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Abstract: The fitting of a tree metric to a given dissimilarity with a weighted
least-squares criterion is considered. According to several authors, this criterion is
well adapted to the problem of inferring evolutionary trees, as, for instance, phylo-
genies. Because the problem is already known to be NP-hard for the unweighted
least-squares formulation, the weighted case would profit from good heuristics.
The heuristics proposed in the literature in the unweighted case do not typically
generalize to the weighted case, for instance tc phylogenetic models incorporating
an evolutionary noise which is not proportional to the distance values. We propose
an original method for the construction of a tree by stepwise addition, with a calcu-
lation of the lengths of the new edges according to a least-squares criterion allow-
ing the introduction of arbitrary weights. This procedure is tested on some exam-
ples and compared, on the basis of a classical scheme already used several times in
the literature, to classical unweighted methods, and to the weighted methods
recently proposed by Gonnet (1994) and by Felsenstein (1997).
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Résumé: On consideére le probléme de I’ajustement d’une distance d’arbre 2 une
dissimilarité donnée selon un critére de moindres carrés pondérés. Selon plusieurs
auteurs, un tel critere est bien adapté a la reconstruction d’arbres évolutifs, par
exemple phylogénétiques. Comme ce probléeme est déja reconnu comme NP-
difficile dans le cas particulier des moindres carrés non pondérés, il peut utilement
&tre abordé par la recherche de bonnes heuristiques. Celles de la littérature
s’appliquent en général au cas non pondéré et peuvent difficilement &tre adaptées a
des modeles phylogénétiques supposant un bruit évolutif non proportionnel aux
distances. Nous proposons une méthode originale pour la reconstruction d’un arbre
par addition d’une nouvelle feuille a chaque étape, ol le calcul des longueurs des
nouvelles ar€tes est basé sur le critére des moindres carrés avec possibilité
d’introduction de pondérations arbitraires. Cette procédure est testée sur plusieurs
exemples et comparée selon un dispositif déja employé plusieurs fois dans la
littérature & des méthodes non pondérées classiques, ainsi quaux méthodes
pondérées récemment proposées par Gonnet (1994) et Felsenstein (1997).

Keywords: Tree metric; Dissimilarity; Phylogenetic tree; Fitting algorithm;
Weighted least squares; Lagrange multipliers.

1. Introduction

This paper addresses the problem of fitting a tree metric 6 to a given
dissimilarity d. Many algorithmic methods for inferring an additive tree,
associated with a tree metric, have been proposed in the literature, irrespec-
tive of whether the initial dissimilarity is a metric. An additive tree is a
labeled and positively valued tree such that the lengths of the edges incident
to the path between any pair i, j of vertices can be summed to yield a distance
between i and j which, in phylogenetic applications (and others like the filia-
tion of manuscripts referred to in the celebrated Buneman 1971 paper), is a
quantitative measure of an evolutionary distance.

Formally, let d;; be a given dissimilarity (a pairwise distance estimate)
on a finite set X with n elements, T a valued tree with X as set of leaves, and
d,; the input (pairwise) data used to estimate length of the path connecting the
leaves i and j in 7. [Note: In contrast to some authors, we are using 5,-j to
represent the distances fitted to the inpur data d,-j.] For the evaluation of
goodness-of-fit, we will consider criteria of the form:

Q = Zigisjzn Wij(di; — 8;)* > MIN

where w;; is the weight applied to the separation of elements i and j. Hence,
this function represents a weighted least-squares criterion to be minimized
over the set of valued trees.

Such a criterion Q may be adapted to various practical situations; for
instance, if some observed dissimilarity values seem to be erroneous, and if
the identities of these uncertain estimates are known, this knowledge may be
incorporated into this criterion by assigning relatively low weights to the
values. The development of this type of approximation is primarily
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motivated by the extensive use of additive trees in phylogenetic reconstruc-
tion. According to Swofford and Olsen (1990), there are four weighting
schemes most frequently applied in this domain; of course, they may be also
relevant in other fields of application:

1
wij =1 ’ (a) Wij = d: » (b)
1 .
1 1
Ww;; = , (c w;i = , (d

where 0',7"']- is the expected variance of measurements of d;; (for a detailed dis-
cussion, see Swofford and Olsen). The first three equations correspond to
some assumptions about the uncertainty of the measurements: Equation (a),
from Cavalli-Sforza and Edwards (1967) assumes that all the distance esti-
mates are subject to the same magnitude of error; Equation (b) assumes that
the estimates are uncertain by the same percentage; while Equation (c), from
Fitch and Margoliash (1967), corresponds to the assumption that the uncer-
tainties are proportional to the squares of the values. Expression (d) is pre-
ferred when there is a good procedure for estimating the 0',-2]-’s. Missing data
could be managed by setting the corresponding weights to zero.

In fact, the problem of least-squares approximations of a tree metric to
a given dissimilarity was shown to be NP-hard by Day (1987, 1996). In the
best case therefore the problem of weighted least-squares approximation is
also NP-hard.

Such facts have stimulated the development of heuristic approaches,
leading to many algorithms allowing reconstruction of a tree topology.
Several methods begin with the development of a star tree. At each step, one
more latent vertex is added, adjacent to two of the leaves. Such approaches
include the ADDTREE method of Sattath and Tversky (1977), its refinement
(the method of scores) by Barthélemy and Guénoche (1988, p. 154; 1991, p.
151), the neighbor-joining method of Saitou and Nei (1987) as well as its
alternative versions UNJ and BIONJ by Gascuel (1997a, 1997b).

An alternative technique, initiated by Farris, Kluge, and Eckart (1970;
scc also Farris 1972, and Hein 1989), proceeds by stepwise addition of leaves
to a growing tree. Starting from an initial star with three leaves, one of the
unplaced elements is selected at each step to be added to the current tree. For
example, such an approach is used by Swofford in the PAUP package (1996),
observing parsimony principle. It consists of checking at each step all the
remaining unplaced elements for connection to every edge of the current tree,
and choosing the element-edge combination that provides the smallest
increase of the sum of the edge lengths in the tree. A least-squares method
based on stepwise addition had been proposed by Felsenstein (1997) and
implemented in the program FITCH of Felsenstein’s PHYLIP package. In
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FITCH the leaves are added one at a time to all possible places in the tree,
with the one having the smallest weighted sum of squares being retained,
The elements are added in the same order in which they are presented in the
data matrix, and the edge lengths are reevaluated after each test addition in
order to decrease the value of Q.

In this paper, we propose another stepwise addition algorithmic stra-
tegy based on a weighted least-squares criterion. One of its features, com-
pared to the FITCH algorithm, is to allow any weighting function. This algo-
rithm applies to several types of data on an object set X of size n: metric, dis-
similarity, symmetric, and possibly having negative values in the input data
matrix. In all these cases, the algorithm provides a preliminary estimation of
edge lengths together with a tree topology. Then, the estimation of edge
lengths nay be improved using a quadratic approximation procedure (based
on a weighted least-squares criterion) implemented on a fixed tree topology
(often called a support tree in the literature). Toward this aim, we adapt a
method proposed by Barthélemy and Guénoche (1988, p. 64; 1991, p. 62) in
the unweighted case. The complexity of the basic procedure is shown to be
O(n®). Tt may increase to O(n°) when one employs a strategy based on itera-
tive use of the basic procedure, starting from all the #(n — 1)/2 possible ini-
tial pairs of distinct elements. Then, several different, valued trees are gen-
erally obtained. The user generally chooses from among them the best one
for criterion Q but can still adopt another choice strategy at this stage. '

The paper is organized as follows, Section 2 includes a detailed
description of a straightforward procedure for performing the basic algorithm.
A way to reduce its complexity is analyzed in Section 3, which ends with a
discussion of possible starting strategies for this algorithm. The problem of
the quadratic approximation of the edge lengths on the support tree with
respect to the weighted least-squares criterion is investigated in Section 4,
where a new, unusually fast method for the re-estimation of edge lengths is
discussed. We conclude with a presentation in Section 5 of the performance
of our algorithm, compared to several published methods.

We end this section with some basic definitions about trees and tree
metrics, generally following the terminology of Bartélemy and Guénoche
(1988, 1991). Unordered pairs of distinct elements x, y will be often denoted
as x y instead of {x, y}. The distance (path length) d(x y) between two ver-
tices x and y in a valued tree T is defined as the sum of the edge lengths in the
unique path linking x and y in 7. Such a path is denoted as T(x y). Note that
the distance between the vertex x and the path T(y z) in the tree T is equal to
Bx ¥) + 0(x 2) — (v 2))/2. A leaf is a vertex of degree one. A vertex that
is not a leaf is said to be a latent (inner) vertex. Let x be a leaf of the tree T.
The articulation point a(x) of x is the unique latent vertex adjacent to x (such
that x a(x) is an edge of 7).
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2. The Fitting Procedure

Let D be a symmetric matrix (of dimension # Xn) on a set of n ele-
ments ¥ = {y{,y2,...,y,}. The value of D corresponding to row i and
column j is denoted as either d;; or d(y;y;). It is assumed that d(y;y;) = O for
any element y; of ¥ and that d(y;y;) > O for at least one pair y; y; (otherwise,
negative entries of D are allowed). Let W be a symmetric matrix of weights.
Recall that the criterion to minimize is:

0 = Zigigjen Wii(diy) - 8Oiy))*

where 6(y;y;) is the estimate corresponding to d(y;y;) and w;; is the weight
associated with the pair i,j.

Step 1. Consider two elements y; and y; of ¥, for instance such that d(y;y;) is
the smallest positive value in D. Set xq =y;, x, =y;, and X = {x;,x2}. The
tree T2 consists of the unique edge x1x, of length d(x{x,).

Step k. Let 7% be the current valued tree, as constructed in the previous
steps. This tree has k leaves corresponding to a subset X of Y. We have to
select from the # — k elements of the set ¥\ X (i.e., the subset of Y excluding
X), the most suitable one according to criterion Q. For this purpose, we try to
add a new leaf x;; to the tree T by considering all the possible connections
of each element of ¥\ X on each edge of T* in turn.

For a fixed element y; of Y\ X and a fixed edge uv of the valued tree T¥,
we determine the place and the length of the new edge a;y; as follows: provi-
sionally set x;,.1 = y;; let uv be an edge of the path Tk(xlxj) (see Figure 1);
assume that the articulation point a(xy,1) = az+1 of the leaf x; ¢ lies on the
edge uv, and let p be the number of edges positioned on the same side of the
latent vertex ay,; as a vertex u. The other k — p leaves are placed on the side
of v.

Without loss of generality, it is assumed that the leaves from x; to x,
are situated on the side of u relative to the edge uv, and the leaves from X,
10 x;, are situated on the side of v.

The following Mathematical Programming problem with unknowns o,
B, and vy is now considered. In the expression below, o is the distance in the
hypothetical tree T*+1 petween the leaf x1 and the articulation point a1, B is
the distance between x; and a1, and v is the length of the edge ag.,1 x41:
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Figure 1. Bold and thin lines respectively represent paths and single edges.

Wi (O + Y — A 1241 ) + Wigar (Y + B —d(xj241))*

+ Tocicp Wik+1 (A 41) —(00 + ¥ + 8(xx;) =B(x 1))

+ 2 p1sick inj Wik+1(dixes1) =B + 7 + 80r1x) —8(x1x;)))* — MIN,
subject to

B=00rx)—0a,y20, 0(xu) Sa<d(x1v),

where w; 4 is the weight of the pair x;x.1, and 6(xu) and d(x;v) are
respectively the distances between the vertices x; and u, and between x; and
v in the tree T*.

Note that the i-th term of the function to be minimized represents the -
weighted least-squares deviation between the hypothetical estimated distance
3(x;%+1) in the tree T**! and the corresponding input value d(x;x.1).

Now introduce new constants:

k; = d(xixk,,l) - S(xixj) + 5(]C1xj) (1<i S])), and
k= d(xixk,,l) - 5(x1xi) (p +1<i< k) .

Using this notation, the following optimization problem is obtained:
Ticicp Wigr1 (ki = O + 00) + Zpp1gig Wige1 (ki — (Y — 0))* = MIN,

subject to: ¥20, d(xqu) £ o< 8(xqv).

After developing this expression and deleting constant terms, we have:
(Craick Wiks1) O + Crgige Wiks1) T
+ 2(Z1gigk Wik+1 — Zpelsisk Wike1) O
+ 2(— Zygip Wiks1 ki + Zpi<ice Wikar ki) O
+ 2(Z i Wiks+1 ki) Y = MIN,
After denoting
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= Zicige Wik+1 »
1 = 2(— Zigep Wikst ki + Zpricige Wiks1 ki)
My = 2(Z1<ig Wik+1 ki), and
Wy = 2(Z1<icp Wiks1 — Sp+l<ick Wiks1) »
the problem reduces to:
no? + Pyt + Py o+ oY + Paoty = MIN,
subject to: y=0, d(x u) S o< d(xqv).

This optimization problem can be solved by a method of Lagrangian
relaxation (see, for instance, Minoux 1983, p. 178). We obtain the following
Lagrange function:

Fj, = Ho? + [Y° + 110 + HpY + Ha Oty
+ A (0= 3(x1v)) =AY + Mg (Bx1u) — ) ;

Necessary conditions for reaching the minimum are:

F'y =200+ WY + Wy + A —A3 =0,

Foy =20y + a0t + P —Ap =0,

Mot —38(x1v) =0,

Ay =0, and

M (B(xqu)—o) =0, whereh; =0fori =1,2,3.

After solving this system of equations, we choose the best pair (., )
satisfying the constraints and minimizing the weighted least-squares criterion
Q. Six such solution pairs are possible:

M+ H3d(x1v)

2. o= d0(xqv),

2p
My
. =——, =0;
3 o m Y
Ha s —2Hjy Hills — 2Pl
4 e=T 0 2 Y= a2z
4p” — uj 4p” -3
5. o= d(xqu), v =0; and
+ U30(x 1
6. o= 50w, = My + H30(xy ).

2u
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After finding the best ‘‘edge-clement’’ combination in the tree T* we
proceed to Step k + 1 to place the next element x;,, in the resulting tree
T**1, The algorithm stops when the tree T with 7 leaves is constructed.

We conclude this section with a possible variant of the algorithm. If we
specifically deal with the phylogenetic reconstruction problem, we can pro-
pose an approach combining the principles of weighted least-squares and par-
simony. In this case, the selection, at each step, of an edge uv and an element
xx4+1 depends firstly on the estimation of a hypothetical tree 75*! for the cri-
terion Q and, secondly, on the total length (the sum of the edge lengths) of
T**1, For every element y; € P\X, its best place in the tree T* is determined
by the optimization procedure indicated above, and we set x;,q = y; if the
value of coefficient Q obtained for y; is minimum among the elements of \X.
But if the values of Q are equal, for example, as is often the case at Step 2 (Q
is equal to O if the three relevant entries of D are extracted from a metric
space), or very close for several elements of Y\X, the one providing the shor-
test length of the new edge a;y; is selected.

3. Reducing the Algorithmic Complexity

In this section we show how to reduce the complexity of the algorithm
described above. Itis easy to see that once the values |, Wy, Uy, and s intro-
duced in the previous section are known, the computation of a local solution
is feasible in O(1) time.

In contrast, if we carry out the computation from the beginning of the
procedure, summing the values w; .1, then O(k) operations are needed at
Step k to test the grafting of an element y; of the set Y\X to an edge uv of the
tree 7. Such an approach leads to an O(n*) complexity for the whole algo-
rithm.

Indeed it is possible to decrease this complexity to O(n*) by updating
and storing, at each step of the algorithm, the values of the variables p(i),
Wy (uv,i), to(uv,i), U3 (uv,i) for each edge uv of the current tree 7%*! and each
clement y;, belonging to the set Y\X. At Step k, 3(2k —3)(n ~ k) double-
precisioned numbers must be stored in memory, that is, at most 3(2n — 3)2/8
numbers, an amount comparable to the volume of initial data. For each edge
uv of the new tree T%*!, we also retain one leaf x; such that uv lies on the path
Tk+1(x 1X;). Then, at the next Step &k + 1, it is not necessary to use the formu-
lae in Section 2 to recompute the values of u, p, My, and 3. In fact, it
suffices to note the position of the last edge a;,1x;.1, grafted onto the tree at
Step k, to obtain these values for each edge uv and some unplaced element y;.

Taking into account on which side of the edge uv the new vertex x; .1 is
situated (Figure 2), we assign new values to the variables W, [1;, [y, and i3
according to the formulae given below.
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X1 ® g ®Xj

Xpp1 & %+1

Figure 2. The vertex x;,; is placed on the side of v with respect to the edge uv if and only if:
3(x V) S (B(x 1 Xg41) + B((x1x;) — d(x;x;,1))/2. The designation of bold and thin lines is the
same as in Figure 1.

To go from Step 1 to Step 2, we need to know for each y; € Y\{x,x2}

the following values:

ky = d(xay;) - 8(x1x7) ;

ki =dx1y);

HEY=wy; +Wo; s

Ry (X280} = 2(kawo, —k1we,)

Mp(x1x2,0) = 2(kawo, + k1w ) ;

M3 (X1x2,0) = 2(W1q,; = W2,i).

To perform the transition from Step k to Step k + 1, we need to imple-
ment for each edge (except ay.1xr+1 Of the new tree T*+1 and for each ele-
ment y; € N\X, the following changes:

WG) := w@) + wyyy;  (does not depend on the edge uv),

Wy (uv,i) = 2k 1 3 Xp 4y

is placed on the side of « with regard to edge uv,
Wy (v, 1) + 2wy x i X

is placed on the side of v,

Wy (uv,i)

.

Mo (uv,i) — 2KWey1,i

Wy (uv,i)

M3 (@v,i) + 2Wpy g i Xpaq

is placed on the side of u,
Ma(uv,i) — 2Wry 1 1 Xpas

is placed on the side of v,

Ws(uv,i)

A 1y;) + 00x1%;) — 806Xk, 1) if Xeys
with k. = is placed on the side of u,
P dgay) — 3 X ) i X
is placed on the side of v.
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To determine the values of u, [y, Wy, and ps associated with the new
edge ag 4141 grafted on the tree at Step k, we use the equations developed in
Section 2. Inthis case all leaves xy, . . . ,x; are placed on the side of gz, and
X = X+

The complexity of transition from Step & to Step k + 1 is O(k?), that is
equivalent to the complexity order of the choice of the best element y; in \X
and the best edge in the tree T at Step k, given the values W, y;, Uy, and 3
are known. Consequently, the total complexity of the basic algorithm is
equal to Z14<, 0% = 0(n).

Of course, the algorithm leads to different results depending on the pair
x1x selected at the first step. To ascertain whether an appropriate choice of
initial pair x;x, could yield the optimal solution or at lcast a relatively very
good one, we investigated the question if it is better to make the initial choice
of the smallest (as proposed in the above description of Step 1) or the largest
dissimilarity value. In fact, a series of overall tests did not reveal any gen-
erally best strategy for the pair that guarantees the smallest value of criterion
Q. There are almost always more than one pair, among the n(n — 1)/2 possi-
ble initial pairs, leading to the tree topology providing the optimal, for this set
of initial pairs, value of O (subsequent to using an approximation procedure
discussed in the next section). The closer a given dissimilarity is to a tree
metric, the broader is the set of initial pairs yielding the optimal tree topology
for this method. Obviously, the execution of the algorithm over the set of all
the n(n — 1)/2 different possible initial choices increases the complexity of
the method to O(n°).

We have implemented such an exhaustive procedure with two possible
options for selecting the next two elements x; and x4 to add to the tree. In
the first option, this pair is determined according to Steps 3 and 4 as described
in the previous section, while the second option selects the pair x3x4 which
minimizes the value of Q on the tree with four leaves. Thus, in this option,
for a fixed pair of initial elements x;x,, the value of Q is estimated for each
possible pair x3x4 and for each of the three different non-degenerate tree
topologies available for a tree with four leaves {x,x5,x3,x4}.

4. Approximation of Tree Lengths on a Given Tree Topology:
The Weighted Case

In this section, we study the possibility of carrying out a weighted qua-
dratic approximation of the edge lengths of a trec of fixed topology H. That
is, the lengths of the edges of H are computed in such a way that the
corresponding estimated distance & best approximates the values of the given
dissimilarity (or data matrix) for the weighted least-squares criterion Q. In
fact, the method proposed here is a generalization, introduced in Makarenkov
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(1997), of that proposed by Guénoche (1987) and be Barthélemy (1988, p. 62;
1991, p. 60) in the unweighted case.

Let H be an unvalued tree with a set of leaves labeled according to X
and let d be a given dissimilarity on X. By the definition of a tree, there exists
a unique path H(xy) in H between two leaves x and y. The length 6(xy) of
this path is equal to the sum of the lengths of its edges. Let wy, be the weight
corresponding to the pair of elements xy. We therefore seek to minimize the
following function:

S yex Woy (d(xy) — 8(xy))?
=2, ex (Wwyy d(xy) = Yy, S00))?.

Let m =m(H) be the number of edges in the tree H, and let
=), 1(2),...,l(m)) be the vector of its edge lengths. A matrix of dimen-
sion 0.5xn(n — 1) X m, each row of which is associated with one pair of the ele-
ments of X, is denoted A,,. The value of this matrix corresponding to the pair
xy is equal to \/@ if the corresponding edge from the relevant column lies
on the path H(xy), and to O otherwise.

Equating, for each pair of vertices of X, the dissimilarity value to the
length of the path joining them, we obtain a linear system of n(n — 1)/2 equa-
tions with m unknowns which is denoted by A, x1=4d,, where d,, is a
n(n — 1)/2 vector, each value of which consists of the product of the dissimi-
larity value multiplied by the square root of the corresponding weight. When
n =4, this system has more equations than unknowns. It therefore must be
solved approximately in the weighted least-squares sense by comparing the
path lengths with the dissimilarity values. The problem can be formulated as
follows:

(A, x1-d,)> > MIN;
after taking the gradient we have:
Al x(A, x1-d,)=0,

where A!, denotes the transposed matrix A,,. Following algebraic manipula-
tion, we obtain:

Al x A, x1 =A% xd,.

Let B=Af xA, and ¢ = A}, xd,,. Thus, we have: B x| = ¢, where B
is an m x m matrix and ¢ is a vector with m components. This is a classical
optimization problem, whose solution can contain negative values. Follow-
ing Barthélemy and Guénoche (1988, p. 65; 1991, p. 63), we apply a slightly
modified Gauss-Seidel method to solve the above system and to find a non-
negative solution required by our tree metric model.
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The method consists of decomposing B into its diagonal (A), its strictly
upper triangular component ( — F) and its strictly lower triangular component

(-E).

b1y by - by .
= |Pn bm o bon) A |=A-E-F,
-E
bml bm2 bmm

We then apply the iterative procedure:

Ax1®D = g x1®*D L px1® 4+ ¢,

which allows us to compute successively the components of the vector 1¢+1),

corresponding to the edge lengths at the (k + 1)-st iteration, from those of 1%,
If the computed value of I(j)**D is negative, it is replaced with the value 0.
This operation is equivalent to the projection on the cone 1= 0, which ensures
an appropriate solution. The exact equation for the calculation of this method
is,forall j =1,2,...,m:

I = (= (Eja1gambil (D) — Cragjaa byl (NED) + ¢)) /b5 .

It is worth noting that a binary support tree H (that is, with # leaves and
n — 2 latent vertices, all of degree three) always provides a better approxima-
tion of a given tree metric than any degenerate trec obtained from H by con-
tracting some latent vertices. So, to improve the quality of fit, a degenerate
support tree is always replaced with a convenient binary tree obtained by
merging inner vertices with degree greater than three.

According to the formulae above, the calculation of matrix B requires
O(n*) time, while the vector ¢ can be computed in O(n?) time. Bryant and
Waddell (1998) recently proposed a new algorithm allowing B to be calcu-
lated in O(n*) time. However, both matrix B and vector ¢ can be calculated
in O(n?) time. Let us outline the features of this optimal O(n?) time algo-
rithm. In fact, it suffices to note that all the components of B and ¢ can also
be calculated using the following formulae:

bij = Zy ye xWiyTij (xy), 1<i,j<m, and
C; = Xy yexWryd(xy)T;(xy), 1<i<m, where

romanif both edges i and j belong to the path H(xy),
romanotherwise.

1,

T(xy) = 0,
The main idea is to define B and c¢ starting from the set of edges incident to
the leaves. An internal edge i may be examined only if all the edges incident
to one of its extremities have already been examined. The examination con-

sists of computing by induction the values ¢;, b;, and b;;, where j is an edge
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already examined, using values already known, taken from B and c,
corresponding to the edges incident to one of ¢’s extremities.

Consequently, the first part of the approximation method above (writ-
ing the linear system) has an O(n?) complexity, while the second part (the
Gauss-Seidel iterative procedure) requires O(n?) operations for each itera-
tion. Established experimentally, the number of iterations sufficient for the
convergence to the vector solution is on the order of n. In general, we reach a
1073 precision after m iterations. However, often a small, fixed number of
iterations, is sufficient to provide a good solution. So even an O(nz) time
complexity procedure works quite well in practice. It is worth noting that a
good initial approximation of vector 1 is often required to obtain the optimal
or a sufficiently good solution.

Here is an example of implementing this method on the tree topology
of Figure 3, the dissimilarity matrix D of Table 1 and the weight matrix W of
Table 2.

For instance, the edge ax belongs to the paths (ab), (ac), (ad), and (ae)
in the tree of Figure 3; therefore, we have: B(ax,ax) = wy, + W, + Wug +
Wee = 10+9 +8+7 =34, and also c(ax,ax) = d{ab)wy, + d(ac)w,. +
dladyw,g + d(ae)w,, = 1x10+ 2x9+ 3x8+ 4x7 =80

We start the Gauss-Seidel iterative procedure with matrix B and vector
c of Table 3 and with provisional edge lengths, all equal to 1. For these data
seven iterations were required to reach the optimal edge length values, given
in the last row of Table 4, with 0.001 precision. The last column of Table 4
demonstrates that this approximation method allowed reducing the quantity Q
from 439 for the initial values to 35.251 for the final solution.

Felsenstein (1997) discusses another approach for improving the values
of edge lengths on a fixed tree topology, which provides results very close to
those obtained with the above algorithm. Felsenstein’s method, implemented
in the computer program FITCH of the PHYLIP package, also proceeds by
iterative improvement of the edge lengths with respect to given dissimilarity
and weight matrices, with the constraint on non-negativity of edge lengths.
The method consists of moving through the binary tree, taking each interior
node of the tree in turn, pruning the tree to reduce the problem to minimiza-
tion of @ with respect to the lengths of the three edges incident to that node,
and finding the optimal lengths for those three edges. Each iteration of
Felsenstein’s procedure, consisting of a recalculation of the lengths of all the
edges in a tree with n leaves, requires O(n>) time. Felsenstein recommends
carrying out at least four such iterations to obtain good estimations of tree
lengths, but it seems likely that the same number of iterations as in the
Gauss-Seidel procedure is needed to reach the same degree of precision.
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Figure 3. A tree topology with five leaves a, b, ¢, d, and e.

Table 1 — Dissimilarity matrix D.

Dissimilarities] a [ b{ c [ d] e
a 0] 1}1213|4
b 110]516]|7
C 21510819
d 3161810110
e 4(719110]0

Table 2 — Weight matrix W.

Weights alblcld]e
a 01109187
b 10f0f6[S5]4
c 916101312
d 815{3{0}1
¢ 714121110

Table 3 — The matrix B and the vector ¢ corresponding to
the data in Figure 3 and Tables 1-2.

Matrix B Jax | by |cz | yz |dz {xy |ex Vector ¢
ax 341019 117181277 80
by 10(25]1 6111151144 98
cz 91 6[20417 3|11} 2 90
vz 17111117131 (14(20] 3 130
dz 81513 (14[17]9 11 88
Xy 27014 111120(9 134} 7 108
ex 71412311714 84
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Table 4 — The matrix of evaluation of edge lengths during the Gauss-Seidel
iterative procedure, with the values of criterion Q reached after each iteration.

Edge lengths | by cz Xy yz dz ax ex 0
Input 1.000 | 1.000 | 1.000 | 1.000 | 1.000 ] 1.000 ] 1.000 | 439.000
lteration 1 | 1.920 | 1.842 1 0.000 | 1.415 ]| 2.595 | 0.000 | 4.702 77.019
lteration 2 | 1.588 | 1.961 | 0.000 | 0.928 { 3.223 | 0.000 | 4.830 | 57.285
Iteration 3 | 1.604 | 2.249 {1 0.000 | 0.423 | 3.675 | 0.000 | 4.867 | 45.599
Iteration 4 | 1.680 | 2.598 | 0.000 | 0.042 | 3.903 | 0.000 | 4.861 37.619
Iteration 5 | 1.719 | 2.877 | 0.000 [ 0.000 [ 3.877 | 0.000 | 4.821 35.256
Iteration 6 | 1.683 | 2.932 | 0.000 | 0.000 | 3.881 | 0.000 | 4.823 35.251

Iteration 7 | 1.669 | 2.935 {1 0.000 | 0.000 | 3.884 | 0.000 | 4.827 35.251

5. Performance on Simulated Data

Our main series of comparative tests concerns the unvalued case,
where many algorithms, data, and procedures are available for comparison.
We carried out a series of tests corresponding to the evaluation approach of
Pruzansky, Tversky, and Carroll (1982). Each data set is obtained as follows:
first, an unrooted tree topology with z leaves and 2n — 3 edges is generated by
selecting at random 7 leaves from the 2!° possibilities of a 10-level complete
binary tree and then eliminating all redundant links. For each such tree topol-
ogy, the length of each edge is then selected randomly from a uniform distri-
bution on the real interval [0,1], leading to a valued tree T7. So, a ‘‘true tree”’
TT, together with a tree metric f7, whose values are identical to the
corresponding path lengths in 77, is available in such experiments, contrary
to the case of empirical data. The corresponding tree metric is computed and
normalized to have a unit variance. Three normally distributed random
noises with mean zero and, respectively, variances ¢* = 0.1, 0.25, 0.5 are
added to the values of the normalized tree metric #f to obtain variants of the
dissimilarity d. In the rare cases where a negative value d(xy) arises, it is
replaced with the constant 0.01. For each combination of values (n,cz),
where n = 12, 18, and 24, 100 data sets are generated. Thus, the results in
Table 5 correspond to 900 different dissimilarity matrices inferred from this
‘‘tree metric + noise’” model.

The goodness-of-fit is estimated by two quanities, computed on all sets
of data and for each pair (n,6%):

1. The proportion of variance accounted for (reported in Column % Var
of Table 5), as expressed in the following formula given by, among
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many authors, Pruzansky, Tversky, and Carroll (1982), where m(d)
is the mean value of the initial dissimilarity 4 and 9 is the fitted tree
metric, is:

yext (d(xy) — 8(xy))?
Tyext (dGy) —m@d)* |

This quantity is also determined for the tree metric &+ obtained
after quadratic approximation of tree lengths on the tree provided
by the tree metric 6, and reported in column % Var+ in Table 5. The
larger the values in these columns, the closer the obtained tree
metrics to the given noised dissimilarities.

2. The topological distance of Robinson and Foulds (1981) between
the true tree 7T and the tree representation of the fitted tree metric &
is also investigated. This distance is often employed to compare
two tree structures (see Saitou and Nei 1987, or Gascuel and Lévy
1996) and is equal to the minimum number of elementary opera-
tions consisting of merging or splitting of vertices necessary to
transform one tree into another. As shown by Robinson and Foulds
(1981), it is also the number of bipartitions (or splits according to
Buneman 1971) present in one tree and absent in the other. In
column RF of Table 5, we give this distance between trees as the |
mean of the observed distances, computed over each series of 100
data sets, expressed as percentages of the maximum value (equal to
2n — 6) of this distance for binary trees with n leaves. The lower
this value, the closer the obtained tree structure to the true tree T7T.
Obviously, this column is not affected by quadratic approximation.
We assume that any edge, even those of null length (this case is
possible for two of the methods examined) induces a bipartition.

%Var =100 {1-

The following strategy was used to test our algorithm, denoted here as
MW: for each data set, the basic algorithm of Sections 2 and 3 (in the
unweighted form) was performed n(n —1)/2 times, using a different initial
pair in the first step each time. For each distinct, initial pair we obtained a
tree metric, for which the value of the criterion @ was computed. In the case
of equal or very close values of the criterion @, at each step we used a parsi-
monious strategy, consisting of selecting the shortest tree.

The approximation procedure of Section 4 was applied to each tree of
the n(n — 1)/2 tree topologies provided by MW. We selected the best two
tree metrics and their corresponding values of @, obtained before and after
quadratic approximation of edge lengths respectively (the tree topologies pro-
viding the best results before and after approximation are not always the
same). This complete strategy is realizable in ow’ ).
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In Table 5 we compare the performance of MW with those of the
neighbor-joining (NJ) method of Saitou and Nei (1987), presently the most
frequently used one in phylogenetic reconstruction. The NJ method generally
gives good results, its rapidity notwithstanding (its complexity is on?), and
remains of the same order after quadratic approximation of edge lengths). It
sometimes finds negative values of edge lengths, which are set to O in the NJ
implementation of this study. Rows 7T are obtained with the normalized tree
metrics #f or ¢+ instead of 6 or 8+ in the calculations of parameters % Var and
PoVar+.

The analysis of these results leads to the following observations: the
method MW provides globally better performances than NJ for the percen-
tage of variance accounted for, both before and after quadratic approxima-
tion. The former method seems to be particularly efficient for obtaining a
good tree topology, producing significantly lower values of the Robinson and
Foulds normalized distance for all pairs (,6%), even when a high noise level
inhibits recovering the true tree (as with 6Z = 0.5). This finding is especially
interesting, because the “‘best’” trees resulting from our strategy are selected
using the least-squares criterion Q.

A series of similar comparison tests between, on the one hand MW and
UNJ of Gascuel (1997a) and ADDTREE of Sattath and Tversky (1977) on the
other, was also performed. For the sake of brevity we do not report here their
results in detail, which revealed the better overall performance of MW in
comparison to both UNJ and ADDTREE for the two criteria considered
above.

The quadratic approximation of edge lengths was shown to be a very
efficient tool to increase the percentage of variance accounted for. Taking
into account the O(kn?) time complexity of the approximation procedure,
where k is the number of iterations, we can conclude that the percentage of
variance accounted for after such an approximation is surely a more
significant criterion than the corresponding percentage before approximation.

We also compared the performances of the complete strategy (MW)
with those of several well-known fitting methods applied to the dissimilarity
matrix in Table 6. In the weighting model (a) of Section 1, where all the
values of w;; are equal to 1, we were able to determine the value of criterion
0 for the ADDTREE method of Sattath and Tversky (1977), the NJ method of
Saitou and Nei (1987), its ‘‘unweighted’’ version (UNJ) of Gascuel (1997a),
the reduction method (GL) of Gascuel and Lévy (1996), which iteratively
modifies the initial dissimilarity toward a dissimilarity satisfying the four-
point condition, and the fitting method of Felsenstein (1997), as implemented
in the program FITCH of the package PHYLIP (available on the World Wide
Web at http://evolution.genetics.washington.edu/phylip.html). The results
displayed in Table 7 were obtained after carrying out the approximation
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Table 5

or=0.1 o? =0.25 0% =05

% VAR | WVAR+| RF [|% VAR |%VAR+] RF ]|%VAR|%VAR+| RF

MW | 92.66 | 93.69 | 1595 83.33 | 85.55| 24.22 ] 73.62 | 77.16 | 34.62
n=12] NJ | 9270 93.63 | 17.45§ 83.32 | 85.44|27.12]173.49 [ 76.75| 37.72
TT ] 90.13 | 93.49 78.08 | 84.94 64.67 | 75.64
MW | 91.54|92.62] 17.79 ] 81.65] 83.79 | 31.36] 69.46 | 72.81 | 44.00
n=18] NJ | 91.42] 92.55] 20.50 | 81.06 | 83.51 | 34.80 ] 67.96 | 72.33 | 49.66
TT | 90.17} 592.46 78.23 | 83.28 63.72 | 71.80
MW | 90.97]91.97120.79] 80.75| 82.66 [ 38.01] 68.11 | 71.08 | 49.12
n=24] NJ ]90.67|91.89 | 25.00] 79.41 | 82.27 | 42.15] 66.68 | 70.56 | 53.10
TT | 90.00 | 91.86 78.40 | 82.20 64.41 | 70.35

Table 6 — Data of Case (1978; seee Saitou and Nei 1988 or Gascuel and Lévy
1996) on immunological distances between distinct pairs of nine species of frogs.

Species 1 2 3 4 5 6 7 8
1: Aurora
2: Boylii 10
3: Cascadae 13
4: Muscosa 12 7 7
5: Temporaria 57 50 40 45
6: Pretiosa 22 9 11 15 48
7: Catesbiana 86 65 54 48 B85 54
8: Pipiens 8 67 66 49 83 55 54
9: Tarahumarae 97 72 79 67 107 60 59 48

Table 7 — Values of the least-squares criterion Q for six methods, with weight
models (a), (b) and (c), on the data in Table 6, and the complexities of these methods.

Model (a) Model (b) Model (c) Complexity
MW 1017.96 24.0579 0.5522 o)
FITCH 1018.88 24.5792 0.5644 ot
UNIJ 1017.96 o)
GL 1042.20 o)
NI 1084.32 0(n?)
ADDTREE 1084.32 o) |
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Cateshiana

Pipiens

K

s

Tarahumarae

Pretiosa

g

Temporaria

Muscosa

4 Cascadae

Figure 4. The tree obtained by the method MW for the weight models (a) and (b).

Muscosa
'5
|
4 Cascadae
] |
6 Boylii
|3 L Aurora

h

Figure 5. The subtree obtained by MW for the weight model (c). The other edges are identi-
cal to those of the tree in Figure 4.

procedure of Section 4, except in the case of Felsenstein’s method, which
incorporates a similar approximation procedure. The UNJ method provided
the same tree as MW and, thus, the same result after approximation.

Besides the values of Q for the weighted model (a) of Section 1, Table
7 also provides the values of this criterion for the weight models (b) and (¢)
obtained by the methods MW and FITCH performed on the data in Table 6.
The last column of Table 7 gives the complexity (after the approximation of
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edge lengths) of the five fitting methods considered here.

The analysis in Table 7 leads to the conclusion that the complete stra-
tegy of MW implementation described in the beginning of this section gives,
together with UNJ, the best results for the dissimilarity metrix of Table 6.
The FITCH method produces slightly lesser results.

The valued tree T found by the MW method from the data matrix in
Table 6 for both weight models (a) and (b) is given in Figure 4. These models
lead to different edge lengths: for the weight model (a), [y = 13.22;
I =16=0.00; l3=334; 1,=004; l5s=431;, l7=340;, [lg=36.38,
lg =2.89; l10=153; 111 =25.06; [, =2379; 113 =871, 114 =18.43;
l15 =29.57;, for the weight model (b), I{ =9.76; [, =0.24; [3 =3.07,
l4 =246, 15=179;l¢=1.21; 17 =3.74; I3 = 37.65; ly =2.48; 11, = 1.53;
111 = 25.15; l12 = 23.83; 113 = 8.80; 114 = 18.56; 115 =129.45.

However, for the weight model (c), a different tree topology was pro-
vided by MW. This topology just differs from those of models (a) and (b) by
the disposition of the species Muscosa, which is joined with the species Cas-
cadae in the latter tree (Figure 5). The edge lengths for the weight model (¢)
are ] = 8.61;1, =3.55;13 =1.62; 14 =3.45; 15 =0.07; I¢ = 1.39; 17 = 3.02;
lg =38.82; lg=254; 110=228; I3 =2449; 11, =2390, [3=8.86;
l14 = 18.53; 115 = 29.47. The analysis of the edge lengths found for these
three models leads to similar values observed for some edges corresponding
to the same bipartitions in the trees, as for example edges I17, [14, 01 [15 but
also to noticeably different ones as in the case of the lengths 1, I3, or /4.

For the weight models (a) and (b), Felsenstein’s program FITCH, exe-
cuted with the option of global rearrangements, found the same tree topology
as MW, but with different edge lengths. This difference should stem from a
lower number of iterations in the approximation procedure of FITCH. With
weight model (c), FITCH provided a new tree topology, different from those
in Figures 4 and 5.

We tested our MW method and Felsenstein’s program FITCH on many
other data matrices of different sizes for the weight models (a), (b), and (c). In
many cases, the values of the weighted least-squares criterion Q found by the
two methods were very close. However, MW usually provided better fitting
tree lengths for an identical support tree. For the sake of brevity, the data and
results of these tests are not reported here. The advantage of FITCH is that it
should be faster then MW, with an O(n*) time complexity reported in Felsen-
stein (1997).

Because FITCH does not allow totally general weights as the MW
method does, we also made a series of comparitive tests with another fitting
heuristic, due to Gonnet (1994). This algorithm, allowing any weight values,
is, according to Gonnet, derived from the celebrated UGPMA method.
Gonnet’s algorithm is presently available on the server of the Computational
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Table 8 — The CRBG dissimilarity matrix.

1 2 3 4 5 6

76.4

353 67.2

33.7 69.0 49.8

4577 62.3 30.2 50.5

58.8 36.8 528 538 514
76.2 05 67.1 689 62.3 36.8

NSy AW

Table 9 — The CRBG variance matrix 0'5.

1 2 3 4 5 6

66.1

22.1 537

379 573 345

309 45.0 30.2 359

449 240 376 398 36.8

65.1 0.2 53.0 565 48.5 24.0

Ny AW

Biology Research Group (CBRG) of the Polytechnic Federal School of
Zurich (http://cbrg.inf.ethz.ch). To assess the goodness-of-fit, we used the
index I given by Gonnet:

2Np
(n-2)(n-3)"

Multiple comparison tests performed on different data matrices, with the
weights chosen according to models (a), (b), and (c) likewise with random
weight values, allow us to claim that the MW method systematically gives a
better fit than Gonnet’s algorithm with index 7 as criterion. In the following,
final example, found on the CBRG server, with the dissimilarity and variance
matrices of Tables 8 and 9 and weight model of type (d), we obtained
I(MW) = 0.16 before approximation of edge lengths on the support tree, and
I"(MW) = 0.14 after this approximation. The result of Gonnet’s method
given by the CBRG server is I(G) = 0.44,

Finally, a reduced MW strategy was also investigated. In such a stra-
tegy, the best tree is inferred by the algorithm of Section 2 executed on the set

forallm >3, I =
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of n arbitrarily chosen initial pairs from n(n — 1)/2 possibilities. This stra-
tegy enjoys a lower O(n*) time complexity and, as was established, works
quite well in practice, often providing results very close to those of the com-
plete MW strategy.

In the analysis of the results of this search for the best tree, both with
and without weights, our main observation is that taking one or the other
weight model may considerably modify not only the edge lengths of the
obtained tree but the tree topology itself. It proves once again that the choice
of an appropriate weight model is an important aspect of the inferring phylo-
genies problem.

6. Conclusion

The algorithm presented here is of the stepwise addition type, in the
sense of Swofford and Olsen (1990). The method of weights MW described
in this paper is part of the T-Rex package created by V. Makarenkov and P.
Casgrain (1998). This package is available on the World Wide Web at
http://www.fas.umontreal.ca/BIOL/legendre/index.html, and also includes
other more or less well-known tree inferring methods, such as ADDTREE by
Sattath and Tversky (1977), NJ by Saitou and Nei (1987), UNJ by Gascuel
(1997a), or the fitting method based on circular orders of Yushmanov (1984),
and Makarenkov and Leclerc (1997). The original features are the introduc-
tion of a weighted least-squares criterion, and, corresponding to this criterion,
the use of a complete strategy based on the successive choices of two initial
elements instead of three. It is apparent that the complexity reduction pro-
cedure described in Section 3 has an important role in the usefulness of this
strategy, as well as in the procedure of reevaluating the tree lengths on the
fixed tree topology with respect to given dissimilarity and weight matrices,
detailed in Section 4.

From the experiments described in Section 5, we can conclude that the
algorithm MW gives good results, at least when using an appropriate strategy
such as the complete or the reduced ones discussed above. These two stra-
tegies may be viewed as a way to palliate the greediness drawback of a step-.
wise addition method, as noted by Swofford and Olsen (1990, p. 487). It is
also worth noting that these strategies comprise two parts. In the first, it pro-
vides a collection of trees according to the weighted least-squares criterion,
while, in the second, the best tree is selected after performing the quadratic
approximation of tree lengths on the given trec topologies. Alternatively, it is
possible to introduce other considerations in the first part, as for instance, the
‘least-squares-parsimony’ criterion considered at the end of Section 2. In that
sense, the basic algorithm of Sections 2-4 may be an interesting tool for
exploratory studies.
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