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Identification and correction 
of spatial bias are essential for 
obtaining quality data in high-
throughput screening technologies
Bogdan Mazoure1, Robert Nadon2,3 & Vladimir Makarenkov   4

Spatial bias continues to be a major challenge in high-throughput screening technologies. Its successful 
detection and elimination are critical for identifying the most promising drug candidates. Here, we 
examine experimental small molecule assays from the popular ChemBank database and show that 
screening data are widely affected by both assay-specific and plate-specific spatial biases. Importantly, 
the bias affecting screening data can fit an additive or multiplicative model. We show that the use of 
appropriate statistical methods is essential for improving the quality of experimental screening data. 
The presented methodology can be recommended for the analysis of current and next-generation 
screening data.

High-throughput screening (HTS) is a widely used drug discovery technique which allows researchers to rapidly 
conduct millions of chemical, genetic or pharmacological experiments1,2. HTS technology relies on robotic han-
dling systems, liquid handling systems, data mining tools and control software in order to assess the biological 
or biochemical activity of a large number of chemical compounds. Using HTS, researchers can discover new 
active compounds, antibodies or genes modulating a certain biomolecular pathway3–6. Growing needs of the 
modern pharmaceutical industry have motivated the recent advances in data throughput and data quality of 
high-throughput screening campaigns3. Processing hundreds of thousands compounds a day has become routine 
in screening laboratories worldwide. A typical HTS assay consists of a library of chemical compounds which are 
screened against the selected biological target in order to discover potential drug candidates, called hits2. An HTS 
library, organized according to biological activity (e.g. small molecules, siRNA or shRNA) or target specificity 
(e.g. enzymes such as kinases, proteases or phosphatases) is arrayed into micro-well plates enabling screening in 
a miniaturized form – in 96, 384, 1536 or 3456-well plates.

Unfortunately, experimental high-throughput screens are usually affected by spatial bias (i.e., systematic 
error) which negatively impacts the hit selection process7–10. Various sources of bias include reagent evapora-
tion, cell decay, errors in liquid handling, pipette malfunctioning, variation in incubation time, time drift in 
measuring different wells or different plates, and reader effects8,10,11. Spatial bias is usually evident as row or 
column effects, especially on plate edges7,9,12. It produces over or under-estimation of true signals in specific rows 
or columns within the same plate and/or specific well locations across plates8,9. The presence of spatial bias in 
high-throughput screening assays can lead to an increase in the false positive and false negative rates during the 
hit identification process (see for example: a colorimetric immunoassay analyzed by Brideau et al.7; McMaster 
Data Mining and Docking Competition assay described in Elowe et al.13 and analyzed in Dragiev et al.8; RNAi 
HIV assay analyzed by Carralot et al.14 or LINCS gene expression assay analyzed by Lachmann et al.10). If they are 
not corrected using appropriate bias minimization methods, biased measurements can be falsely identified as hits, 
leading to an increase in both the length and the cost of the drug discovery process2,10.

ChemBank is a public small-molecule screens database which allows life scientists from various institutions 
to make their experimental screening data accessible to the research community15. The ChemBank project hosts 
4,767 assays (as of November 30th, 2016) that cover a wide range of molecules, species and screening technol-
ogies. Small molecules are crucial components of a growing drug discovery toolbox used for studying cellular 
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processes and developing effective therapies16. The three main screening technologies represented in ChemBank 
are high-throughput screening17 (HTS), high-content screening18 (HCS) and small-molecule microarrays16 
(SMM). High content screening encompasses a set of analytical methods based on automated microscopy, 
multi-parameter image processing and visualization tools to identify substances such as small molecules, pep-
tides or RNAi that alter the phenotype of a cell in a desired manner18. Thus, HCS can be viewed as a type of 
phenotypic screen conducted in cells. This technology normally uses fluorescence imaging of samples in a 
high-throughput format to extract quantitative data, such as spatial distribution of targets, or individual cell and 
organelle morphology, from cell populations. Microarray technique for screening small molecules is based on the 
use of machine-printed glass slides with an array of wells16. SMM is known to be an effective tool for discovering 
protein-small molecule interactions.

In this paper we analyze various data sets from ChemBank and show that most of them are affected by both 
assay-specific (when a certain bias pattern appears within all the plates of a given assay) and plate-specific (when 
a certain bias pattern appears within a given plate only) spatial biases. Furthermore, we provide evidence that 
spatial bias can be either additive or multiplicative19, depending in part on the screening technology. We show 
that both plate and assay-specific biases can be effectively identified and corrected. The correction of both of these 
biases is critical for the selection of quality hits20 in high-throughput screening campaigns.

Results
Simulation study.  To assess the efficiency of our method, including both assay-specific bias correction by 
using robust Z-scores and plate-specific bias correction by using the additive and multiplicative PMP algorithms 
(see the Methods section), we compared its performance with those of the B-score7 and Well Correction11,21 
methods, considering synthetic data with known hits and bias rates. The B-score method is the most known 
plate-specific correction method used in HTS, while Well Correction is an effective assay-specific correction tech-
nique removing systematic error from biased well locations. In our simulations, we followed the data simulation 
protocol applied by Dragiev et al.8 for testing methods minimizing additive spatial bias in HTS. First, 100 HTS 
assays, each including 50 plates of size (16 × 24), were generated (i.e., this is the most widely-used plate format in 
Chembank15) for each parameter combination described below.

Inactive compound measurements were sampled from the standard normal distribution. Hit (i.e., active com-
pound) locations were selected independently for each plate using rejection sampling with the following hit per-
centages: 0.5%, 1%, 2%, 3%, 4% and 5%. Hit measurements were generated from the normal distribution with the 
following parameters ~N(μ − 6 SD, SD), where μ and SD were respectively the mean and the standard deviation 
of the inactive compound measurements (i.e., μ = 0 and SD = 1).

Well locations affected by assay-specific spatial bias were selected randomly with probability pa = 0.29, esti-
mated from the data taken from the ChemBank repository (see Tables 1 and 2 in Supplementary Information). 
Assay-specific bias was sampled from a normal distribution with parameters ~N(0, C), where the parameter 
C was taking the values: 0, 0.6 SD, 1.2 SD, 1.8 SD, 2.4 SD, and 3 SD, and added to the selected well locations. 
Plate-specific bias was then generated and added independently to rows and columns of each plate of a given 
assay. A maximum of 8 rows and 12 columns of each plate were allowed to be affected by spatial bias. For each 
plate of a given assay, the number of biased rows was sampled from a ~Geometric(p = 0.622) distribution and 
the number of biased columns was sampled from a ~Geometric(p = 0.430) distribution. These parameters were 
obtained using the maximum likelihood approach applied to the distributions of the number of biased rows and 
columns in the 2441 non-empty plates of the 175 ChemBank assays analyzed in this study (see Supplementary 
Figure 1 in Supplementary Information).

The plate-specific bias model for each plate was selected from: no bias, additive bias model and multiplicative 
bias model with the following respective sampling probabilities: 0.274, 0.418 and 0.308. These probabilities were 
also estimated from the considered ChemBank data (here, the no bias model included the probabilities of both 
undetermined and no bias models discussed in the next sections). The additive plate-specific bias was generated 
according to the normal distribution with parameters ~N(0, C) and the multiplicative plate-specific bias according 
to the normal distribution with parameters ~N(1, C), where the parameter C was taking the following values: 0, 
0.6 SD, 1.2 SD, 1.8 SD, 2.4 SD and 3 SD. Plate measurements affected by additive spatial bias were generated using 
Equation (3) and plate measurements affected by multiplicative spatial bias were generated using Equation (4).  
A small Gaussian noise (i.e., random noise εijp in Equations 3 and 4) was generated from the normal distribution 
with parameters ~N(0, 0.1 SD) and added to both active and inactive compound measurements of each plate.

Four bias correction methods were compared in our simulations: (1) No Correction, (2) B-score7, (3) 
Well-Correction11 and (4) our new method correcting both plate and assay-specific biases (i.e., additive or 
multiplicative PMP followed by robust Z-scores) as described in the Methods section. Moreover, both the 
Mann-Whitney U test and the Kolmogorov-Smirnov two-sample test, included in our method, were inde-
pendently executed using the two following significance thresholds: α = 0.01 and α = 0.05 (this threshold was 
always the same for both tests).

After the data correction, hits were selected according to the μp − 3σp threshold, where μp and σp were the 
mean and the standard deviation of the measurements in plate p, respectively. We assessed the methods’ per-
formances by comparing their hit detection rates (i.e., true positive rates) as well as by counting the total of false 
positives and false negatives they provided8. Two simulations were carried out for both selected values of α. In the 
first simulation, the bias magnitude, SD, was fixed to 1.8, while the hit percentage ranged from 0% to 5%. In the 
second simulation, the hit percentage was fixed to 1%, while the noise magnitude ranged from 0 to 3 SD. Fig. 1 
shows the average true positive rate and the average total count of false positive and false negative hits per assay 
obtained for artificially generated HTS screens composed of 384-well plates, yielded by the competing methods 
(our method was carried out twice, using the significance levels α = 0.01 and α = 0.05, respectively).
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The obtained results suggest that the additive and multiplicative PMP algorithms applied together with robust 
Z-scores yield the highest hit detection rate and the lowest false positive and false negative total hit count across 
all examined methods. When the hit percentage varies from 0.5% to 5%, and the bias magnitude is constant at 
1.8 SD (Fig. 1a), the true positive rate for all methods decreases with the increase in the hit percentage. A similar 
trend in the true positive rate can be observed when the bias magnitude increases from 0.0 SD to 3.0 SD and the 
hit percentage remains fixed at 1% (Fig. 1c). It is worth noting that the PMP algorithm, followed by the robust 
Z-score normalization, has a very similar behaviour for both tested significance levels, α = 0.01 and α = 0.05 
used in the Mann-Whitney U test and the Kolmogorov-Smirnov test. A slightly better hit recovery was obtained 
for the significance level α = 0.01 for lower hit percentages, and for the significance level α = 0.05 for higher hit 
percentages (Figs. 1a and 1b). When the hit percentage ranges from 0.5% to 5% and the bias magnitude stays 
constant at 1.8 SD (Fig. 1b), the average total count of false positives and false negatives increases for all methods. 
The PMP algorithm followed by assay-wise normalization by robust Z-scores provides the lowest total counts in 
all cases. When the bias magnitude varies from 0.0 SD to 3.0 SD and the hit percentage stays constant at 1%, our 
method still outperforms the three other competing approaches. The traditional additive B-score method7 usually 
copes well with the recovery of true positive hits (Fig. 1a and c), but provides a large number of false positives and 
thus gets outperformed by Well Correction11 in terms of the total number of false positive and false negative hits 
(Fig. 1b and d). In all cases, except the case of unbiased data (i.e., Bias = 0.0 SD) and the B-score method (Fig. 1c), 
the examined bias correction methods outperform the No Correction approach.

Quantifying assay-specific bias in screening technologies.  To assess the extent of assay-specific bias 
in the HTS, HCS and SMM technologies, we examined 12 experimental assays from the ChemBank assays repos-
itory (i.e., 4 assays per technology were considered; Fig. 2). First, the data of the selected screens were normalized 
on a plate-by-plate basis using robust Z-scores. Second, the nonparametric Mann-Whitney U test was carried out 
independently for each well location (i.e., a vector of measurements taken across all plates of a given assay which 
corresponds to a fixed well position (i,j), where i is the row number and j is the column number), comparing its 

Figure 1.  Average true positive rate (Panels (a) and (c)) and average total number of false positive and false 
negative hits per assay (Panels (b) and (d)) obtained by No Correction, Well Correction, B-score, and PMP 
followed by robust Z-scores for the significance levels α = 0.01 and 0.05. Panels (a) and (b) show the results 
obtained for datasets with a fixed bias magnitude (SD = 1.8). Panels (c) and (d) show the results for datasets with 
a fixed hit percentage of 1%.
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sum of ranks to the sum of ranks of the rest of the assay measurements. The significance level α = 0.01 was used 
in the Mann-Whitney U test (see the Methods section). Because the Mann-Whitney U test does not make any 
assumption about the underlying data distribution, its use has been recommended for bias detection purposes 
in screening technologies22. If the presence of spatial bias in a particular well location has been supported by the 
Mann-Whitney U test, then the traditional Z-score normalization should be carried out across its measurements. 
Importantly, the traditional Z-score normalization carried out across the measurements of a given well location 
can remove successfully both additive and multiplicative types of spatial bias. The detailed explanation of this 
property is presented in the Methods section.

Figure 2 shows that although all three small-molecule screening technologies are prone to assay-specific bias, 
it is much more substantial in HTS assays. According to the Mann-Whitney U test, 51.2% of well locations of 
HTS assays were affected by spatial assay-specific bias, whereas this bias affected only 17.4% and 21.8% of well 
locations in HCS and SMM screens, respectively.

Quantifying plate-specific bias in screening technologies.  Differences among the bias distribution 
were also observed at the plate level (Figs 3 and 4). Plate-specific spatial bias is evident as systematic over or 
under-estimation of the measurements in specific rows and columns within specific plates. The Mann-Whitney U 
test (with α = 0.01) was performed independently on all plates of all assays considered in this study to identify the 
rows and columns affected by spatial bias (i.e., comparing the row and column measurements to unbiased data 
of the same plate). If systematic error was detected in one of the rows or columns of the plate, then additive and 
multiplicative Partial Mean Polish (PMP) bias algorithms8 were applied independently to correct the plate meas-
urements. The measurements corrected by the additive and multiplicative PMP algorithms were then compared 
to unbiased plate measurements to select the best-fit correction model for the data at hand. The main advantages 
of the PMP algorithms are that they modify the values of the biased measurements only and keep the raw and 
corrected data on the same scale. The Kolmogorov-Smirnov test was performed on the plate surfaces corrected 

Figure 2.  Assay-specific bias detected in 12 experimental assays from the ChemBank database. Here, 4 high-
throughput screening assays, 4 high-content screening assays and 4 small-molecule microarrays were examined. 
The ChemBank IDs of these assays are indicated between parentheses: ABeta42 aggregation inhibitors 
(1103.0016), Bacterial viability profiling (1064.0002), E. coli filamentation (1038.0004), M. tuberculosis sulfur 
assimilation (130.0018), Autophagy cell count (1050.0009), Autophagy EGFP (1050.0111), Toxoplasma 
invasion imaging screening (141.0027), C. elegans assay for anti-infective reagents (1109.0003), HPV-E7 
SMM (1049.0001), Male germ cell targets SMM (1154.0015), Male germ cell targets SMM (1154.0009) and 
NeuroSMM screen on torsin A (1069.0001); for more details see Supplementary Table 1.

Figure 3.  Plate-specific bias detected across data of 3 screening technologies and 8 screening categories 
available in ChemBank - per plate representation; 175 assays were analyzed in total (see Supplementary Table 2 
for the complete list of the assays considered); all control wells were ignored.
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by the additive and multiplicative PMP algorithms and the model providing the smallest significant p-value was 
selected as the most appropriate (see the Methods section).

Figure 3 shows the proportion of plates per screening category affected by additive bias, multiplicative bias, an 
undetermined type of bias, or when no bias has been detected. An undetermined type of bias has been identified 
when spatial bias was detected on the plate by the Mann-Whitney U test and both p-values, corresponding to the 
additive and multiplicative models, were significant. The presented results suggest that the type of plate-specific 
bias largely depends on the screening category. For instance, additive bias is dominant in the following screening 
categories: HTS homogeneous (44.6%), HTS microorganism (51.8%) and SMM (42.1%) assays. The multiplica-
tive bias is dominant in: HTS cell-based (36.5%) and HTS gene expression (45.5%) assays. However, all three HCS 
categories (area, intensity and cell count) were mostly bias free (Fig. 3).

Figure 4 presents the distribution of additive and multiplicative biases per assay, and per screening category. 
The proportion of assays affected either by additive bias, or by multiplicative bias, or by undetermined type of bias 
was represented for each screening category. Here, we also determined the proportions of assays in which the 
detected bias trend was dominant. The additive trend was considered dominant if there were twice or more biased 
plates better fitting the additive than the multiplicative bias model (and vice-versa for the multiplicative trend). 
The results presented in Fig. 4 suggest that in most cases one type of spatial bias was dominant in the ChemBank 
screens, the only exception here being the assays of the HCS count category affected by additive bias.

Identifying spatial bias in the McMaster Data Mining and Docking Competition HTS Test assay.  
To illustrate the application of spatial bias correction methods, we carried out the assessment and correction of 
both assay-specific and plate-specific biases present in the McMaster Data Mining and Docking Competition 
HTS Test assay examined in several studies8,11,13. This assay was obtained during a screen of 50,000 diverse small 
molecules against a single target, dihydrofolate reductase enzyme of E. coli19. The McMaster Test assay consisted 
of a series of 625 plates of size (8 × 12). Each of the assay plates was screened twice. The first and the last columns 
of each plate contained controls that were used to normalize raw measurements. The remaining 80 wells con-
tained different compounds intended to inhibit the dihydrofolate reductase of E. coli.

Hit distribution surfaces, representing hit counts per well location, were obtained for raw (Fig. 5a) and cor-
rected (Fig. 5b) McMaster measurements using the HTS Corrector software11. The positional assay-wide pattern 
can be observed in raw data as the left-sided wells (they are in red) of the raw hit distribution surface overestimate 
the number of hits, while the right-sided wells (they are in blue) underestimate it. Additive plate-specific bias 
correction, followed assay-specific well correction, allowed us to remove spatial bias from raw McMaster data 
and disrupt the original hit count patterns (Fig. 5b). The χ2 goodness-of-fit test carried out for the raw McMaster 
hit distribution surface (Fig. 5a) at the significance level α = 0.01 returned the value of χ2(79) = 416.23 (with the 
critical value of 111.14), whereas the value of the χ2 statistic for the corrected hit distribution surface (Fig. 5b), 
computed following both plate-specific and assay-specific bias corrections, was equal to χ2(79) = 70.81, showing 
a much more homogeneous hit distribution pattern (where 79 was the number of degrees of freedom). The χ2 
goodness-of-fit test can be used in screening technologies to assess the deviation of the hit distribution surface 
from the expected (i.e., plane) surface11.

Moreover, plate-specific spatial bias can also be observed within certain plates of the McMaster Test assay. For 
example, a clear underestimation of the true experimental measurements has occurred in row H of Plate 428 of 
this assay (Fig. 5c). The application of our algorithm presented in the Methods section allowed us to determine 
that the additive bias model is significant in this case and that it fits the data better than the multiplicative bias 
model. Using the additive PMP algorithm, we were able to remove systematic error from row H without changing 
the rest of the plate’s measurements (Fig. 5d).

Figure 4.  Plate-specific bias detected across data of 3 screening technologies and 8 screening categories 
available in ChemBank - per assay representation; 175 assays were analyzed in total (see Supplementary Table 2 
for the complete list of the assays considered); all control wells were ignored. Assays, in which the number of 
plates containing additive bias was bigger than the number of plates containing multiplicative bias, are reported 
in the first column of each screening category. Assays with a bigger number of plates affected by multiplicative 
bias are reported in the second column of each screening category. Assays, in which the number of plates 
containing additive bias was equal to the number of plates containing the multiplicative bias as well as assays 
without any biased plate are reported as “Undetermined”. Darker portions of bars show the proportion of assays 
that have a dominant, additive or multiplicative, trend. Lighter portions of bars show the proportion of assays in 
which the indicated model of bias was present more frequently, but without a clear-cut dominance.
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Moreover, the Q-Q plots in Fig. 6a and b show that the spatial bias correction leads to a much better identifica-
tion of hits and outliers. Figure 6a presents the Q-Q plot for the raw measurements of Plate 428 of the McMaster 
Test assay. The hit, located in well (E,3) and highlighted by a blue circle in Fig. 6a, and the outlier, located in 
well (E,11) and highlighted by a red circle in this figure, are not well separated from the rest of the data (see also 
Supplementary Table 5 reporting the raw measurement values of this plate). Thus, both the hit and the outlier 
cannot be clearly identified using conventional hit selection methods. After the application of the Mann-Whitney 
U test to raw measurements of Plate 428, row H was flagged as biased and then corrected plate-wise using the 
additive PMP algorithm. Following the plate-specific correction by additive PMP, both the hit and the outlier 
became much better separated from the rest of the data of this plate (see Fig. 6b and Supplementary Table 6 
reporting the corrected measurement values of Plate 428) and can be now better identified using conventional 
hit selection methods.

Discussion
Over the past decade, a number of novel screening technologies for processing large-scale binding assays have 
been developed to address the growing needs of drug discovery campaigns. Spatial bias remains one of the major 
hurdles of most of these technologies, potentially resulting in the identification of false positive and/or false 
negative hits. Our main objective was to assess the prevalence of spatial bias in experimental data generated by 
different high-throughput screening technologies.

First, we should distinguish between assay-specific and plate-specific types of spatial bias. Assay-specific 
bias affects all the plates, or a series of continuous plates (i.e., batch effect), of a given assay. Plate-specific bias 
manifests itself by a spatial pattern that appears within a given plate only. Using experimental data from the 

Figure 5.  Hit maps showing the presence of spatial bias in the McMaster Test assay screened during 
the McMaster Data Mining and Docking Competition13: (a) hit distribution surface for raw data, (b) hit 
distribution surface corrected both plate and assay-wise, (c) Plate 428 raw measurements, and (d) Plate 428 
corrected measurements. Control columns 1 and 12 are not shown here. Higher hit counts (panels a and b) and 
intensity levels (panels c and d) are in red; lower hit counts (panels a and b) and intensity levels (panels c and 
d) are in blue. The hit selection threshold of µ-2σ was used to compute the hit distribution surfaces. The Mann-
Whitney U test carried out to detect plate-specific spatial bias suggested that 377 McMaster plates were affected 
by systematic error, and 873 of them were clean. Error detection was done at the significance level α = 0.01. 
Plate-specific spatial bias was corrected using the additive PMP algorithm, as suggested by our method. The 
exact values of the raw and corrected measurements of Plate 428 and the raw and the corrected hit distribution 
surfaces are reported in Supplementary Tables 3–6.
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largest public small-molecule screens database, ChemBank15, involving three popular screening technologies 
– high-throughput screening, high-content screening and small-molecule microarrays, and eight of their cate-
gories, we found that both assay and plate-specific biases affect the data of most of high-throughput assays. We 
showed that both assay-specific and plate-specific biases can be recognized and removed successfully from exper-
imental screening data using appropriate statistical methods.

Second, researchers should pay particular attention to the nature of spatial bias that can be additive, multi-
plicative or undetermined (i.e., when the presence of bias was detected by a statistical test, but both additive and 
multiplicative bias models were not significant). The presence of assay-specific bias, either additive or multiplica-
tive, in a given well location can be detected by using the nonparametric Mann-Whitney U test. It is worth noting 
that Z-score normalization adequately handles both additive and multiplicative types of assay-specific bias when 
applied to the measurements of a given well location (see the Methods section).

However, the case of plate-specific bias is more complicated. The Mann-Whitney U test can be used first to 
detect the presence of spatial bias in rows and/or columns of a given plate. Then, we can determine whether the 
detected bias is additive or multiplicative, using the additive and multiplicative versions of the Partial Median 
Polish (PMP) algorithm (see the Methods section). Afterwards, the Kolmogorov-Smirnov two-sample test should 
be applied to compare the distributions of unbiased and corrected (by additive and multiplicative PMP) measure-
ments and the p-values should be computed for both bias models. The selection of the best-fitting model can be 
done by comparing the obtained p-values.

Considering the example of the McMaster Test assay, we showed that both assay and plate-specific types of 
spatial bias can be detected and eliminated from screening data, thus improving measurement accuracy and 
minimizing the risk of misidentifying hits and outliers. It is important to note that the presented methodology 
is of a generic nature and can be used by life scientists involved in the analysis of current or next-generation 
high-throughput assays consisting of a large series of plates processed in sequence.

Our simulation study (see the section Simulation study) indicate that the B-score7 method is not suitable for 
removing assay-specific spatial bias and that Well Correction11 cannot be used to eliminate plate-specific spatial 
bias. Thus, these methods should be used only when the presence of bias in the data has been confirmed by an 
appropriate statistical test (e.g., Mann-Whitney U test). The main advantage of our method is that it can cope 
with both of these biases (i.e., assay and plate-specific). However, the proposed method still needs to be used 
with caution. Before using it for data correction, the researcher must make sure that all tested compounds are 
randomly distributed both across and within HTS plates. If the randomization condition is not satisfied, some 
well locations or some areas on the plates can correctly lower or higher signals, in which case data normalization 
can become detrimental.

Alternative approaches could also be used to remove spatial bias from data produced by high-throughput 
screening technologies. For example, one can consider generalized spatial linear mixed models (GLMMs), which 
are commonly used in public health, ecological and epidemiological studies dealing with geographical sam-
pling23,24. GLMMs explicitly model space-dependent bias through a specific spatial correlation function. In the 
linear mixed model, all observations are assumed to have a spatial correlation structure. A GLMM effectively 

Figure 6.  Q-Q plots for McMaster’s Plate 428 from the McMaster Data Mining and Docking Competition HTS 
Test assay13 before (a) and after (b) the correction of additive spatial bias. All control wells (columns 1 and 12 
of each plate) were excluded from the analysis. Low values (i.e., false positives) appearing in row H prevent a 
clear-cut identification of the hit located in well (E,3) (panel a of the figure; see also Supplementary Table 5 for 
the exact values of the raw HTS measurements). After the plate-specific correction by additive PMP, the hit 
appearing in well (E,3) becomes much better separated from the rest of the measurements of Plate 428 (panel b 
of the figure; see also Supplementary Table 6 for the exact values of the corrected HTS measurements). The same 
trend is maintained for the outlier (i.e., a high measurement value in the McMaster inhibition assay) located in 
well (E,11).
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postulates that the correlation increases as observations are located closer together, whereas observations at dis-
tances greater than the range from one another are uncorrelated. The major reason that GLMMs have not been 
used for bias modeling in HTS is that only a few columns and rows of a given HTS plate are generally biased, 
whereas mixed models assume that spatial correlation can be modeled in some way throughout the whole plate 
surface. Moreover, the biased columns and rows are not necessarily spatially related and may not be located at 
the same part of a given plate. For example, a column or row effect often results from a robot malfunction that 
is unique to that column or row25. Furthermore, in order to accurately model the bias structure in HTS assays, 
spatial covariates should take into account the dependences between biased rows and columns (i.e., plate-specific 
bias) as well as between biased well locations (i.e., assay-specific bias) of a given assay. To the best of our knowl-
edge, this type of GLMM still needs to be developed, and this could be an interesting topic for future investi-
gation. It is also known that fitting a GLMM to a large dataset can be computationally expensive (i.e., due to 
inversion of large matrices growing with the number of sampling units). In contrast, the time complexity of the 
additive and multiplicative PMP algorithms is linear on the matrix dimensions (see the Methods section). These 
algorithms require O(mnI) time, where m and n are the plate dimensions and I is the number of iterations neces-
sary for convergence. In practice, these algorithms converge after a few iterations.

Methods
Correction of assay-specific bias.  Assay-specific bias correction methods rely on both plate-wise and 
well-wise normalization techniques11.

First, each plate of the given assay is subject to the robust (outlier-resistant) Z-score normalization:

=
−

x̂
x med

MAD
,

(1)
ijp

ijp p

p

where xijp is the raw measurement in well (i,j) of plate p, x̂ijp is the normalized value of xijp, and medp and MADp 
are the median and the median absolute deviation of plate p’s measurements, respectively.

Second, the Mann-Whitney U test can be carried out for each well location, comparing its sum of ranks to the 
sum of ranks of the rest of the assay measurements.

Third, the well locations in which the presence of spatial bias was detected by the Mann-Whitney U test (the 
significance level α = 0.01 was used in this work) can be corrected via the traditional Z-score normalization, 
defined as follows:

µ

σ
=

−
x̂

x
,

(2)
ijp

ijp ij

ij

where xijp is the raw measurement in well (i,j) of plate p, x̂ijp is the normalized value of xijp, and μij and σij are, 
respectively, the mean and the standard deviation of the measurements of well location (i,j) (computed over all 
plates of the assay).

Note that the traditional Z-score normalization (2) adequately handles both additive and multiplicative kind 
of biases when applied to the measurements of a given well location. Additive biases are removed by the subtrac-
tion in the numerator; the standard deviation does not change if the mean is shifted. In case of multiplicative 
biases, both the numerator and denominator are multiplied by the same value, and thus the computed score 
remains the same. Hence, Z-score can successfully correct both additive and multiplicative types of assay-specific 
spatial bias over the measurements of a given well location. Importantly, if the presence of assay-specific bias was 
detected in some well locations of the assay, then all of its well locations should be Z-score normalized in order to 
keep the assay data on the same scale.

Correction of plate-specific bias.  Plate-specific biases that affect rows and columns of a given plate p can 
fit either the additive (3) or the multiplicative (4) bias model:

ε′ = + + +x x r c , (3)ijp ijp ip jp ijp

ε′ = × × +x x r c , (4)ijp ijp ip jp ijp

where ′x ijp is the observed raw measurement in well (i,j) of plate p, xijp is the real measurement value in well (i,j) 
of plate p, rip is the value of systematic error (i.e., spatial bias) affecting row i of plate p, cjp is the value of systematic 
error affecting column j of plate p, and εijp is the random error affecting well (i,j) of plate p. Partial mean polish, 
which is a variation of Tukey’s median polish, iteratively removes spatial bias from biased rows and columns8. In 
our work, the presence of bias in rows and columns of each plate p was determined using the Mann-Whitney U 
test (with α = 0.01). The biased and unbiased rows and columns are identified during the bias detection proce-
dure. The process starts by assuming that all measurements of a given plate are unbiased. The method then com-
pares in turn the measurements of each row and each column against the rest of the plate’s measurements, 
excluding those of the tested row or column and those that have been already identified as biased using the 
Mann-Whitney U test. The obtained p-value is retained for each row and each column; the plate’s row or column 
corresponding to the smallest p-value is then considered biased if this smallest p-value is larger than the selected 
threshold. The procedure is applied independently to all plates of a given assay. A similar procedure is carried out 
to identify biased well locations (see above).
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Adequate model selection for plate-specific bias.  The goodness-of-fit of the additive and multi-
plicative bias models can be assessed by comparison of the corrected results with unbiased data. For each plate, 
the process starts with three data sets: (1) measurements from unbiased rows and columns, (2) measurements 
corrected using the additive correction, and (3) measurements corrected using the multiplicative correction. 
Afterwards, we carry out the Kolmogorov-Smirnov two-sample test in order to compare the distributions of 
unbiased measurements (1) and those corrected using the additive correction model (2), then the distributions 
of unbiased measurements (1) and those corrected using the multiplicative correction model (3). The obtained 
p-values are then compared to each other to select the best fitting model. The significance level α = 0.01 was used 
in our study. The exact algorithm can be presented as follows:

Perform the Mann–Whitney U test on each individual plate of the assay (i.e., plate-wise correction) to identify 
biased rows and columns:

If (spatial bias is detected in rows or columns of the given plate), then:

	(a)	 Apply the additive PMP algorithm8 (see also the next section) to correct raw plate’s measurements;
	(b)	 Apply the multiplicative PMP algorithm26 (see also the next section) to correct raw plate’s measurements;
	(c)	 Apply the Kolmogorov-Smirnov two-sample test on the corrected plates yielded by the additive and multi-

plicative PMP algorithms. Compute the corresponding p-values;
	(d)	 If both additive and multiplicative p-values are lower than the selected significance level α, then the bias mod-

el for this plate is undetermined. Otherwise, apply the correction algorithm that provides the largest p-value 
(i.e., additive or multiplicative PMP) to remove spatial bias from the measurements of the given plate.

Additive and multiplicative Partial Mean Polish (PMP) algorithms.  The additive version of the PMP 
algorithm is presented in detail in the paper of Dragiev and colleagues8. Here we show the changes that should 
be made to the algorithm to adapt it for removing multiplicative biases26. The main advantages of both additive8 
and multiplicative26 PMP algorithms are that they correct the biased measurements only and keep the original 
and corrected data on the same scale, ensuring that the mean of the corrected rows and columns is equal to the 
mean of unbiased data.

	 1.	 Let = ... | ≤ ≤R r r r p m{ , , , 0 }p1 2  and = ... | ≤ ≤C c c c s n{ , , , 0 }s1 2  be the sets of biased rows and columns 
of plate ×P m n( ), calculate the mean µ of all unbiased measurements of P:

µ =
∑

− −
.∉ ∉ x

m p n s( )( ) (5)
i R j C ij,

	 2.	 For each biased row i in = ≤ ≤I i p{1 }, compute the mean value, µri
, of row ri: µ = ∑ = xr n j

n
r j

1
1i i

, and 

calculate the estimate of the row error, êri
, using the equations: µ µ= −êr ri i

(additive model) and =
µ

µ

| |
êri

ri

(multiplicative model).
For each biased column j in = ≤ ≤J j s{1 }, compute the mean value, µcj

, of column cj: µ = ∑ = xc m i
m

ic
1

1j j
, 

and calculate the estimate of the column error, êcj
, using the equations: µ µ= −êc cj j

 (additive model) and 

=
µ

µ

| |
êcj

cj  (multiplicative model).
	 3.	 For all rows affected by spatial bias, adjust their measurements using the error estimates determined in 

Step 2, i.e., for all i in = ≤ ≤I i p{1 } and all j such that ≤ ≤j n1  proceed as follows: = − ˆx x er j r j ri i i
(additive model) and = ˆxr j

x

ei

rij

ri

(multiplicative model).
For all columns affected by spatial bias, adjust their measurements using the error estimates determined in 
Step 2, i.e., for all j in = ≤ ≤J j s{1 } and all i such that ≤ ≤i m1  proceed as follows: = − ˆx x eic ic cj j j

(additive model) and = ˆxic
x

ej

icj

cj

 (multiplicative model).

	 4.	 If ε∑ | | + ∑ | | >= =ˆ ˆe ei
p

r j
s

c1 1i j
, then go to Step 2, otherwise stop the algorithm.

Here ε is a small fixed positive threshold.
It is worth noting that the median can be used instead of the mean in both additive and multiplicative PMP 

algorithms. The use of the median usually increases the method’s robustness against outliers.

Data availability.  High-throughput screening assays analyzed in this study are available in the ChemBank 
repository15. The ChemBank IDs of these assays are indicated in Supplementary Information. The McMaster Data 
Mining and Docking Competition assay data are available at: http://www.info2.uqam.ca/~makarenkov_v/HTS/
home.php.
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