Software Development Tools 

2-30 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 There are several different ways to run the code until a specific 
point: 

 Use a breakpoint to specify that when this point is reached 
the program execution must be halted; 

 Use the command Run > Run to Line, or click on [], available 
in the context menu of C/C++ perspective, to run the code 
until the specified location; 

 A special case is to run the code until the main function is 
reached . This feature enables a temporary breakpoint at 
the beginning of the main routine and starts the execution of 
the application. The breakpoint is removed and execution is 
suspended once the location is reached. This command 
provides a convenient method of starting C applications. 

 The stepping commands execute each instruction step-by-step. 
When a function is called, it is possible to move the execution to the 
function (step into) or perform the function and pass to the 
following instruction (step over). Once inside a function, the user 
can continue to execute each instruction individually, or run the rest 
of the function code until it ends (step out); 

 The execution of the next instruction is performed through Run 
> Step Into (F5), or by clicking the icon . The next instruction is 
executed when this command is used. If the next statement is a 
function call, the debugger passes the execution to the first 
instruction of the function, and suspends execution at this point; 

 When the execution is on top of a function call, the step over 
operation can be enabled by selecting the Run > Step Over (F6) or 
by clicking the icon . The debugger then performs the function 
and then suspends execution when it returns. If it finds a 
breakpoint somewhere in the function, the execution may be 
suspended at this point. If the Step Over is executed on an 
instruction that is not a function call, the debugger response will be 
the same as Step Into command; 

 If the application is being executed inside a function in response 
to a function call, it is possible to force the return of this function 
through the command Run > Step Return (F7), or by clicking the 
button . The debugger will execute the rest of the function code 
and return the calling point. The execution will be suspended at this 
point; 

 The command Terminate  allows finishing of the application’s 
debugging. 

 

 

All the MSP430 family of devices have an advanced code debugging 
module (EEM - Enhanced Emulation Module). This module allows 
CCE to monitor the device’s operation in a non-intrusive way, and 
without using any resources. Thus, it facilitates the development of 
the application through the verification of its operation. Depending 
on the device, the EEM module implementations differ. Generally, 
the following features are present: 

 Up to 8 hardware breakpoints; 

 Operates in all range of frequencies and clock sources; 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-31 

 Ability to set more complex breakpoints through association of 
triggers; 

 Suspend the execution of the application on the occurrence of a 
program or data bus access; 

 Access protection to protected data and program memory areas; 

 All timers and counters can be inhibited (depending on the 
device); 

 Inhibits PWM signals generation on the occurrence of the 
application’s suspension; 

 Allows real-time execution of the applications in the modes: 
single step, step into; run to cursor; step over; 

 Supports all low power modes. 

 

The Figure 2-31 represents a simplified block diagram of one of the 
most complete implementations of EEM module. 

 

Figure 2-31. CCE workbench – EEM module block diagram. 

 

 

Events within the device can generate triggers. These triggers can 
be classified as the event that causes them to: 

 Access to addressing and data buses; 

 Access to CPU registers. 

 

Depending on the device, it is possible to associate two or more of 
these triggers, in order to build complex event detectors that help 
the detection of incorrect operation of applications. Generally, a 



Software Development Tools 

2-32 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

trigger can be used to control the following functional blocks of the 
EEM: breakpoints, trace, and sequencer. The activation of a trigger 
is conditioned to an access to the data and program busses or 
access to CPU registers. 

 

A breakpoint is set through one or more triggers. Through these it is 
possible to establish the following types of breakpoints: 

 Address breakpoint; 

 Data breakpoint; 

 Register Breakpoint; 

 Mask Register; 

 Range breakpoint.  

 

A simple breakpoint is defined using a trigger associated with an 
instruction read operation by the CPU. It is necessary to specify the 
instruction address where the trigger should occur. 

 

By combining two triggers, it is possible to establish a Data 
Breakpoint. While one of the triggers is used to detect the 
occurrence of a particular address on the address bus, the other is 
used to detect the occurrence of a read or write operation at that 
address. It is possible to force the suspension of the execution of the 
application to only occur when there is a match between the value 
written or read and the one specified. 

 

When the application is written in assembly language, it is 
sometimes necessary to analyse the accesses to some of the 
microcontroller’s registers. A Register Break Point uses a trigger to 
detect the access to a register. A Mask Register should be used 
when the register is composed of several fields, since it can apply a 
mask and test specific bits only. 

 

An application in certain operating conditions may occasionally try to 
access to invalid or protected memory regions. Using a range 
breakpoint, it is possible to detect the occurrence of these events. It 
is thus possible to suspend the execution of the application on the 
occurrence of: 

 Write to flash; 

 Invalid access to memory; 

 Access to an instruction in invalid program space; 

 Access to data in invalid data space. 

The hardware breakpoint properties are established through 
different fields. The action to make when all triggers are true can be 
defined in the Action option of the Hardware Configuration field. One 
of the following options can be chosen: 

 Halt; 

 Trigger storage; 

 Halt and trigger storage. 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-33 

 

In the trigger field, specify through various options, the check 
condition for a true trigger. The trigger can be: 

 Memory Address bus; 

 Memory Data bus; 

 Register Write. 

 

Depending on the type of trigger chosen, the options to specify may 
be: 

 

 Memory Address Bus: 

 Location: Address of the program code line (e.g.: aes.c, line 
30) or data memory address (e.g.: &a); 

 Mask: the information introduced in this field is used in a 
logic AND operation with the contents; 

 Operator: Logic operation with the data (==, <=, >=, !=); 

 Access: Memory access type: 

o Instruction fetch; 

o Instruction fetch and hold trigger; 

o No instruction fetch; 

o Don’t care; 

o No Instruction fetch and read; 

o No instruction fetch and write; 

o Read; 

o Write; 

o No instruction fetch and no DMA access; 

o DMA access (read or write); 

o No DMA access; 

o Write and no DMA access; 

o No instruction fetch and read and no DMA access; 

o Read and no DMA access; 

o Read and DMA access; 

o Write and DMA access. 



Software Development Tools 

2-34 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 Memory Data Bus: 

 Value: A mask and compare will be applied to the data on the 
bus and to value added here, to determine if the trigger is 
true; 

 Mask: The information introduced in this field is used in a 
logic AND operation with the contents; 

 Operator: Logic operation with the data (==, <=, >=, !=); 

 Access: Memory access type (on Memory Address Bus). 

 

 Miscellaneous: 

 Group: Group to which the breakpoint belongs; 

 Name: Name assigned to the breakpoint. 

 

 

 

There is a predefined breakpoint that can be set to: 

 Break in program range: Generates a suspension of the 
execution of the application in a range of program memory 
addresses. It uses two triggers that define the range of addresses; 

 Break in DMA transfer: Generates the suspension of the 
execution of the application, whenever a DMA read or write 
operation at the specified program address occurs. This breakpoint 
is implemented using only one trigger; 

 Break in DMA transfer range: Generates the suspension of the 
execution of the application, whenever a DMA read or write 
operation at the specified address range occurs. This breakpoint is 
implemented using two triggers; 

 Break in stack overflow: Generates the suspension of the 
execution of the application whenever the SP register value 
assumes a lower value than the specified one. This breakpoint is 
implemented using only one trigger; 

 Breakpoint: Generates the suspension of the execution of the 
application whenever the memory bus address takes the value 
specified. This breakpoint is implemented using only one trigger; 

 Hardware breakpoint: Generates the suspension of the 
execution of the application whenever the memory bus address 
takes the value specified. This breakpoint is implemented using only 
one trigger; 

 Watch on data address range: Generates a suspension of the 
execution of the application whenever the specified data memory 
addresses range is accessed. It uses two triggers to define the 
range of addresses; 

 Watchpoint: Generates the suspension of the execution of the 
application whenever a specified data memory address is accessed. 
It uses a trigger to generate the watchpoint; 

 Watchpoint with data: Generates the suspension of the 
execution of the application whenever a specified data memory 
address is accessed and the value of the address is equal to 
specified value. Two triggers are used to implement this watch. 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-35 

In order to verify the code execution, it is necessary to use support 
tools to complete this task. CCE provides a set of features with this 
aim. 

 

A breakpoint suspends the execution of the application in order to 
check the status of the system. The activation, deactivation and 
configuration of these breakpoints are possible through CCE. 

 

There are two types of breakpoints: software and hardware. While 
the first type of breakpoint is implemented through the insertion of 
code in the application, in a way invisible to the user, the second 
type is implemented internally by the device’s hardware. Although 
the software breakpoints are not limited, the hardware breakpoints, 
depending on the device, have a limit of 2 to 4 breakpoints. 

 

Thus, an active breakpoint is identified by the symbol  in the 
sidebar of the code window. The symbol  will identify a hardware 
breakpoint. A disabled breakpoint will be identified by the symbol  

. Note that the CCE will by preference use hardware breakpoints 
and then software breakpoints. 

 

Placing the cursor at a particular code line and then using the 

command  will activate a breakpoint. The command  enables 
or disables a breakpoint at the cursor’s location. An alternative way 
is to use the context menu with the option toggle breakpoint.  

 

 

The application debugging process often requires access to the 
actual values of the variables. The Variable view allows the user to 
monitor the application’s local and global variables. In this view, the 
CCE automatically displays the name and contents of the local 
variables of the function that is being executed. It is also possible to 
add the name of other local variables or global variables to be 
monitored in the debugging process. 

 

The values of the local variables can be modified. The values of the 
variables that have been changed during the last instruction 
execution are displayed in red. However, the variable names cannot 
be modified. It is allowed to change the representation format of the 
variable: Natural, decimal or hexadecimal. The variables that 
contain more than one element, such as arrays, structures, or 
pointers are presented with a (+) sign immediately after the name. 
This signal means that the variable has elements that can be seen 
through the expansion of the (+) sign, passing this signal (-), which 
allows the structure to be collapsed. 

 

The local variables cannot be added or removed from the Variables 
view. However, global variables can be added or removed. The local 
variables can be disabled in order to freeze their value as the 
program is executed. 



Software Development Tools 

2-36 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

The Expressions view accepts the entry of expressions to evaluate 
them as the program is executed. These expressions are written in 
syntax similar to that used by the C programming language. 

 

The commands accessible through the context menu can: 

 Specify the number of elements of the array to be displayed in 
the Expression view: The command Display as Array can be used 
to display the elements of any pointer or array. The command 
Remove Array Expansion is used to return an expanded variable 
back to its original state; 

 Change value: Changes the content of the variable; 

 Cast to type: Performs a promotion (cast) for a different type of 
variable; 

 Restore Original Type: Restores the expression for the original 
data type. 

 

 

The Memory window of the Debug perspective allows the user to 
monitor and modify the device’s memory. The memory is provided 
with a list of Memory Monitors. Each monitor represents a section 
of memory specified by its named location base address. Each 
memory monitor may be represented in different data formats 
(memory renderings). The debugger allows four different types of 
rendering: 

 Hex (default); 

 Ascii; 

 Integer signed; 

 Unsigned integer. 

 

 

The Memory view has two panels: 

 Memory Monitors; 

 Memory Renderings. 

 

The first panel displays the memory monitors list added to the 
debug session. The second panel is controlled by selection in the 
first one and consists of tabs that display the rendering. This panel 
can be configured to display both renderings. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-37 

Expanding CCE capabilities with Eclipse JDT and PDE 

The CCE can be expanded beyond its default capabilities. There is a 
set of Eclipse plug-ins that can be used. Features can be installed to 
allow Java programming and the development of Eclipse plug-ins. 
These updates should be made only where these features are 
required. Alternatively, CCE and Eclipse can always co-exist in the 
same system, one CCE installation and other from Eclipse. 

The CCE is based on the Eclipse’s release 3.2. Hence, all the plug-ins 
that are installed must be compatible with this version. The 
installation of plug-ins is extremely easy. Just unpack the releases to 
the correct directories. 

 

 

2.2.3 Laboratory 1: “Hello World” Beginner’s project 

The following laboratories provide an overview of the features of 
CCE. 

 

 

Lab1.1 – Introduction to the application debug 

 

Project files 

 C source files: Chapter 2 > Lab1_CCE > Lab1a.c 

 

 

Overview 

This laboratory shows how to use the basic features of CCE to allow 
applications to be built and debugged. All the steps needed to create 
a project, including its configuration, as described above, are 
illustrated using an example. The application is downloaded to the 
device after the project has been successfully compiled and built. 
Several debugging techniques are used, such as: step-by-step 
execution, analysis of the contents of local and global variables, 
resetting the device, etc. 

 

 

Step 1: Creation of the project 

A project is to be developed that sends a set of numbers 
corresponding to the Fibonacci series to the CCE console. The 
Fibonacci series can be recursively defined by the expression: 

 














casesothernFnF

nif
nif

nF
)2()1(

;1,1
;0,0

)(  

 



Software Development Tools 

2-38 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

This sequence was originally used by Leonardo of Pisa (also known 
as Fibonacci, circa 1200 A.D.) to describe the growth of a rabbit 
population. With this formula, the sequence of Fibonacci numbers 
can be determined and answer to the question "how many rabbits 
were born in the sixth month?", in which the correct answer is, "in 
the sixth month 8 rabbits were born." 

The algorithm that solves this problem is simple to develop. 
Beginning with the first two values of the sequence, the remaining 
values are successively calculated.  

The sequence of actions to build the project is described below. 

 

 A. Creating the project 

 Create a new project in Project > New Managed C/ASM 
Project; 

 In project name write Project1; 

 Accept the default settings in Select a type of project; 

 There should not be any dependency on other existing 
projects; 

 In Device Selection Page, choose in the option Device 
Variant, the device MSP430FG4618; 

 Automatically, the CCE will select the appropriate debug file 
(lnk_msp430fg4618.cmd) and the support library 
(rts430x.lib); 

 Complete the creation of the project by clicking the button 
finish. 

 

 B. Add a source code file 

 The project created is visible in the C/C++ Projects window 
using the C/C++ perspective; 

 Add a file to the project where the source code will be 
written, by selecting File > New > Source File; 

 The file created should be named Lab1a.c; 

 Write the code below that solves the problem: 

 

//************************************************************************* 
// Basic debug introduction using CCE. Application conditional execution 
//************************************************************************* 
#include <msp430xG46x.h> 
#include <stdio.h> 
//************************************************************************* 
// Global data 
//************************************************************************* 
unsigned int a, b, i; 
//************************************************************************* 
// Main routine 
//************************************************************************* 
void main (void) 
{      
// Stop watch dog 
  WDTCTL = WDTPW + WDTHOLD;                 // Stop WDT 
 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-39 

// Global data initialization 
  a = 0; 
  b = 1; 
 
// First message to CIO   
  printf("Lab 1 - Introduction to Debug with CCE V3\n"); 
  printf("Fibonacci sequence computation\n"); 
  printf("Number n = 0 - %d\n", a); 
  printf("Number n = 1 - %d\n", b); 
 
for(i = 0; i < 7; i++){      
  int c; 
   
  c = a + b; 
  a = b; 
  b = c; 
  printf("Number n = %d - %d\n", i, c); 
 }  

} 

 

 

 The code starts with a descriptive header of the contents of the 
file and other essential aspects, such as: author, date and version. 
Other contents may be added; 

 Next, the file msp430xG46xx.h is included. It contains the 
definitions necessary for programming the device; 

 The global variables a, b are defined as unsigned integer, and 
are used to store the Fibonacci numbers of order N and N-1, 
respectively. These variables are initialized with the values {0, 1}, 
respectively; 

 The control variable i is used to control the number of iterations 
used in the sequence calculation; 

 The first message is sent to the console using the instruction 
printf; 

 The message consists of a sequence of text lines, so it uses the 
escape character \n, causing a change of line in the console; 

 Within the code structure, the numbers of the Fibonacci 
sequence are calculated successively using the above mathematical 
expression; 

 Finally, the code ends with the directive _NOP(), corresponding 
to the execution of an operation, which has no effect other than to 
take execution time. 

 

 

Step 2. Configuration 

The project must be configured after writing the code. 

 Go to Project > Properties and select the field MSP430 
Linker 3.0 Runtime Environment in the option C/C++ Build; 

 At this location, define the size of the stack using the directive 
Specify heap Size for C/C++ dynamic memory allocation 
(--heap_size) with the value 400 and in set C system stack size 
(--stack_size) with the value 200; 



Software Development Tools 

2-40 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 Since the printf library function is used, the type of 
implementation in use must be specified; 

 In MSP430 Compiler V3.0 on the option Library Function 
Assumption choose to full; 

 Finally, confirm in the Run Time Model Options if the silicon 
version (--silicon_version) is defined as mspx, because the 
application runs on an extended memory device. 

 

 

In the TI Debug Settings field, specify the connection type 
between the PC and hardware: 

 Choose the link TI MSP430 USB1; 

 At Debugger tab confirm the selection of options Connect to 
exact CPU and load Program in loading options; 

 At Target tab ensure through Program load options that the 
use of the IO console CIO is active in Enable CIO Function Use 
and that the program written to the device is verified using 
Perform Verification During Program Load; 

 Ensure that in Auto run options, the program begins to run in 
the main routine. Select the two options On the Load or Restart 
Program and On reset. 

 

 

Step 3. Compilation 

Once the configuration has been set up, the project must be 
compiled through the option Project > Build Active Project. 

 

 

Step 4. Project debug 

To debug the code it is necessary to download it to the device 
through the function Run > Debug Active Project. 

The CCE will automatically switch to the Debug perspective; 

The following sequence of tasks will allow verification of the 
operation of the application, while utilizing the CCE features for code 
debugging. 

 

 A. Observe the contents of variables and expressions 

 In the Variables window press the icon  and mark the 
global variables a, b, and i to highlight them; 

 The contents of these variables can be monitored 
immediately; 

 As the program has not yet begun to run, the values not yet 
valid; 

 In the Expressions window, add an expression that the 
debug will automatically calculate through the debugging 
process. For example, using the context menu option , the 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-41 

global variables addresses can be monitored through the 
expressions &a, &b and &i; 

 Request the number of Fibonacci numbers remaining to 
calculate using the expression 7-i. 

 

 B. Run the code step-by-step 

 Execute the application step-by-step; 

 By pressing the key F6, the first instruction is executed; 

 The program’s status indicator will indicate the next 
instruction to be executed and will stop the watchdog timer; 

 Note that after the execution of the lines that changes the 
values of variables a and b, the Variables window displays 
the new values. 

 

 Observe messages being sent to the CIO console; 

 Display the CIO console pressing the icon  , choosing  
Console 3; 

 To ensure that it remains visible, press the icon ; 

 Later, as the application runs step-by-step (F6), the 
messages will appear in the CIO console: 

 

Lab 1 - Introduction to Debug with CCE V3 
Fibonacci sequence computation 
Number n = 0 - 0 

Number n = 1 - 1 

 

 At the end of this sequence of instructions, the variables 
should have the following values of a = 0, b = 1. 

 

 

 C. Run the application until a specific code line 

 Put the cursor on line of code 48, corresponding to: 
printf("Number n = %d - %d\n", i, c) 

 

 Select the command Run to line execution, to lead the 
program execution status indicator to that line; 

 The sequence of instructions that led up to this point has 
been executed, modifying the program variables. 

 The local variable c was automatically added to the 
Variables window. 

 



Software Development Tools 

2-42 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 

 D. Restart the debugging task 

 Once the application has finished running, or whenever it is 
desired to  repeat the code debug, it is possible to restart the 
device; 

 Choose the reset CPU option in Run > Reset; 

 Note that the memory of the processor remains unchanged; 

 Re-run the application. Place the cursor at the code line 36 
and order it to run the program until the cursor position; 

 Using the Variables window, change the contents of 
variables a and b to 3 and 4, respectively; 

 Execute the application until line of code 52; 

 Observe the new sequence of values for the Fibonacci 
numbers. 

 

 

 E. Include the project in the workspace 

 The project built during this laboratory can be found in code 
folder Lab1. To include it in the workspace, choose the 
project through Project > Open Existing Project; 

 Perform this laboratory starting at point B. 

 

 

 

Lab1.2 – Using breakpoint to save and load data to and from file 

 

Project files 

 C source files: Chapter 2 > Lab1_CCE > Lab1a.c 

 

Overview 

The debugging of an application can benefit from the ability to 
exchange information with files on disk. This laboratory will exploit 
this capability using the project developed in Lab1. Now, the two 
initial values required to determine the sequence of Fibonacci 
numbers are collected from a data file. The numbers are 
successively calculated and are also stored in a data file. 

 

 

Step 1. Include the project in the workspace 

This task is identical to that carried out Step E of Lab 1.1. Compile 
the laboratory with the file Lab1a.c. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-43 

Step 2. Creating input and output data files 

The code debugger can access binary files in COFF (Common Object 
File Format) format or files in text format. The latter format is used 
in this laboratory. This file has a header line followed by several 
lines with one value per line. The data can be stored in the following 
formats: Hexadecimal, integer, long, float. The information 
contained in the header line has the following syntax: 

 

MagicNumber Format InitialAddress PageNumber Length 

 

where:  

 MagicNumber:  constant value equal to 1651; 

 Format: Value between 1 and 4, indicating the format used in 
file samples; 

 InitialAddress: Address of the start of the data block; 

 PageNumber: Page number from which the data block was 
obtained; 

 Length: Number of samples in the block. 

 

All the numbers represented in the header are in hexadecimal 
format. 

 

 

 A. Create the data files 

 The CCE can create this file through File > New > File; 

 Include the name DataIn_a.txt on file dialog box to create 
the file containing the data to be allocated to the variable a: 

1651 1 135c 0 2 

2 

 

 Repeat the process for the data file of variable b: 

1651 1 135c 0 2 

3 

 

 Note that CCE expects that the values read are represented 
using 5 values, each with 4 digits. If the data values are 
represented in hexadecimal, then CCE expects the first digit 
to be zero. 

 

 

 B. Associate the input data files to the project 

 The project built during this laboratory can be found in the 
code folder Lab1 and can be added to the project using two 
different procedures: 



Software Development Tools 

2-44 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

o Copy the file to the project directory: This solution 
has the disadvantage of copying the file to the 
directory of the project. It loses any freedom to 
control the file contents if it is used in several 
projects because there can be multiple sources of 
that file; 

o Link the file to the project: This option allows the file 
to be stored in an appropriate location and connect it 
with the project without copying it to the project 
directory. The same file can be used on different 
projects, and a change to its content will be observed 
by all projects that use it. 

 In this example, the files are copied into the project 
directory. 

 

 

 

Step 3. Add breakpoints to the application and associate 
them with files 

The easiest way to set a breakpoint is through the Breakpoint 
window. This window allows the choice of action, including the 
reading or writing data on file. Choosing one of these actions allows 
the linking of a file to the breakpoint. 

 

 

 A. Activate the Breakpoint window 

 If the breakpoint window is not already open, do so in 
Window > Show View > Breakpoints. 

 

 

 B. Create Breakpoints 

 Create two breakpoints, one at line of code 36 and another at 
line of code 37; 

 Click on the line of code and add the breakpoint using the left 
mouse button, in order to provide access to the C editor 
content menu; 

 In this menu choose the option Toggle Breakpoint. 

 

 

 C. Setting the Breakpoint 

 In Breakpoint window, after selecting the line of code 28 
breakpoint, edit its properties; 

 Choose the option Action and open the list of options to 
choose Read Data from File. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-45 

 

 D. Filling the Breakpoint options 

 It is required to fill out the following fields: 

o File: location and file name from where the data will 
be read; 

o Wrap around: mark this selection to start reading at 
the beginning of the file once it reaches the end; 

o Start Address: Location to send the data read from 
the file. This address can be changed, since it is 
always re-evaluated at the beginning of each read; 

o Length: The length of memory. This parameter can 
also be modified by the debug process. 

 

 To set the Breakpoint associated with the line of code 36, 
configure: 

o File: DataIn_a.txt 

o Wrap around: Yes 

o Start Address: &a 

o Length: 1 

o Name: Breakpoint Load a 

 

 To set the Breakpoint associated with the line of code 37, 
configure: 

o File: DataIn_b.txt 

o Wrap around: Yes 

o Start Address: &b 

o Length: 1 

o Name: Breakpoint Load b 

 

 For the file used to write the values of variable c (Fibonacci 
series of numbers), create a breakpoint to associate the file 
to line of code 48; 

 

 Follow the same steps for setting the previous breakpoint, 
edit its properties and choose Write Date to File in the 
option Action; 

 

 The data values to configure are: 

o File: DataOut_c.txt 

o Format: Hex 

o Start Address: &b 

o Length: 1 

o Name: Breakpoint Write c 



Software Development Tools 

2-46 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 

 Finally, add a breakpoint at line 52 named Final Point, to 
suspend the execution of the application at the end of the 
calculation of the Fibonacci numbers. 

 

 

Step 4. Save file and load files with the breakpoint 
information 

The breakpoints created in this laboratory can be written and read. 
This feature is useful in order to reuse the breakpoint configuration. 

 

 A. Export the breakpoints to file 

 After creating and setting up the breakpoints, as described in 
the previous steps, the breakpoint information can be saved 
by exporting it to a file; 

 Go to File > Export; 

 In the General item choose the option Breakpoints; 

 All breakpoints defined in debugger will be present. Select 
them all; 

 Specify the file name to make, name it 
Lab1_breakpoint.bkpt. 

 

 

 B. Import breakpoints from the file 

 To import the breakpoint use the Import feature; 

 Indicate the file name and select the two options to 
automatically create and update the breakpoint imported. 

 

 

Step 5. Code debugging: 

The data file exchange operation can be verified during the debug 
process. To debug the code, perform the following tasks: 

 Verify that the execution state indicator points to line of code 

27. If this does not happen, order a restart  of the device; 

 Verify that the CIO console is clean and visible. If these 
conditions are not fulfilled, using the context menu, order its 
cleaning  and activate the icon  to turn the console to always 
visible; 

 Execute the application step-by-step  until the variables a and 
b are initialized. Verify that in the Variables window that they take 
the values 0 and 1, respectively; 

 When the code line 36 is pointed to (before being executed), the 
variable a takes the value 2, read from the respective data file. The 
same thing will happen when it reaches code line 29, since when it 
is pointed to, it leads to the execution of breakpoint Load B, 
resulting in reading the value 3 for the variable b; 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-47 

 The Fibonacci number calculation process, using these initial 
conditions, is initiated within the computing cycle. Whenever the 
code line is reached, the breakpoint Save c runs. Successive data 
values are stored in the data file associated with the breakpoint. 
Order the execution of the application using the command run . 
The execution takes place until the breakpoint Final Point is 
reached. In this execution state, the application already determined 
and stored all the Fibonacci numbers in the file; 

 Switching to the C/C++ perspective, in the C/C++ Projects 
window, it is now possible to see that the data file DataOut_c has 
been created. Edit this file to see the results. Note that the 
calculation process returned the sequence: 2, 3, 5, 8, 13, 21, 34, 
55, 89. 

 

 

Lab1.3 - Advanced breakpoints with triggers 

 

Project files 

 C source files: Chapter 2 > Lab1_CCE > Lab1b.c 

 

 

Overview 

The use of breakpoints has been demonstrated in the previous 
laboratory, either to run the code until a certain point or to identify 
access to the data in the files, under specific conditions. The correct 
use of these features assists the debugging of complex applications. 
This laboratory shows how breakpoints can be set, with the 
appropriate use of triggers. We will continue to use the previous 
example, because only a small change will be introduced. The 
breakpoints will be configured to be active under special conditions. 

 

Step 1: Preliminary conditions 

The change introduced in the source code of this project is the 
addition of a data array to store the calculated results. The file 
Lab1b.c incorporates this modification. Compile the project with this 
new source file, and debug it. 

There is a wide range of available triggers that can generate an 
appropriate response by the debugger. To understand the logic 
associated with the configuration of these features, let us perform 
some actions for that purpose. 

 Remove all existing breakpoints by selecting the icon  in the 
Breakpoint window. 

 

 

 A. Read access to a variable 

 Set up a new breakpoint using the icon  in the 
Breakpoint window; 



Software Development Tools 

2-48 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 Chose the option watchpoint; 

 Introduce the following configuration: 

o Location: &a 

o Access type: Read 

 Execute the application with Run; 

 Note that at the first access reading of the variable a, the 
application execution is suspended. 

 

 

 B. Access to a variable using a condition 

 Specify and provide that the suspension should only occur if a 
particular value is read; 

 Remove the last breakpoint and implement the following 
actions: 

 Set up a new breakpoint using the icon  in the 
Breakpoint window; 

 Chose the option watchpoint with Data; 

 Introduce the following configuration: 

o Location: &a 

o Data value: 5 

o Access type: Read 

 Execute the application with Run; 

 Note that at the first access, the variable a is equal to 5 and 
the application execution is suspended. 

 

 

Lab1.4 - Memory and usage Register 

 

Project files 

 C source files: Chapter 2 > Lab1_CCE > Lab1c.c 

 

 

Overview 

The assessment of memory resources used by the application is 
crucial to the development of applications. This laboratory illustrates 
how to access to the device’s memory and registers. The use of the 
system stack by C/C++ is described. The verification of this process 
is done through an example. For this, the translation from the 
C/C++ source code to assembly language is observed and some of 
the tools used to analyze programs in assembly language are 
discussed briefly. 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-49 

 

Step 1. Using the stack with C/C++ 

The C/C++ compiler uses a stack of data in memory to: 

 Store local variables; 

 Pass necessary arguments to execute a task, 

 Safeguard the register contents for subsequent replacement. 

 

The system stack grows towards the lower value addresses. 

Its management is done using the device’s register R1 (commonly 
referred as the Stack Pointer - SP), which is used to point to the 
available memory address. 

The size of the system stack is specified in the process of building 
the application, during which the overall symbol _stack_size is 
created and given the value (in bytes) of the stack size. The default 
value is 128 bytes. This value can be modified during the project 
build by using the option _stack_size. 

 

As for MSP430X device, the size of registers is greater, therefore 
saving and restoring their contents requires the use of a 32-bit stack 
(2 words) operation, for each register to be saved. To reuse code 
originally written for 16-bit devices, it is necessary to increase the 
system stack size. 

 

At the application’s boot time, the SP points to the address at the 
top of the system stack. This address is the first location after the 
end of the section reserved for the system stack. This area is 
defined only at the time of building the application. Before executing 
a function, the C/C++ automatically decreases the SP to reserve the 
space needed for the return address and local variables. The SP is 
increased when it returns from the function, the system stack being 
restored to a state similar to the one it had before the function 
executed. 

 

By convention, some registers are associated with specific 
operations in the C/C++ environment. To interface applications 
written in C/C++ with code written in assembly language, it is 
necessary to have a thorough understanding of how the registers 
are used. A convention stipulates how the registers are used and 
how their contents are preserved during functions calls. Table 2-3 
shows the registers are affected. 

 



Software Development Tools 

2-50 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 

Table 2-3. Registers description. 

Register type Description 
Argument register Passes arguments during a function call 

Return register Holds the return value from a function call 
Expression register Holds a value 
Argument pointer Used as a base value from which a function’s parameters 

(incoming arguments) are accessed 
Stack pointer Holds the address of the top of the software stack 

Program counter Contains the current address of code being executed 

 

 

Table 2-4 shows the use of each register by the debugger. Also 
described are how the values are preserved during function calls. 

 

 

Table 2-4. Register usage and preservation. 

Register Alias Usage Preserved by function(1) 
R0 PC Program counter N/A 
R1 SP Stack pointer N/A (2) 
R2 SR Status register N/A 
R3  Constant generator N/A 

R4 – R10  Expression register Child 
R11  Expression register Parent 
R12  Expression register, Argument pointer, 

return register 
Parent 

R13  Expression register, Argument pointer, 
return register 

Parent 

R14  Expression register, Argument pointer Parent 
R15  Expression register, Argument pointer Parent 

(1) The parent function refers to function making the function call. The child function 
refers to function being called. 
(2) The SP is preserved by the convention that everything pushed on the stack is popped 
before returning. 

 

Any function (Parent function) that calls or is called by another 
function (Child function) must follow a set of rules. Any violation of 
these rules may destabilise the C/C++ environment and cause the 
application to fail. 

 

The terminology used in the description of how a function call is 
processed by the C/C++ is: 

 Argument block: The part of the local frame used to pass 
arguments to other functions. The arguments are passed to the 
functions by moving them to this data block, instead of placing 
them on the system stack. A local frame and the Argument block 
are reserved simultaneously; 

 Register save area: Part of the local frame used to store the 
register’s contents when the application invokes a function, allowing 
it to be restored on return from the call; 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-51 

 Save-on-call register: Registers R11-R15. The function 
invoked does not preserve the values of these registers, so the 
function that performs the invocation must save their contents and 
restore them, if necessary; 

 Save-on-entry registers: Registers R4-R10. It is the 
responsibility of the function to preserve the values of these 
registers. If the function invoked modifies the contents of these 
registers, its contents need to be stored and restored when the 
function returns. 

 

Figure 2-32 illustrates a typical function invocation. Arguments to 
the function are provided, and it uses local variables. It invokes, in 
turn, another function. The first four arguments are passed to the 
function using the registers R12-R15. This example also shows the 
space reserved for a local frame and an argument block used to 
invoke another function. Functions that do not have local variables 
and therefore do not require an argument block, do not reserve 
space for the local frame. 

 

Figure 2-32. Typical function invocation. 

 

 

A function (known as the parent) performs the following tasks when 
it invokes another function (referred to as the child). The parent 
function is responsible for the preservation of any save-on-call 
registers used by the child function. If the child function returns a 
structure, the parent function reserves space for this structure and 
passes the address of that space to the child function as the first 
argument. The parent function locates the argument to pass to the 
child function in register R12-R15, in that order. The remaining 



Software Development Tools 

2-52 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

arguments are placed in the argument block, in reverse order. The 
child function begins to execute.  

 

 

Before starting to execute the task assigned to it, the child function 
should take the following actions. 

If the child function is to be invoked with a variable number of 
arguments, the parent function locates the arguments on the stack 
if the following criteria are met: 

 The argument includes or follows the last argument declared; 

 The argument is passed in a register. 

 

The child function locates the contents of all registers that are 
modified by it and that must be restored immediately after its 
return. Usually, these are the save-on-entry registers (R4-R10). 

 

If the function services an interrupt, there may be additional 
requirements to preserve the contents of other registers. The 
functions reserve space for local variables and for the argument 
block by performing a subtraction from the SP. This constant is 
determined from the sum of the size of all local variables and the 
maximum value that is necessary to reserve storage for all the 
parameters in each call that this function. Then, the child function 
executes the code associated with it. 

 

If this function returns a value, it is placed in R12 (or R12 and R13). 
If the function returns a structure, it will be copied to the memory 
block pointed by the argument R12. 

 

If the function does not use the value returned, R12 is reset to 
0x00h. The child function frees space for the local frame and forms 
the argument block by adding the constant determined previously. 
Then follows the restore of all saved registers by the child function. 
The child function returns to the calling point. 

 

This brief introduction serves to illustrate an advanced analysis of 
the application developed. In the following items, the tasks for the 
process described above are analysed using the tools provided by 
CCE. 

 

 

Step 2. Include the project in the workspace 

Start the task by including the file Lab1c.c in the compilation 
process. Alternatively, the project may be created from the 
beginning, following the steps already described in previous 
laboratories. The source code may be imported or written from 
scratch to a new file.  

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-53 

The task performed by this application is similar to that performed 
earlier. In this case, the determination of the new number of the 
Fibonacci sequence is performed by a function. This function 
receives the addresses of the variables a and b, and returns the 
result of the calculation. 

 

 

Step 3. Program and assembly observation 

Once the compiling process is started, CCE changes to the Debug 
perspective. It is possible to view the assembly code in the 
Disassembly window resulting from the compilation of the 
application code written in C. This is shown in Figure 2-33. 

 

Figure 2-33. Disassembly window. 

 

 

 

This window can display the contents in two ways. Through the icon 
 it is possible to switch between them. One shows the assembly 

code, while the other interleaves assembly code lines with the C 
source code line that generates them. 

 

For each assembly instruction, the window displays the disassembly 
instruction, the memory address, and the corresponding opcode. To 
produce this list of instructions, the debugger collects the opcodes in 
the device’s memory, disassembles them, then adds the available 
symbolic information. The next instruction to be executed is 
identified by a mark on the left hand side of the window, similar to 
the window that displays the C code. It is possible to run the 
application using the same set of features previously described for 
C/C++ debugging. 

 

 

Step 4. Analysis of the device's memory 

The contents of the device’s memory are accessible through the 
Memory window. It is recommended to move this window to the 
same console windows group. Drag the window and drop it in the 
Console group window to obtain to the windows arrangement shown 
in Figure 2-34. 



Software Development Tools 

2-54 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 

Figure 2-34. Window arrangement. 

 

 

 

The Memory window helps the task to monitor and modify the 
device’s memory contents. This window is shown with a Memory 
Monitors list. Each monitor is a memory section specified by its 
location and called as a base address. Each monitor can be displayed 
in different formats. 

 

The Memory window has two panels: 

 Memory Monitors panel: Collects the memory monitors added 
during the debug session; 

 Memory Renderings panel: The content of this panel is 
controlled by the selection made in Memory Monitors panel and lists 
the contents of the desired memory address. 

 

Both panels can be viewed simultaneously by selecting the icon . 

 

 

Add memory addresses to observe some of the application’s 

variables. Use the button  to add the address to be monitored. 
Examine: 

 Global Variables a and b: Insert &a and &b 

 Top C system stack: Insert &_stack 

 Address pointed by SP: Insert SP 

 

The result of this task is similar to that shown in Figure 2-35. 

 

 

Figure 2-35. Memory window example. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-55 

 

Use this feature to determine the position of the variables. From the 
project compilation results: 

 Address 0x01344 is used for the variable a; 

 Address 0x01346 is used for variable b. 

 

 

Figure 2-36. Global variable addresses in disassembly window. 

 

 

 

Step 5. Interface to a function 

During the introduction to this laboratory, there was a brief 
description of the procedure used by the system to pass and receive 
data from a function. Use the CCE supported debugging tools to see 
an example of this process. 

 

 A. Reinitiate the debug process 

 The first task will be to ensure that the application is ready to 
be launched; 

 The starting point is the main position; 

 Proceed with device restart through the icon . 

 



Software Development Tools 

2-56 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 B. Preparation to call a function 

 Put the cursor at line 50 and then execute the application 
until this line is reached, using the feature run to line ; 

 In the Disassembly window, the instructions before the 
addData function execution call are shown in Figure 2-37. 

 

Figure 2-37. addData function example. 

 

 

 The address of the variable a is 0x1344 while the address of 
variable b is 0x1346; 

 The compiler begins by loading the addresses of these 
variables into registers R12 and R13 respectively, with the 
instructions: 

MOV.W  #0x1344, R12 

MOV.W  #0x1346, R13 

 

 The execution of these instructions can be verified in the 
Registers window; 

 The system stack address pointed to by SP is 0x0030F0; 

 Since the system stack begins at 0x03038, it already 
supports 180 bytes of data. 

 

Figure 2-38. Register addresses. 

 



Code Composer Essentials IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-57 

 

 Using the instruction: 

CALLA #addData 

 

 The function is then invoked. Following the call, the processor 
automatically puts the return address on the system stack; 

 It requires two bytes to store the return address, here being 
positions 0x30EC and 0x30ED. 

 

 

 C. Analysis of the execution in assembly language 

 The function begins by reserving space on the system stack; 

 It subtracts the constant value #6 from the register SP, 
pointing to the address 0x30EC; 

 The system stack base address is 0x030E6; 

 On the system stack it saves the parameters passed from the 
registers R12 and R13 in SP+0 and SP+2, corresponding to 
the address of variables a and b, respectively; 

 These actions are carried by the code: 

SUB.W  #0x0006,SP 

MOV.W R13, 0x0002(SP) 

MOV.W R12, 0x0000(SP) 

 

 The new Fibonacci number is now calculated; 

 It adds the contents of memory addresses sent; 

 This is accomplished with the following sequence of 
instructions: 

MOV.W  0x0002(SP),R15 

MOV.W  @R15,R15 

ADD.W  @R12,R15 

MOV.W  R15,0x0004(SP) 

 

 The processor begins by storing the value on the system 
stack pointed to by SP+2 (variable b address) in R15, 
followed by a data transfer to register R15 of the memory 
address pointed to by R15; 

 Following this statement, register R15 has the address of 
variable b; 

 An add operation is then performed by adding the value 
contained in the address stored in register R12 (variable a 
address) with the value contained in register R15; 

 The result of the sum in R15 is placed on the system stack at 
the address SP+4, which is the space reserved for the local 
variable c; 



Software Development Tools 

2-58 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 The data management in order determine the next Fibonacci 
number is carried out using the following code to update the 
variable a: 

MOV.W  0x0002(SP),R15 

MOV.W  @SP,R14 

MOV.W  @R15,0x0000(R14) 

 This sequence of instructions begins by copying the value 
stored on the system stack at position SP+2 (variable a 
address) to register R15; 

 The value contained on the system stack at the position SP+0 
(variable b address) is copied to register R14; 

 Copy the contents of the address stored in R15 to the 
address stored in register R14; 

 Using this sequence of operations, the value in variable a will 
be equal to the value of variable b; 

 The variable b is updated with the result stored in local 
variable c; 

 This operation is performed using only two instructions; 

 Initially, the contents stored on the system stack at SP+2 are 
copied to register R15; 

 This register will hold the address of variable b; 

 The value of the system stack stored in SP+4, corresponding 
to the local variable c, is copied to the variable b: 

MOV.W  0x0002(SP),R15 

MOV.W  0x0004(SP),0x0000(R15)  

 

 D. Returning the results function 

 Finally, after this sequence of operations, the result is 
returned in register R12; 

 The code begins by moving the value stored on the system 
stack at SP+4 to the register R12; 

 It restores the system stack state reserved for this function, 
by adding the constant originally subtracted from the SP at 
the beginning; 

 The register SP will point back to the original position 
0x030EC; 

 The execution of the application is returned to the main 
function by the last instruction: 

MOV.W  0x0004(SP),R12 

ADD.W  #0x0006,SP 

RETA 

 

 E. Function result storage 

 After returning to the main function, the result is again stored 
on the restored system stack using the instruction: 

MOV.W R12, 0x0006 (SP) 



IAR Embedded Workbench IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-59 

 

2.3 IAR Embedded Workbench IDE 

The IAR Embedded Workbench™ (EWB) is an Integrated 
Development Environment (IDE) that allows developing and 
managing projects for embedded applications. It is available for 
several microprocessors and 8-bit, 16-bit and 32-bit microcontroller. 
Among these is the Texas Instruments’ MSP430 Microcontroller 
Family. 

The information provided in this section resumes the detailed 
information provided in the “MSP430 IAR Embedded Workbench® 
IDE User Guide”. Additional information can be obtained on the IAR 
Systems web site www.iar.com. 

 

2.3.1 IAR EWB main features 

The tools included in the IAR EWB for the MSP430 are: 

 C/C++ Compiler; 

 Assembler; 

 XLINK Linker; 

 XAR Library Builder and the XLIB Librarian; 

 Editor; 

 Project manager; 

 Command line build utility; 

 C-SPY™ debugger. 

Integrating these tools together in a unique workspace development 
environment facilitates efficient programming, providing a reduced 
development time. 

There follows a short presentation on the procedure used to create a 
project. The “Hello world” example demonstrates the typical 
development cycle and how the compiler and the linker are used in 
order to create an application for the MSP430. 

 

 

2.3.2 Laboratory 1: “Hello World” Beginner’s project 

 

Setting up a new project 

 The IDE methodology is based on a workspace concept; 

 Modules can contain one or more projects; 

 The projects are made up of one or more source code files 
needed for the binary file, which allow the simulation and/or 
programming to take place; 

 Before creating a project, it is necessary to create a workspace. 

 When IAR EWB starts for the first time, it creates a default 
workspace. 

 



Software Development Tools 

2-60 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Step 1. Creating a workspace window 

 Choose File > New > Workspace (Figure 2-39); 

 Pressing OK will generate a window with an empty workspace. 

 

Figure 2-39. IAR EWB – Creating a workspace. 

 

 

 Save the workspace: Choose File > Save Workspace. 

 Specify where the workspace file should be saved. 

 Name: HelloWorld in File name > Save to create the new 
workspace (file extension: .eww) as present in Figure 2-40. 

 

Figure 2-40. IAR EWB – Saving a workspace. 

 



IAR Embedded Workbench IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-61 

 

Step 2. Creating the new project 

 Choose Project > Create New Project(see Figure 2-41); 

 The Create New Project dialog box lets the new project to be 
based on a project template; 

 Select the project template Empty project to creates an empty 
project that uses default project settings, as shown in Figure 2-42; 

 Set the Tool chain to MSP430, then click OK. 

 

Figure 2-41. IAR EWB – Creating a new project. 

 

 

 

Figure 2-42. IAR EWB – Empty project. 

 

 



Software Development Tools 

2-62 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 In the Save As dialog box, specify the location of the project file 
(newly created projects directory); 

 Name Project1 in the File name box, and click Save to create 
the new project (see Figure 2-43). 

 The project will appear in the workspace window (Figure 2-44). 

 

Figure 2-43. IAR EWB – Saving the project. 

 

 

Figure 2-44. IAR EWB – Workspace window. 

 

 



IAR Embedded Workbench IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-63 

 

Step 3. Adding files to the project 

 In the Workspace window, select the where you want to add a 
source file, in this case directly to the project; 

 To create new source files, choose File>New and select 
Source/Text; 

 Choose Project > Add Files (see Figure 2-45); 

 Locate the file Lab2C_solution.c and click Open to add it to  
Project1 (see Figure 2-46). 

 

Figure 2-45. IAR EWB – Add files to the project. 

 

 

Figure 2-46. IAR EWB – Add files to the project. 

 



Software Development Tools 

2-64 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

The Integrated Development Environment (IDE), as shown in Figure 
2-47, is composed of three windows: 

 Workspace: Project and associates files; 

 Text editor: File(s) source code; 

 Debug Log: Compilation information. 

 

Figure 2-47. IAR EWB – IDE window. 

 

 

 

Step 4. Setting project options 

 Select the project folder icon Project1 - Debug in the 
Workspace window and choose Project > Options (see Figure 2-
48); 

 The Target options page in the General Options category is 
displayed; 

 Settings: 

 MSP430 device: MSP430FG4619 (see Figure 2-49); 

 Output file: Executable; 

 Library: CLIB. 



IAR Embedded Workbench IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-65 

Figure 2-48. IAR EWB – Project options. 

 

 

 

Figure 2-49. IAR EWB – General options. 

 

 



Software Development Tools 

2-66 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

 Select C/C++ Compiler in the Category list to display the 
compiler option pages: 

 Language: Details specifications for the interpretation of the 
C language; 

 Code: Configuration of code optimization; 

 Output: Configuration of output files type; 

 List: Configuration of list files created by the compiler 
(containing both C and generated assembly code). 

 

 Select Debugger in the Category list to display the debugger 
option pages: 

 Simulate in the PC: Setup -> Simulator. 

 Testing the application at the C: Setup -> FET Debugger. 

 After choosing one of the options (for this example FET 
Debugger), click OK, as shown in Figure 2-50. 

 

Figure 2-50. IAR EWB – Debugger options. 

 

 

 

Step 5. Compiling and linking 

 To compile the file Lab2_solution.c, select it in the Workspace 
window; 

 Choose Project > Compile; 

 The progress will be displayed in the Build messages window as 
shown in Figure 2-51. 



IAR Embedded Workbench IDE 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-67 

Figure 2-51. IAR EWB – Compile messages window. 

 

 

 

 New directories in the Debug directory have been created 
containing the directories List, Obj, and Exe (see Figure 2-52): 

 List: Destination directory for the list files (.lst). 

 Obj: Destination directory for the object files (.r43) from the 
compiler and the assembler (input to the IAR Linker). 

 Exe: Destination directory for the executable file (.d43) that 
will be used as input to the IAR Debugger. 

 

 

Figure 2-52. IAR EWB – Directories tree. 

 

 

 

Step 6. Debugging the application 

 Choose Project > Debug; 

 The workspace configuration is changed to the project execution 
mode (see Figure 2-53). 



Software Development Tools 

2-68 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Figure 2-53. IAR EWB – Debug view window. 

 

 

 

 Workspace configuration for monitoring (View>) the windows of 
particular interest to the user: 

 Disassembly: Hexadecimal format of the memory content 
interleaved with the C source code; 

 Memory: Memory usage with several data viewing options; 

 Register: Monitoring CPU and SFR registers in the RAM; 

 Watch: Monitor expressions or variables; 

 Locals: Local variables inside a routine or function; 

 Live Watch: Expressions or variables for real-time 
monitoring; 

 Call Stack: Monitor stack content; 

 Terminal I/O: Monitoring the I/O ports state. 

 

 To continue debugging the application, select Debug > Go. 

 

This brief presentation of the IAR EWB IDE only provides an initial 
overview. It is recommended to read and carry out the tutorials 
included in the “MSP430 IAR Embedded Workbench™ - IDE User 
Guide for Texas Instruments’ MSP430 Microcontroller Family” 
manual for a detailed description of the IAR IDE. 

 

 



Third party MSP430 IDEs 

www.msp430.ubi.pt Copyright   2009 Texas Instruments, All Rights Reserved 2-69 

2.4 Third party MSP430 IDEs 

Some third parties have developed Software Development Tools to 
configure and program the MSP430 hardware development tools. 
Previously described were packages provided by Texas Instruments 
(Code Composer Essentials) and by IAR Systems (IAR Embedded 
Workbench - Kickstart Version). In addition, other parties have 
developed IDEs, such as Rowley Associates (CrossStudio) and the 
MSPGCC, which is a compiler developed by the Open-Source 
Community. 

 

Following the information provided on the TI webpage, below is a list 
of the third parties that have developed IDEs for the MSP430: 

 

Forth, Inc provides SwiftX cross-development system for the 
MSP430 featuring a multitasking kernel with build-in support for 
low-power mode and a library of several hundred functions. SwiftX 
supports fully interactive development including the Forth high-level 
language and assembler, to produce extremely compact, fast, low-
power applications. They also offer a full line of services, including 
programming courses, software and hardware design and 
development, and even board layout and production to take your 
idea all the way to a finished product. 

 

HI-TECH software provides HI-TECH for MSP430 is an advanced C 
compiler with a fast and flexible programming environment for the 
Texas Instruments MSP430 devices. HI-TECH for MSP430 makes use 
of specific MSP430 features and using an intelligent optimizer and 
can generate high-quality code easily rivalling hand written 
assembler. 

 

ImageCraft's ANSI C tools offer quality code generation wrapped in 
an easy-to-use GUI. ImageCraft claim to provide excellent customer 
support, which other companies cannot match. ImageCraft also 
claim to have a low cost factor, and the best deal in C tools for the 
innovative TI MSP430.  

Version 7 C Compiler Tools with Windows IDE for TI MSP430 / 
MSP430X Microcontrollers. 

 

Phyton, Inc. provides Project-430 is a set of hardware and software 
tools for developing MSP430 applications under control of one 
integrated development environment (IDE). A full package includes 
MCA-430 macro assembler, PDS-430 software debugger/simulator, 
and PICD-430 in-circuit debugger integrated under control of the 
Project-430 IDE, so this toolset provides a complete development 
cycle, from editing source texts, to getting debugged code, and 
"burning" it into a target microcontroller or memory device. Selected 
third parties' C compilers can also be bundled with the Phyton's tools 
to make it capable for the C-level development. Instead of using the 
Phyton PICD-430 debugger the IDE can drive very popular TI's MSP-
FET430 flash-emulation tools for JTAG debugging. The following 
Project-430 configurations are available: 

 



Software Development Tools 

2-70 Copyright   2009 Texas Instruments, All Rights Reserved www.msp430.ubi.pt 

Quadravox provides the AQ430: C- Compiler and C/ASM-Debugger. 

Quadravox, Inc. has designed development tools for embedded 
systems since 1996. Archelon, Inc. has, since 1982, developed tools 
for microcoding and, in particular, have pioneered the 
implementation of standard high level languages on micro 
programmed hardware, signal processor chips and other unique 
architectures. 

The AQ430 development tools are a fully integrated software 
environment for all flash based MSP430 micro-controllers. They 
allow the user to create projects, edit files, compile, assemble, link, 
make / build and debug an MSP430 application within a single 
Windows™ IDE. 

 

 

All debugging operations occur on the actual target system, 
controlled via a JTAG interface, like the MSP430 Flash Emulation 
Tool. AQ430 allows an unlimited number of "software" breakpoints 
on C or assembly language instructions for non-real time debugging, 
and the usual number of hardware breakpoints for real time 
operation. The user can switch from the "C source view" to the "asm 
view" to see (and step through) the assembly code generated by the 
C compiler. There is no limitation (other than the physical address 
space of the MSP430 controller used) on the size of C programs 
used with AQ430. 

 

 

Find additional details on www.ti.com. 

 


