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ABSTRACT 
Model management is a generic approach to solving problems of 
data programmability where precisely engineered mappings are 
required. Applications include data warehousing, e-commerce, 
object-to-relational wrappers, enterprise information integration, 
database portals, and report generators. The goal is to develop a 
model management engine that can support tools for all of these 
applications. The engine supports operations to match schemas, 
compose mappings, diff schemas, merge schemas, translate 
schemas into different data models, and generate data 
transformations from mappings. 
Much has been learned about model management since it was 
proposed seven years ago. This leads us to a revised vision that 
differs from the original in two main respects: the operations must 
handle more expressive mappings, and the runtime that executes 
mappings should be added as an important model management 
component. We review what has been learned from recent 
experience, explain the revised model management vision based 
on that experience, and identify the research problems that the 
revised vision opens up. 

Categories and Subject Descriptors 
H.2.5 [Heterogeneous Databases] 

General Terms 
Algorithms, Design, Theory 

Keywords 
data exchange, data integration, data translation, model 
management, schema evolution, schema matching, schema 
mapping, engineered mapping 

1. INTRODUCTION 
One of the main goals of database management is to make it 
easier for users to write programs that access large shared data-
bases. We call this the data programmability problem. One reason 
why data programmability is not easy is that it often requires 
complex mappings between different representations of data. 
Those different representations arise for two main reasons: 
heterogeneity and impedance mismatch. Heterogeneity arises 
because data sources are independently developed by different 
people and for different purposes and subsequently need to be 

integrated. The data sources may use different data models, 
different schemas, and different value encodings. Impedance 
mismatches arise because the logical schemas required by 
applications are different from the physical ones exposed by data 
sources [31]. In both cases, much of the work to access the data 
involves designing, implementing, testing, and using mappings 
between these different data representations. The subject of this 
paper is how to make this work easier. 
Integrating heterogeneous data is among the oldest of database 
problems. It predates �SIGMOD,� which was called SIGFIDET 
(for FIle DEscription and Translation) before being renamed 
SIGMOD in 1975. Every database research self-assessment has 
listed interoperability of heterogeneous data as one of the main 
problems where more research is needed [2][12][13] [94].  
The database field has been quite successful in addressing the data 
programmability problem. Data integration, the problem of pro-
viding access to heterogeneous data sources, has been a popular 
research topic for 25 years [34][95][100]. There is a huge research 
literature on solutions to the heterogeneity and impedance 
mismatch problems. And there are many products to help solve 
those problems. 
However, despite this progress, coping with heterogeneity and 
impedance mismatch remains one of the most time-consuming 
data management problems. Anecdotal evidence suggests that it is 
40% or more of the work in enterprise IT departments. One study 
of development projects found that coding and configuring object-
to-relational mappings was 30-40% of the effort [58]. It is a large 
and growing part of scientific, engineering and medical 
computing. It is needed for many web searches. And it is the 
essence of the semantic web vision. In short, it is a problem in 
need of better solutions. 

1.1 The Nature of Schema Mappings 
To cope with heterogeneity and impedance mismatch, the core 
problem is in developing and using complex mappings between 
schemas. The nature of the problem depends a lot on the amount 
of precision required in the mapping specification. 
In enterprise IT and many other domains, one needs to specify an 
engineered mapping between the schemas of the data to be 
accessed or integrated. By �engineered,� we mean that the 
mapping is precisely specified and tested for each application. 
We�ll use the term data architect for the role of the person 
developing engineered mappings.  
At the other end of the spectrum lies approximate mappings, 
where users find relationships between data as they go, as in web 
search or in mining a heterogeneous set of data sources. In these 
cases, imprecision is tolerable since there is usually no well-
defined notion of correct answer. In some cases, a probabilistic 
analysis may be able to give a formal estimate of the accuracy of 
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the mapping. But in the end, it is usually up to the user�often an 
end-user, not a skilled data architect�to determine if the retrieved 
data is useful.  
In between these two ends of the spectrum are cases where both 
engineered and approximate mappings are developed. For exam-
ple, data integration is sometimes performed incrementally, where 
some mappings are carefully engineered and others are done as a 
best-effort. This approach, called �dataspaces� in [43] [52], arises 
in data exploration scenarios, such as the management of scientif-
ic data, personal information, and military command and control, 
and in schema extraction from text [47].  
The spectrum from engineered to approximate mappings is quite 
broad. Many points along that spectrum are described in position 
papers at a recent workshop on data integration [101]. Although 
the entire spectrum is of great practical importance, we will focus 
on just one end of it, that of engineered mappings.  
There are many usage scenarios that require engineered mappings. 
One way to characterize them is to list the types of tools used to 
support them. The following are some common tools where 
engineered mappings play a central role1: 

• Extract-Transform-Load (ETL) tools, to simplify the 
programming of scripts to extract data from sources, clean it, 
reshape it, and load it into a data warehouse [36][59]. 

• Message mapping tools, to simplify the programming of 
message translation between different formats. These are 
often embedded in message-oriented transactional middle-
ware, such as enterprise application integration (EAI) 
environments [5][9][71][98]. 

• Query mediators to access heterogeneous databases. In 
database research, this is called data integration [63]. In 
commercial IT, it is called Enterprise Information Integration 
(EII) [51], where there are many variations, e.g., supporting 
web services and updates [26]. There are custom implemen-
tations for bio-informatics and medical informatics [33][35]. 
This usage scenario may also be served by keyword search. 

• Wrapper generation tools, for example, to produce an object-
oriented wrapper for a relational database [4][54][79]. Unlike 
query mediators, wrappers often need to support incremental 
updates. Some enterprise application products include 
custom tools for this, since the wrappers are such a large 
piece of the application. 

• Graphical query design tools, to define a mapping between 
source and target schemas [84].  

• Portal design tools, to map data sources to controls that can 
be conveniently displayed [9][73][90]. 

• Forms managers to map between structured data sources and 
forms [56][72]. Many enterprise application products include 
custom tools for this. 

• Report writers that map between structured data sources and 
a report format [32][74].  

• OLAP databases, which map data sources into data cubes 
that are suitable for OLAP queries [29]. 

• Data translation tools for moving data between different  
applications [72]. For commercial applications, this role has 
been partly subsumed by ETL tools. However, for design 

                                                                 
1 Of the large number of products in each category, we cite a 

somewhat random and small subset that happen to be known to 
us. We apologize for all of the omissions. 

tools it is a separate product category. For example, 
mechanical CAD tools need to translate between different 
geometric coordinate systems, assembly structures, and data 
formats [23].  

Despite the obvious overlap in mapping functionality between 
these tools, there is little shared mechanism between them, in 
some cases even when offered by the same vendor. 

1.2 The Problem 
Given the existence of all these tools, why is it still so labor-
intensive to develop engineered mappings? To some extent, it is 
an unavoidable consequence of ambiguity in the meaning of the 
data to be integrated. If there is a specification of the schemas, it 
often says little about integrity constraints, units of measure, data 
quality, intended usage, data lineage, etc. Given that the 
specification of meaning is weak and the mapping must be 
precisely engineered, it seems hopeless to fully automate the 
process anytime soon. A human must be in the loop.  
Since human designers are required, the solution must lie in 
raising the level of abstraction in which engineered mappings are 
specified and in offering better tools to do that specification. We 
need better tools to help the data architect understand the 
semantics of the data to be integrated, select data sources, extract 
schema from unstructured sources, deduplicate overlapping data, 
clean up inconsistencies, choose among different types of 
integration tools (ETL, EII, replication), design and implement 
mappings, debug mappings, expose mapping provenance, and 
revise mappings when schemas evolve. These problems and 
others were nicely summarized by Laura Haas in [48]. 
Most of these problems are hard. A lot of engineering effort is 
required to build tools to solve them. To maximize the 
functionality of the tools that can be built with a given engineer-
ing budget, we need reusable components that can be applied to a 
wide variety of scenarios. We already do this for the execution 
environment, notably with query execution engines, which are 
usually part of a database system or middleware framework. We 
need to do this for the design-time environment too�we need to 
produce reusable components of tools. 

1.3 The Initial Research Agenda 
One component that is present in all of the tools listed in 
Section 1.1 is a mapping designer. This component helps the data 
architect design a mapping between schemas in a high-level 
notation. It generates code that implements the mapping, typically 
in a programming language or query language, depending on the 
scenario. Ideally, it should also help the user evolve a mapping 
after one of the mapped schemas changes, though this is not 
commonly offered today.  
The need for a more powerful mapping designer was recognized 
by Miller, Haas, and Hernández [75] in the first of a long series of 
papers about the Clio project (e.g., [49][76][99][102]). The project 
has explored ways to simplify the data architect�s job by propos-
ing mappings based on simple correspondences between elements 
of the source and target schema, generating code from the 
mappings, and updating the mappings when one of the schemas 
changes [103]. The tool can be used to generate executable map-
pings in a range of languages, such as SQL, XQuery, or XSLT. 
Some of the technology is now available in IBM Rational Data 
Architect [57][89]. 
An alternative to building a general-purpose mapping designer is 
to build an engine for schema and mapping manipulation func-
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tions that are common to a wide variety of tools for data 
programmability. In [16][17] we proposed such an engine, called 
a model management system, and refined the proposal in [10]. 
Model management supports operations to match schemas, merge 
schemas, translate schemas, diff schemas, and compose mappings. 
It is generic in the sense that it supports multiple metamodels and 
mapping languages.  

1.4 The Revised Research Agenda 
Initially, this model management approach seemed rather different 
than the mapping designer approach of Clio. However, over time, 
the two approaches have converged and are exploring essentially 
the same problem space. Let us see how this came about. 
The original model management proposal was influenced by the 
first author�s experience with Microsoft Repository [11]. That 
system was meant to support tools for application and database 
design and development. The tools were meant to use Microsoft 
Repository for impact analysis, dependency management, confi-
guration management, static lineage, and other functions that 
required only simple relationships between artifacts.  
Since the manipulation of simple relationships is well understood, 
the initial model management proposal used a mapping language 
based on them, rather than a highly expressive mapping language 
that would require solutions to difficult mathematical problems, 
such as composing and merging mappings expressed in a 
predicate calculus language. The simple mapping language was 
designed to be easy to manipulate, factoring out the problem of 
manipulating complex expressions that have instance-level 
semantics. Indeed, the first implementation of a model man-
agement system followed this approach [69]. We hoped that 
implementations could eventually offer extensibility hooks for 
plugging in and manipulating more expressive languages. 
So far, this hope has not been realized by most of our experience 
in applying model management to practical problems. Instead, we 
have usually found it easier to build custom implementations for 
expressive mapping languages and solve the mathematical 
problems that this implies. In part, this is due to the choice of 
practical problems we have tackled�problems of data integration 
and wrapper generation, not of design and development tools�
which require expressive mappings. In part, it is also due to the 
difficulty of developing a generic expressive mapping language 
and applying it to different metamodels. Some would argue that 
this result is inevitable; a variety of approaches to generating and 
manipulating engineered mappings is necessary due to the wide 
range of data programmability problems being addressed. While it 
may turn out this way, we still have reason to believe that a 
generic model management engine is feasible. But it requires 
developing model management operators that manipulate highly 
expressive mappings, which was not the original vision. This is 
one reason why our vision for model management has changed. 
Another outcome of our experience in applying model manage-
ment to practical problems is the need for more focus on the 
runtime system that supports the execution of mappings. The 
runtime system does not simply execute queries over mappings. It 
must also propagate updates, notifications, exceptions, and access 
rights, and provide other services, such as debugging, synchroni-
zation, and provenance. These problems are sensitive to the 
expressiveness of mappings and to the capabilities of the model 
management operators that generate the mappings. That is, the 
ability to support a certain amount of expressiveness in mappings 
depends not only on design-time capabilities of a model 

management system to manipulate those mappings but also on 
runtime capabilities to provide services over those mappings. 
Given these interdependencies, the runtime support for mappings 
needs to be considered as part of the model management system. 
This too has caused us to rethink our vision. 
Recent published work from the Clio group at IBM and their 
university collaborators has evolved in a similar direction, but 
from a different starting point. Their early work focused mostly 
on the mapping design tool. However, since then they have done 
seminal work on two of the model management operations, 
Compose [40] and Inverse [37][41], and on the semantics of query 
answering [38][39], which is closely related to code generation. A 
summary of this work appears in [60]. Model management 
research has landed in the same place: Starting with operations on 
schemas and simple mappings, it has evolved to focus on highly 
expressive mappings, like Clio.  
Given our experience and that of others, it is time to revisit the 
model management vision to review what has been learned from 
that experience, to revise the vision based on that experience, and 
to identify the research problems that the revised vision opens up. 
Necessarily, much of this will involve summarizing our own work 
and that of the Clio group. 
The next section introduces the abstractions and capabilities of a 
model management system. Sections 3-6 explore those 
capabilities in more detail, describing the main operators of model 
management and summarizing what is known about them. 
Section 7 is the conclusion. 

2. MODEL MANAGEMENT 
A model management system is a component that supports the 
creation, compilation, reuse, evolution, and execution of 
mappings between schemas represented in a wide range of meta-
models. The user-oriented goal is to simplify the development and 
maintenance of applications that perform data programming. 
However, a model management system (MMS) is not a user-
oriented tool. Rather, it is a reusable component that can be 
embedded, with relatively modest customization, into user-
oriented tools for data warehouse loading, message mapping, 
query mediation, wrapper generation, report writing, and other 
data programmability problems.  
The main abstractions supported by an MMS are schemas and 
mappings. Since an MMS should be generic, the choice of lan-
guages in which to express schemas and mappings is important. 
A schema is an expression that defines a set of possible instances, 
that is, database states. A metamodel is a language for expressing 
schemas. To enable reuse for a wide enough range of scenarios, 
an MMS must support schemas expressed in all popular 
metamodels. Today, that means SQL, XML Schema (XSD), 
Entity-Relationship (ER), and object-oriented (OO) metamodels 
(e.g., Java, ODMG [28], and .NET), and perhaps Service 
Modeling Language (SML) [91], Resource Description 
Framework (RDF) [85] and Web Ontology Language (OWL) 
[80]. Ideally, a basis set of data type constructs that are common 
to many metamodels could cover most of their features, with only 
a few specials that are included for one metamodel only. It is not a 
trivial undertaking to define such a universal metamodel that is 
elegant and has precise semantics that can be succinctly specified. 
However, it is clearly doable with some effort and not what stands 
in the way of building a powerful MMS.  
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The harder part is in developing technology for an MMS to sup-
port mappings between many popular metamodels. It is unclear 
how best to go about this. One could develop a language that can 
express mapping constraints between schemas in the universal 
metamodel. While it is beneficial to have one mechanism like this, 
the mapping language might have to be rather complex to handle 
so many different types. Or one could use multiple languages. For 
example, to map XML to SQL, one could use SQL as a mapping 
language to pull shredded data from a SQL database, compose 
that mapping with a default XML representation of the data, and 
compose the result with an XQuery mapping to reshape the XML.  
A mapping expresses a relationship between the instances of two 
schemas [66]. We can formally define the instance-level seman-
tics of a mapping as follows: If D1 and D2, are the sets of possible 
instances of schemas S1 and S2 respectively, then a mapping 
between S1 and S2 defines a subset of D1 × D2 [66][67]. Usually, a 
mapping is expressed as a set of mapping constraints (sometimes 
called inter-schema constraints [27]), each of which is a formula 
in some mapping language; it defines the subset of D1 × D2 for 
which the formula holds. 
An MMS must support a rich mapping language so it can be 
applied to a wide variety of scenarios. Given the tension between 
the expressiveness of mapping constraints and the tractability of 
manipulating them, choosing the mapping language is a major 
design challenge. If tractability were not a consideration, one 
would want a mapping language that includes first-order logic 
with aggregation, with set and bag semantics, user-defined 
functions, regular expressions, rich type constructors (e.g., to 
construct XML fragments), and even heuristic operations such as 
deduplication.  
A transformation is a functional mapping constraint, such as a 
query or view definition. If mappings are restricted to be transfor-
mations, and the MMS needs to do nothing more than compile the 
transformation into executable code, then a highly expressive 
mapping language may be tractable. However, as we will see, an 
MMS may need to allow non-functional mapping constraints 
which it can translate into transformations. Moreover, an MMS 
must do more than compile mappings. This translation and 
additional manipulation operations are tractable only if compro-
mises are accepted, such as constraining the expressiveness of 
mappings or using algorithms that are slow or that make a best 
effort to solve an intractable problem. 
A closely related challenge is the choice of a common language 
for defining integrity constraints, that is, constraints on one 
schema (as opposed to mapping constraints that relate two 
schemas). It needs to be powerful enough to express integrity 
constraints supported by popular metamodels. Yet it must be 
feasible to reason over the integrity constraints across mappings. 
For example, for a given source and target database that are 
related by a given mapping, we might need to check that if the 
source database satisfies the source integrity constraints then the 
target database also satisfies the target integrity constraints.  
The functionality of a model management system is encapsulated 
in its design-time and runtime operations. The main components 
are shown in Figure 1. They are presented in Sections 3-6, 
organized as follows: 

• Section 3 discusses the generation of mappings either 
between two given schemas or between a given schema S 

and a schema generated from S. The main operations are 
Match and ModelGen. 

• Section 4 discusses the generation of transformations from 
mapping constraints. The main operation is TransGen. 

• Section 5 discusses the runtime functions that are needed to 
support mappings. 

• Section 6 discusses problems that arise from schema evolu-
tion. The solutions require several additional operations: 
Compose, Diff, Extract, Merge, and Inverse. 

3. THE ORIGIN OF MAPPINGS 
There are two main scenarios for mapping generation, each with 
variations. In the first scenario, the source and target schemas are 
given and the data architect defines a mapping between them. For 
example, the schemas could be a data source and data warehouse 
schema or message schemas from two business partners. The 
second scenario is defined by the model management operation 
called ModelGen; given only one of the two schemas, the other is 
(semi-) automatically derived along with a mapping between the 
given schema and the derived schema. For example, the input 
schema could be a data source schema and the derived schema 
could be an OO wrapper or form definition. We now discuss each 
scenario in more detail. 

3.1 Given Two Schemas, Generate a Mapping 
A good way to think about mapping design is as a three-step 
process that produces mappings in three successively more refined 
representations: correspondences, mapping constraints, and trans-
formations. Correspondences are pairs of elements from the two 
schemas that are believed to be related in some unspecified way. 
Usually, correspondences do not define a mapping. Rather, they 
are hints that tell which elements of the two schemas need to be 
related by a mapping. The second step is to translate those corres-
pondences into mapping constraints [75]. In some cases, the map-
ping constraints are transformations, so step two completes the 
process. In other cases, the mapping constraints are not functions, 
so a third step is required to translate them into transformations.  

3.1.1 Schema Matching 
The problem of generating correspondences is called schema 
matching. There is a big literature on this topic, offering many 
different algorithms to compute correspondences [86][92]. They 
include ways to exploit lexical analysis of element names, schema 
structure, data types, value distributions, thesauri, ontologies, and 
previous matches. Most recent work has focused on improving the 
precision and recall of a schema matcher based on certain types of 
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schema and instance information. Such work is valuable for 
approximate data integration, especially in unsupervised settings 
like the semantic web, and for ontology integration.  
However, it is unlikely that improved precision and recall will 
yield big productivity gains for the data architect who is develop-
ing an engineered mapping between independently developed 
schemas. This is especially true for mapping tasks that are 
unrelated to previous ones, where there are no validated mappings 
to reuse. The reason is that much of the data architect�s time is 
spent reading documentation, learning application requirements, 
writing functions that combine or split element values, and run-
ning tests with sample data�activities that are currently beyond 
the reach of algorithmic solutions. For engineered mappings, we 
expect that the main value of the matcher is to avoid the need for 
tedious scrolling around large schemas by offering candidate 
matches to consider. Thus, a better goal for this setting is to 
ensure that a matcher returns all viable candidates for a given 
element, rather than only the best one for every element [18] [46]. 
The above beliefs are only educated guesses, based on a limited 
number of discussions we have had with product developers and 
users. What is missing from the literature are more comprehensive 
and controlled investigations of how people spend time using a 
schema matching tool for engineered mappings and, hence, what 
kinds of features would be most likely to improve their productiv-
ity. We believe the biggest productivity gains will come from 
better user interfaces [42][88], not from more accurate schema 
matching algorithms. Examples include helping the user focus on 
the schema elements of interest by dynamically reorganizing them 
to fit on one screen and providing workflow assistance to track 
what the user knows about elements that he has already examined. 

3.1.2 Mapping Constraint Generation 
Given a set of correspondences between two schemas, the data 
architect needs to generate a transformation, such as a query or 
view definition over the source schema that populates the target 
schema.  

Some tools automatically generate transformations directly from 
correspondences. Thus, the correspondences amount to a visual 
programming language. In some tools the semantics of that 
language is unclear, so the data architect needs to read the 
generated transformation to understand the meaning of the 
correspondences [62]. 
In our opinion, a better approach is for the mapping design tool to 
help the data architect translate correspondences into mapping 
constraints. Each constraint should specify a small enough portion 
of the desired mapping that the data architect can easily 
understand what it does and hence determine whether it is what 
she wants [70].  

SELECT VALUE -- Constructing Persons 
        CASE 
            WHEN (T5._from2 AND NOT(T5._from1))  
               THEN Person(T5.Person_Id, T5.Person_Name)             
            WHEN (T5._from1 AND T5._from2)  
               THEN Employee(T5.Person_Id, T5.Person_Name,  
                                           T5.Employee_Dept) 
                ELSE Customer(T5.Person_Id, T5.Person_Name,  
                       T5.Customer_CreditScore,  
                       T5.Customer_BillingAddr) 
        END 
    FROM ( ( 
      SELECT T1.Person_Id, T1.Person_Name,  
            T2.Employee_Dept,  
            CAST(NULL AS SqlServer.int) AS Customer_CreditScore,  
            CAST(NULL AS SqlServer.nvarchar) AS  
                     Customer_BillingAddr, False AS _from0,  
            (T2._from1 AND T2._from1 IS NOT NULL) AS _from1,  
            T1._from2 
       FROM  ( 
             SELECT  
                 T.Id AS Person_Id,  
                 T.Name AS Person_Name, 
                 True AS _from2 
             FROM dbo.HR AS T) AS T1 
             LEFT OUTER JOIN ( 
             SELECT  
                 T.Id AS Person_Id,  
                 T.Dept AS Employee_Dept,  
                 True AS _from1 
             FROM dbo.Empl AS T) AS T2 
             ON T1.Person_Id = T2.Person_Id) 
       UNION ALL ( 
       SELECT  
             T.Id AS Person_Id,  
             T.Name AS Person_Name,  
             CAST(NULL AS SqlServer.nvarchar) AS Employee_Dept,  
             T.Score AS Customer_CreditScore,  
             T.Addr AS Customer_BillingAddr,  
             True AS _from0,  
             False AS _from1,  
             False AS _from2 
       FROM dbo.Client AS T) 
    ) AS T5 

Figure 3: A query to populate Persons based on constraints 
in Figure 2 

SELECT Id, Name 
FROM dbo.HR 

SELECT p.Id, p.Name  
FROM Persons AS p  
WHERE p IS OF (ONLY Person)  
   OR p IS OF (ONLY Employee) 

=

SELECT Id, Dept 
FROM dbo.Empl 

SELECT e.Id, e.Dept  
FROM Persons AS e  
WHERE e IS OF Employee 

=

SELECT Id, Name,  
              Score, Addr 
FROM dbo.Client

SELECT c.Id, c.Name,    
    c.CreditScore, c.BillingAddr 
FROM Persons AS c  
WHERE c IS OF Customer 

=

Figure 2: Mapping constraints between an ER and SQL schema
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For example, consider the is-a hierarchy in Figure 2, where Em-
ployee and Customer are specializations of Person, which need to 
be mapped to relational tables HR, Empl, and Client [70]. We can 
express the mapping constraints as equalities of simple queries, 
shown in the figure. The queries are expressed in Entity SQL [77], 
an extension of SQL that can deal with inheritance and other ER 
concepts. Its syntax uses the keywords IS OF or IS OF ONLY to test 
whether a variable is of a particular type. The first constraint maps 
the ID and Name of entities that are either of type Person or 
Employee to the HR table. The second constraint maps the ID and 
Dept of entities that are of type Employee to the Empl table. The 
third maps ID, Name, CreditScore, and BillingAddr of entities of 
type Customer to the Client table. Each of these constraints is rel-
atively easy to express and understand. However, these constraints 
imply a rather complex hard-to-understand query on tables that 
returns data to populate the Person entity set, shown in Figure 3. 
This problem of going from correspondences to mapping con-
straints or queries was explored in IBM�s Clio project. In the first 
Clio paper [75], transformations are generated directly from cor-
respondences. Value correspondences are taken as input, which 
may include selection predicates and computations over source 
elements that generate a target element. With some optional user 
guidance, Clio produces a query. For example, if the source is a 
relational database schema and the target is a relation schema, 
then the problem boils down to selecting source relations that 
have correspondences to the target, choosing joins between the 
source relations, and possibly adding selections over some of the 
source relations. 
In later papers from the Clio project, mapping constraints are 
generated from correspondences. For example, in [38] they 
propose using constraints expressed as source-to-target tuple-
generating dependencies, which correspond to global-and-local-
as-view (GLAV) formulas [44]. (A more technical definition 
appears later, in Section 6.1.) 
Melnik et al. give a case where correspondences can be unambi-
guously interpreted as mapping constraints [67]. Intuitively, if the 
source and target schemas are snowflake schemas as used in data 
warehousing and the correspondences include one correspondence 
relating the roots of the two schemas, then each correspondence 
can be unambiguously interpreted as a mapping constraint that is 
the equality of two join expressions: one over the source and one 
over the target. See Figure 4 (taken from [68]). Thus, the data 
architect only needs to specify correspondences and does not need 
to translate them into mapping constraints. This simplifies the 
process of designing mapping constraints, but there�s a cost: the 
set of expressible mappings is quite constrained. It would be 
useful to find more expressive graphical representations that are 
relatively simple (like correspondences) and have a precise 
interpretation as constraints.  
Bohannon et al. [24] show how to generate an XML mapping 
from correspondences that map one DTD to another. 

3.2 ModelGen 
ModelGen is a model management operation that automatically 
translates a source schema expressed in one metamodel into an 
equivalent target schema expressed in a different metamodel, 
along with mapping constraints between the two schemas.  
The first generic (i.e., metamodel-independent) approach we 
know of is that of Atzeni and Torlone [6]. They introduced the 
idea of using a repertoire of rules over schemas expressed in a 

universal metamodel, where each rule replaces one construct by 
others. The universal metamodel contains modeling constructs of 
all metamodels. A sequence of rules is applied to the source 
schema to eliminate all modeling constructs that are absent from 
the target metamodel. Their rules are expressed in C++ with 
abstract signatures that help them determine the correct rule 
sequence for a given source and target metamodel. They did not 
generate instance-level mapping constraints. 
Two recent projects have extended Atzeni and Torlone�s work to, 
among other things, generate instance translations via three data-
copy steps [7][81]: (1) copy the source data into the universal 
metamodel�s format; (2) reshape the data using instance-level 
rules that mimic the schema transformation rules; and (3) copy the 
reshaped data into the target system. This approach represents 
considerable progress, but it has two weaknesses: It is rather 
inefficient for data exchange. And it still falls short of the need for 
ModelGen to return declarative mapping constraints between the 
source and target schema. 
An approach to ModelGen that generates declarative mapping 
constraints is described briefly in [19]. It also describes a flexible 
mapping of inheritance hierarchies to tables, which is needed for 
complex enterprise applications. Although there is some claim of 
genericity in [19], we do not know of a published comprehensive 
demonstration that mapping constraints can be generated when 
ModelGen is applied to rich schema languages, e.g., going from 
SQL to XSD or from XSD to ODMG [28].  
McBrien and Poulovassilis describe equivalence-preserving trans-
lations of schema constructs in [65][83]. Their goal is data inte-
gration rather than schema translation per se, but their translation 
rules may also be applicable to ModelGen.   

4. TRANSFORMATION GENERATION 
In most of today�s tools where engineered mappings play a central 
role, data architects must design transformations manually, 
possibly with automated support for generating correspondences 
using a schema matching algorithm. If we follow the three-step 
approach described at the beginning of Section 3.1, then data 
architects would design mapping constraints (as explained in 
Section 3.1.2), which the mapping design tool translates into 
executable transformations. We encapsulate this translation 
activity in an operation called TransGen, which produces a 
transformation that is consistent with the mapping constraints it 
takes as input.  
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The type of transformations that are generated depends on the 
usage scenario. For data exchange, the transformation copies the 
source database into the target database. For wrapper generation, 
report writers, and many other scenarios, view definitions are 
needed to support queries on the target database. For wrapper 
generation in support of data access applications, the views must 
also enable updates on the target (i.e., wrapper) schema to be 
translated into updates on the source. 
In some approaches the mapping constraints are not functions 
from source to target. For example, they may be GLAV 
constraints. Thus, given a database state that conforms to the 
source schema, there may be many states of the target database 
schema that satisfy the constraints. Usually, the desired 
transformation is a function that creates a target database from a 
source database. So one of the many target database states that 
satisfy the constraints must be selected. The approach taken in the 
Clio project [38][39] is to pick one that has the semantics of 
certain answers [1]: a query over the target should return only 
those tuples that are in the output of the query for every target 
database that satisfies the constraints. In some cases, the desired 
database state, called a universal instance, contains labeled null 
values that are needed to compute the answers to queries but are 
not allowed to be returned as part of the answer. 
Another approach is to generate the transformation directly, as in 
Microsoft�s next release of ADO.NET [70]. In ADO.NET, the 
target is an extended entity-relationship (ER) schema, called the 
Entity Data Model [22]. The source is a relational database. Users 
write queries and updates against the target ER schema, which are 
translated into queries and updates on the relational source 
database. Each constraint is expressed as an equality condition 
between two algebraic expressions: one over the target and one 
over the source, as in Figure 2. These constraints allow 
inheritance mappings, projections, and selections, but currently do 
not allow nesting (as in XML) or joins. The paper describes an 
algorithm that translates the mapping into two view definitions: a 
query view that expresses the target as a function of the source, 
which is used to support queries on the target ER schema; and an 
update view that expresses the source as a function of the target, 
which is used to translate updates on the ER schema into updates 
on the relational source database. The views must be lossless. In 
MMS terms, this says that the composition of the update view 
with the query view must equal the identity on the target. It is 
called roundtripping since data that passes through the update 
view and back through the query view is unchanged. 
As soon as one moves beyond flat relational mappings, it becomes 
more difficult to interpret them as transformations. The Clio 
project has papers explaining how to interpret mappings over 
XML schemas [45][99], and in [49] how to generate XSLT 
transformations. In ADO.NET the need for a sophisticated 
algorithm for generating transformations is in part due to the 
richness of inheritance mappings.  
A lot more work is needed on generating transformations. 
Constraints need to be enriched to handle more complex map-
pings. Yet they must still be easy to understand to the data 
architects who design them. In addition, it must be possible to 
generate efficient transformations that implement them, which is 
likely to expose a wealth of optimization opportunities.  

5. MAPPING RUNTIME 
Most of the literature on problems related to engineered 
mappings, especially data integration and wrapper generation, 

assumes that the result of the mapping design is a query or view 
that relates one or more  source schemas S to a target schema T. 
So the runtime is simply a query processor. However, there are 
many scenarios that imply other runtime requirements, where 
actions on data in the context of T need to be interpreted in the 
context of S, or vice versa. The difficulty of this interpretation 
depends on the choice of language for expressing the mapping 
mapST between S and T. The amount of interpretation that must be 
done by the runtime depends on how much of it can be done 
statically by an MMS. For example, consider the following issues: 

• Update propagation � Allow updates on schema T. These 
may be expressed in a data manipulation language. Or they 
may be the result of object-at-a-time updates to cached 
objects which are later written through to the data sources. In 
either case, the updates on T need to be translated into 
updates on S via mapST. 

• Peer-to-peer � There is a chain of mappings from the schema 
to be queried, T,  to a source S1, which is mapped to a source 
S2, etc. The mapping design tool might optimize a query on 
T to collapse the chain into direct mappings, e.g., from T to 
S2. In any case, the runtime needs to be able to process a 
query on T by propagating it through the chain [14][53]. 

• Provenance � After moving data from source to target, a user 
wants to know the source data that contributed to a particular 
target data item. This requires design-time analysis of the 
mapping plus runtime support to assemble a path of data 
instances that show how the target was derived. 

• Errors � If a data access via T is translated into an access on 
S that generates an error, then the error needs to be passed 
back through mapST in a form that is understandable in the 
context of T. For example, in an object-to-relational map-
ping, an object access may cause an erroneous access to a 
table that the user of T doesn�t recognize. 

• Debugging � Like any program, a mapping needs to be 
debugged. This could be done with breakpoints and single-
stepping, which are set in the context of T but may need to 
be executed in the context of S. Debugging can also benefit 
from provenance information that shows how the mapping 
generated target data (as in [30]), and from intelligent 
mapping of errors from S to T. 

• Access control � Access control constraints on the target 
might be enforced by a combination of constraints enforced 
on the server and those enforced by the client runtime. This 
may affect the constraint preprocessing required by the 
design tools to distribute the access control work between the 
two layers.  

• Integrity constraints � Integrity constraints exhibit the same 
design choices as for access control constraints above. There 
are both efficiency and feasibility issues when distributing 
constraint checking between the two layers. That is, due to 
differences in S �s and T �s metamodels, some constraints on 
T may not be expressible on S. For example, the disjointness 
of two sets of instances of two classes in T with a common 
superclass is not expressible as relational integrity constraints 
on S if S is relational and the classes are mapped to distinct 
tables. 

• Indexing � It may be desirable to index data that is exposed 
via T to support keyword search. However, in a wrapper or 
query mediator scenario, the data physically resides in the 
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data sources which have schemas S. For efficiency reasons, it 
is probably best to index the data sources and derive a 
mapping that enables the index to be accessed via T.  

• Business logic � Triggers and other business logic may be 
attached to data in the context of T. It may be more efficient 
to execute them in the context of S. This requires pushing the 
business logic through mapST, which should be done 
statically. 

• Notifications � Suppose data is materialized according to T, 
either fully (e.g., for a data warehouse) or partially (e.g., as a 
cache). Then it may be valuable for certain actions on data in 
S to produce notifications of corresponding actions to data in 
T. For update actions, this is the problem of maintaining 
materialized views. 

• Synchronization logic � Data replication rules may be stated 
in terms of T, e.g., that complex objects in schema T1 should 
be replicated to corresponding complex objects in T2. For 
efficiency, it may be better to translate the rules into 
equivalent rules on finer-grained (e.g., relational) data in the 
corresponding sources S1 and S2 to be executed there. 

• Batch loading � Since most database systems have a high 
performance interface for batch loading, in many scenarios it 
would be more efficient to load data directly into S rather 
than through T. This requires transforming the data to be 
loaded via mapST into the format required by S �s loader. 

• Data exchange � Suppose S and T are logical views of 
physical schemas SP and TP, with logical-to-physical 
mappings mapS-SP and mapT-TP. To execute mapST on the 
physical databases, it may be more efficient to translate it 
into a transformation mapSP-TP from SP to TP.  If S is a data 
source and T is a data warehouse, then the mapping may 
have interesting characteristics, such as deduplication or 
other heuristic operators, staging of data in mini-batches, 
sorting or other blocking operators, and a variety of 
metamodels such as spreadsheets and pivot tables. 

Solutions to many of the above problems are in hand when S and 
T are relational schemas and mappings are conjunctive queries. 
However, there are many open problems when richer data models 
and mapping languages are permitted. 

6. SCHEMA EVOLUTION 
When a schema changes, the objects that depend on it may no 
longer work properly. These dependent objects include views, 
queries, constraints, and programs that reference the changed 
schema and databases that are instances of the changed schema.  
Many commercial tools to solve the engineered mapping 
problems of Section 1 require the data architect to develop 
mappings. As mappings proliferate, the importance of schema 
evolution is likely to increase as will the need for tools to help.  
There are hardly any schema evolution tools today. This is rather 
surprising since there is a huge literature on schema evolution 
spanning more than two decades. Why is this? Is it because 
research solutions are impractical in some way? It would be 
valuable to have case studies that apply these research solutions to 
identify their strengths and weaknesses. 
Many of the approaches to repairing dependent objects that are af-
fected by schema changes require the manipulation of mappings. 
These manipulations can be abstracted as sequences of model 
management operations. We discuss some of these sequences in 

this section. Along the way, we will cite papers that are directly 
relevant to the use of model management for schema evolution. A 
more complete bibliography with references to over 300 schema 
evolution papers appears in [87]. 

6.1 Using Composition 
Consider the relatively simple schema evolution scenario in 
Figure 5. Initially, we have schema S that has a database instance 
D and a view V defined on S. Now suppose S is modified, yield-
ing S′. What options do we have to cope with that change? 

One possibility is to express the change from S to S′ as a mapping 
mapS-S′, and to use the mapping mapS-S′ first to migrate D to 
become an instance of S′, and then to modify mapV-S so it refers to 
S′ instead of S. How might this be done? The process of 
developing mapS-S′ was discussed in Section 3.1. The process of 
generating a transformation from mapS-S′ to migrate D to become 
an instance D′ of S′ was discussed in Section 4. Thus, the mapping 
mapV-S′ can be obtained by composing mapV-S with mapS-S′ ′.  
A concrete example is shown in Figure 6. We are given mapping 
constraint mapV-S between V and S. Then the Addresses table in S 
is split into two tables for local addresses and foreign addresses, 
yielding S′. Since S has changed, mapping mapV-S is no longer 
valid.  To update it, we first represent the change from S to S′ as 
the mapping mapS-S′ shown in the figure, and then compose the 
two mappings mapV-S and mapS-S′, yielding the following mapping 
mapV-S′ : Students = πName,Address, Country (Names′ ⋈       
      (Local×{�US�} ∪ Foreign))  
What exactly does the composition operation do? We can express 
this using instance-level semantics, which we introduced in 
Section 2: each schema S has a set D of possible database 
instances and a mapping map12 between S1 and S2 defines a subset 
of D1 × D2. Given mapping constraints map12 between S1 and S2 
and map23 between S2 and S3, the composition map12 • map23 is 
defined to be the set of all pairs of instances D1 ∈ D1 and D3 ∈ D3 
such that there exists a D2 ∈ D2 such that <D1, D2> satisfies map12 
and <D2, D3> satisfies map23 [40][66].  
Instance-level semantics precisely defines the behavior of compo-
sition in the abstract. However, for the operation to be useful, we 
need concrete algorithms that can implement it for particular 
schema and mapping languages. There has been some progress 
along these lines which we summarize briefly. See also [60]. 
Suppose a mapping is expressed as a containment of two project- 
join expressions, PJS ⊆ PJT, over relational schemas, meaning that 
the set of tuples in the result of the first expression is contained in 
the result of the second expression. In the theory literature, this is  

D 

S

V

S′ mapS-S′ 

mapV-S 

D′ 

mapV-S′ 

Figure 5: Schema evolution scenario 
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called a tuple generating dependency 2 (tgd) [3]. If  PJS refers only 
to symbols of the source schema and PJT refers only to symbols of 
the target schema, then it is a source-to-target tgd (st-tgd) [38].  
In [40], Fagin et al. showed that the composition of two st-tgd�s is 
not always expressible as a set of st-tgd�s. That is, st-tgd�s are not 
closed under composition. To circumvent this problem, they 
introduced a second-order extension of st-tgd�s that is closed 
under composition. They give an algorithm to compute that 
composition, which has an exponential lower bound since the size 
of the output may be exponential. Their decision to use second-
order st-tgd�s is another example of how the behavior of design-
time model management operations can affect the mapping 
runtime. That is, they proposed a different mapping constraint 
language to obtain a well-behaved mapping composition algo-
rithm. If one wants to execute constraints, then the proposal places 
a requirement either on the mapping runtime to support that 
language or on design-time operations to translate these con-
straints into a language that the runtime can execute. 
Yu and Popa [103] extend the algorithm of [40] to handle nesting 
and apply it to some schema evolution scenarios. They also study 
optimizations of the result of the composition. 
In [78], Nash et al. show that the problem of composing mapping 
expressed as tgd�s that may not be source-to-target is undecidable. 
Nevertheless, they give an algorithm to compute the composition. 
Clearly, the algorithm does not terminate for all inputs, but when 
it does it gives the right answer. In [15], Bernstein et al. describe 

                                                                 
2 The term �tgd� comes from considering the mapping to be a 

logic formula of the form "#$  %&%#$' ( )* +,%#$ , *-)), where #$ and * +  are sets of variables, &%#$' is a conjunction of relation atoms, 
and ,%#$ , *-) is a conjunction of relation atoms that uses all of the 
variables of * + . So the tuples of relations in &%#$' �generate� 
tuples of relations in ,%#$ , *-). If &%#$' is restricted to use only 
relation atoms of the source schema, and ,%#$ , *-) is restricted to 
use only relation atoms of the target, then it is source-to-target. 

an implementation of that algorithm with some extensions and 
report on experiments. 
From this recent work, we know that mapping composition is a 
hard problem whose difficulty is quite sensitive to the expressive-
ness of the allowed mappings. To apply composition in practical 
settings, we expect that richer languages will need to be consider-
ed. Thus, there is much opportunity for further research, both to 
extend the reach of existing algorithms and to use them to solve 
practical problems in the real world. 

6.2 Diff  
Let us revisit the scenario of Figure 5. Suppose S′ includes some 
information that was not expressed by S. What if we want to 
update V to include that information? Versions of this scenario 
are described in [10][17][20][67], with example programs. We 
summarize one variation briefly here to motivate the need for 
some of the other model management operations. 

First, we need to identify the new parts of S′. This is the responsi-
bility of the Diff operation. It takes S′ and mapS′-S as input. Intui-
tively, it returns a schema S″ that includes the new parts of S′ (i.e., 
the parts of S′ that do not participate in the mapping mapS-S′) and a 
mapping mapS′-S″ that describes the overlapping parts of S′ and S″.  

The instance-level semantics of Diff can be described using its 
dual operation: Extract(S′, mapS′-S) returns a maximal sub-schema 
of S′ that can be populated with data from S via mapS′-S along with 
a mapping between that sub-schema and S′. Diff(S′, mapS′-S) is 
essentially the complement of Extract. That is, it returns a sub-
schema of S′ that includes the parts of S′ that were not returned by 
Extract. We omit the instance-level semantics of Diff, which are 
rather involved; see [67] for details. The first mathematical 
characterization of Diff that we know of was given in [8] using 
category theoretic concepts, where it was called the view 
complement problem.  The only algorithm we know of to 
compute Diff is that of Lechtenbörger and Vossen [61] for the 
case when the input mapping is a relational select-join view. 

Notice that the definition of Diff takes S′ and mapS′-S as input, 
while the mapping given in Figure 5 is mapS-S′. This is just a 
minor syntactic issue that can be fixed by the Invert operation. 
Recall that mapS′-S defines a subset of D′ × D, where D′ and D are 
the sets of possible instances of S′ and S respectively. 
Invert(mapS′-S) is defined to be the set of pairs <D,  D′>  such that 
<D′,  D> is in mapS′-S. Thus, to identify the new parts S″ of S′, we 
run Diff(S′, Invert(mapS-S′)). 

It is possible that some of the information in S is lost in S′. We can 
capture this using the concept of information capacity [55]. 
Roughly speaking, we say that the information capacity of S′ is at 
least that of S if there is a function f on database instances such 
that for any instance D of S, there is an instance D′ of S′ such that 
f(D′) = D. If the information capacity of S′ is not at least that of S, 
then some information is lost in S′. We can save the data that 
would be lost in a migration from S to S′ by calling Diff(S, 
mapS-S′), which returns a schema that covers the lost data and a 
mapping to populate that schema. 

6.3 Merge 
Now that we have new parts S″ of S′,  we need to combine it with 
V. If S″ and V are expressed in the same metamodel, then this can 
be done with the Merge operation. It takes as input the two 

Figure 6: Using mapping composition for schema evolution 
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schemas to be merged and a mapping between them that describes 
where the two schemas overlap. It returns a merged schema along 
with mappings between the merged schema and each of the two 
input schemas. In our example, the mapping required as input to 
Merge is calculated by composing the mappings on the path 
between S″ and V. That is, mapV-S″ = mapV-S′ • mapS′-S″ .  

If S″ is not expressed in the same metamodel as V, then before 
doing the merge, we need to invoke the ModelGen operation on 
S″ to produce an equivalent schema S′′′ in V�s metamodel and a 
mapping mapS″- S′′′ . Then we can merge S′′′ with V using mapV-S′′′ 
= mapV-S′ • mapS′-S″ • mapS″- S′′′ . 
An instance-level semantics of Merge was given in [67]. 
Algorithms for computing a merged schema from input schemas 
when the input mapping is defined by exact match of element 
names appeared in [25] and when the input mapping is a set of 
correspondences in [67][82]. Some view integration algorithms 
can also be used as Merge algorithms [21][64][97]. Still, we are 
lacking an understanding of Merge relative to the expressiveness 
of its input and output mappings, as has been developed for 
Compose. Thus, when expressive mappings are used in schema 
evolution, new merge algorithms are likely to be needed. 

6.4 Computing an Inverse 
Suppose that database D is migrated to D′, as in Figure 5, but it is 
later determined that the migration was a mistake. If updates were 
applied to D′ after the migration, then the transformation tranD-D′ 
from D to D′ needs to be reversed. That is, we need the inverse 
tranD′-D of tranD-D′. This is not the same as the Invert operation of 
Section 6.2, which simply reverses the roles of the source and 
target of the mapping (which may be a relation, not a function). 
Rather, we need a transformation that can actually produce an 
instance D from an instance D′. Ideally, we would like this inverse 
to roundtrip. That is, given an instance D, if we use the forward 
transformation tranD-D′ to produce D′ and then execute the inverse 
transformation tranD′-D, we would like the result to be the same D 
that we started with. This is the same as the roundtripping 
condition described for ADO.NET in Section 4. 
Fagin studies inverses of schema mappings in [37]. He formally 
defines the inverse of a mapping and gives several cases where it 
can be computed. In a follow-on paper [41], Fagin et al. introduce 
a relaxation of the notion of an inverse, called quasi-inverse. They 
give conditions where it does and does not exist and characterize 
the language to express inverses. 

7. CONCLUSION 
We have discussed a revised vision of model management�an 
infrastructure for tools that support data programmability. Model 
management operations include Match, ModelGen, TransGen, 
Compose, Diff, Merge and several others.  The revised vision has 
two main aspects: first, the operations need to manipulate highly 
expressive mapping languages; and second, the runtime system to 
support mappings is part of model management. These aspects of 
the revised vision lead to many challenging research problems. 
We summarized recent work along these lines and highlighted 
some areas where additional work is most pressing. 
The vision of model management is to encapsulate its operations 
in a schema and mapping manipulation engine that is used for a 
wide range of products where engineered mappings play a central 
role. To accomplish this, we need algorithms for all of the 
operations based on a common metamodel and expressive 

mapping language, and a way of using them to support 
metamodels and query languages that are in common use. 
Solutions to these problems are not in hand. We are still at the 
stage of reusing algorithms and designs for each new practical 
problem and mapping language that we face, not at the stage of 
reusing packaged components.  
Schema mappings are proliferating. They are coming from ETL 
tools, object-to-relational mappers, report writers, and many other 
applications. Whether or not one buys the vision of model man-
agement, the need for more powerful and cost-effective solutions 
can hardly be denied. Thus, there are still many years of research 
ahead to greatly improve the quality of tool support we offer to 
help data architects solve the data programmability problems that 
arise from the design, implementation, and use of engineered 
mappings. 
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