
Examen final 1

INF7235 — Programmation parallèle haute performance
Examen final (Hiver 2016)

Durée: Trois (3) heures
Documentation : Documentation personnelle autorisée (y compris laptop, en mode «lecture»!).

Nom:
Code permanent:

1 2 3 4 5 6 Total

/10 /10 /5 /10 /10 / 10 /55

• Vous devez répondre directement sur le questionnaire d’examen.

• Lorsqu’il est demandé de justifier vos réponses, tant la clarté, la justesse que la pertinence
des explications seront évaluées — donc si vous écrivez des choses fausses ou «qui n’ont pas
rapport», vous pourriez être pénalisés.

• Si nécessaire, vous pouvez utiliser, sans la définir, la méthode Ruby suivante :

Les indices pour la tranche du thread no . k
lorsqu ’on repartit uniformement n elements entre nb_threads threads .
def indices_tranche(k, n, nb_threads)

b_inf = k * n / nb_threads
b_sup = (k + 1) * n / nb_threads - 1

b_inf..b_sup # On retourne un Range des indices de la tranche .
end

• La déclaration «function<bool (int)> pred» dans l’exemple C++ (p. 8) indique un predicat
sur un int— donc une fonction qui reçoit un argument int et qui retourne true si l’argument
satisfait une certaine condition décrite par le prédicat, false sinon.

Idem pour le type Predicat du programme OpenMP/C de la page 5.

• Concernant le type vector<int> en C++ (p. 8) :

– Un objet v de type vector<int> dénote un vecteur d’entiers de longueur variable — donc
semblable à un Array en Ruby.

– v.size() = Nombre d’éléments dans le vecteur.
– vector<int>() = vecteur vide — donc vector<int>().size() == 0.
– v.push_back(x) : ajoute l’élément x à la fin du vecteur v.

Examen final 2

1. Produit de polynomes en PRuby (10 pts)
Une classe Polynome, en Ruby, est présentée à la page 4.
Pour les deux sous-questions qui suivent, vous devez utiliser les méthodes de la bibliothèque

PRuby.
[3] a) Donnez une mise en oeuvre parallèle de la méthode «==», solution parallèle la plus simple

possible en PRuby.

def ==(autre)

end

[7] b) Donnez, à la page suivante, deux (2) mises en oeuvre parallèles de la méthode «*».

i. Pour la première mise en oeuvre, vous devez utiliser du parallélismte itératif de type fork-
join (donc pas du parallélisme récursif!) et ce avec une répartition statique à granularité
grossière des tâches.

ii. Pour la deuxième mise en oeuvre, vous pouvez utiliser la stratégie de votre choix, mais toujours
à granularité grossière. Vous devez indiquer, dans le commentaire, quelle stratégie — quel
patron de programmation parallèle — vous avez choisi d’utiliser.

iii. Indiquez (ci-bas) quelle mise en oeuvre, selon vous, serait la meilleure et expliquez brièvement
pourquoi il en serait ainsi.

Dans les deux cas, pour simplifier, vous pouvez poser des hypothèses appropriées sur le nombre
de threads et/ou les tailles de polynomes, en indiquant explicitement les conditions requises à l’aide
d’appels à assert.

• Meilleure approche =

• Explication/justification =

Examen final 3

Repartition statique a granularite grossiere avec parallelisme fork -join.
def *(autre)

end

Approche utilisee =
#
def *(autre)

end

Examen final 4

class Polynome
def initialize(*coeffs)

assert coeffs.size >= 1, "*** Il doit y avoir au moins un coefficient"

coeffs.pop while coeffs.size > 1 && coeffs.last == 0
@coeffs = *coeffs

end

def taille
@coeffs.size

end

def [](k)
assert 0 <= k && k < taille , "*** k = #{k} vs. taille = #{ taille}"

@coeffs[k]
end

def ==(autre)
return false if taille != autre.taille

(0... taille).all? { |i| self[i] == autre[i] }
end

def +(autre)
return autre + self if taille > autre.taille

coeffs = (0... autre.taille).map do |k|
(k < taille ? self[k] : 0) + autre[k]

end

Polynome.new(*coeffs)
end

#
Calcul du k ieme coefficient pour le produit de p1 et p2 .
#
def coefficient(k, p1, p2)

exp_min = [0, k-p2.taille +1].max
exp_max = [k, p1.taille -1].min

(exp_min .. exp_max).
preduce (0) { |somme , i| somme + p1[i] * p2[k-i] }

end
end

Examen final 5

2. Fonctions index_of et count (OpenMP/C) (10 pts)

[6] a) On veut réaliser, en OpenMP/C, une fonction index_of. Cette fonction reçoit en arguments un
tableau, la taille du tableau et un prédicat. La fonction retourne alors un index tel que l’élément
à cet index satisfait le prédicat. Si aucun élément ne satisfait le prédicat, la fonction retourne -1 ;
si plusieurs éléments satisfont le prédicat, un des index est retourné, au choix de l’implémenteur.

En Ruby, Java, ou C++, le prédicat serait représenté par une lambda-expression. En C, le
prédicat est plutôt représenté par un pointeur vers une fonction : voir plus bas.

Squelette de la fonction index_of
La définition du type Predicat et le corps de la fonction index_of sont comme suit :

typedef int (*Predicat)(int);

int index_of(int elems[], int n, Predicat pred)
{

int pos = -1;

... segment de code indiqué à la page suivante ...

return pos;
}

Exemples d’utilisation
int estZero(int x) { return x == 0; }

int elems1[7] = {1, 2, 0, 3, 4, 5, 6};
assert(index_of(elems1, 7, estZero) == 2);

int elems2[7] = {1, 2, 8, 3, 4, 5, 6};
assert(index_of(elems2, 7, estZero) == -1);

Ce qu’il faut faire
Pour chacun des segments de code de la page suivante, indiquez si la fonction produit ou non le
bon résultat. Même si la réponse produite est bonne, indiquez s’il s’agit ou non d’une bonne
stratégie, en justifiant brièvement votre réponse. Finalement, indiquez aussi laquelle parmi
ces trois solutions vous semble la meilleure.

Examen final 6

i. #pragma omp parallel
for(int i = 0; i < n; i++) {

if ((*pred)(elems[i])) {
pos = i;

}
}

ii. #pragma omp parallel for
for(int i = 0; i < n; i++) {

if ((*pred)(elems[i])) {
#pragma omp critical
pos = i;

}
}

iii. #pragma omp parallel for
for(int i = 0; i < n; i++) {

if ((*pred)(elems[i])) {
pos = i;

}
}

Examen final 7

[4] b) Soit le fragment de code suivant, qui définit une fonction qui compte le nombre d’eléments
de elems qui satisfont le prédicat pred.

int count(int elems[], int n, Predicat pred)
{

int nb = 0;

for(int i = 0; i < n; i++) {

if ((*pred)(elems[i])) {

nb += 1;

}

}

return nb;
}

Supposons que le temps d’exécution d’un appel à pred soit très variable d’un élément à un autre
— parfois court, parfois long.

Quelle(s) directive(s) OpenMP faudrait-il ajouter pour paralléliser cette fonction et obtenir un
temps d’exécution qui soit le meilleur possible? Indiquez les directives à ajouter directement dans le
corps de la fonction.

Note : vous devez aussi indiquer explicitement (mais pas uniquement!) la stratégie de répartition
des itérations qu’il serait préférable d’utiliser — static, dynamic, guided, runtime? avec ou sans
argument?

Note : Il n’est pas possible, à l’intérieur d’une boucle parallèle, d’exécuter un return ou break. (Le
return indiqué est à l’extérieur de la boucle!)

Examen final 8

3. Programme mystère avec réduction parallèle (TBB/C++) (5 pts)

// Note: Voir page 1 pour le type vector<int>.
static vector<int> foo(vector<int> elems, function<bool (int)> pred) {

return parallel_reduce(
blocked_range<size_t>(0, elems.size()),

vector<int>(), // Vecteur vide.

[=](blocked_range<size_t> r, vector<int> res) {
for(size_t k = r.begin(); k < r.end(); k++) {

if(pred(elems[k])) {
res.push_back(elems[k]); // On ajoute a la fin.

}
}
return res;

},

[=](vector<int> r1, vector<int> r2) {
for(int i = 0; i < r2.size(); i++) {

r1.push_back(r2[i]); // On ajoute a la fin.
}
return r1;

}
);

}

i. Qu’est-ce qui sera retourné dans la variable r par l’appel suivant :

// On suppose elems = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }
vector<int> r = foo(elems, [](int x) { return x % 3 == 0; });

ii. De façon plus générale, que fait la fonction foo? Quel nom plus significatif pourrait-on lui
donner?

Examen final 9

4. Mesures de performances (10 pts)

[8] a) Soit une machine parallèle à mémoire partagée comportant 16 processeurs. On a mesuré le
temps requis par un programme parallèle P1 pour traiter un même ensemble de données avec
différents nombres de processeurs (1, 2, 4, 8) et on a obtenu les temps suivants (en ms) :

Nb. procs Temps
1 150
2 60
4 40
8 50

Le temps requis par une version séquentielle du programme avec les mêmes données est de 100 ms.

i. Quelle est l’accélération relative lorsqu’on utilise 4 processeurs?

ii. Quelle est l’accélération absolue lorsqu’on utilise 4 processeurs?

iii. En utilisant l’accélération absolue, pour quel nombre de processeurs obtient-on la meilleure
efficacité et quelle est cette efficacité — exprimée en pourcentage?

iv. Quel sera le comportement du programme (accélération et efficacité) si on l’exécute sur les
mêmes données mais en utilisant les 16 processeurs? Expliquez brièvement pourquoi le pro-
gramme aurait ce comportement.

[2] b) Pour un problème d’une certaine taille, on a déterminé que 5 % des instructions d’un pro-
gramme P2 étaient des instructions devant être exécutées séquentiellement par un unique processeur.
Par contre, tout le reste peut s’exécuter en parallèle (problème embarassingly parallel). Avec quel
nombre de processeurs peut-on espérer obtenir une accélération supérieure ou égale à 10 en
traitant les mêmes données (c’est-à-dire en gardant la même taille de problème)?

Examen final 10

5. SAXPY en MPI/C (mémoire distribuée) (10 pts)
Un calcul fréquemment rencontré lorsqu’on manipule des matrices de nombres points-flottants est
celui du calcul SAXPY — «Single-Precision A · X Plus Y ».

Plus spécifiquement, un calcul SAXPY reçoit en entrée un scalaire a, deux vecteurs x et y de
même taille n, puis multiplie chaque élément x[i] par a et ajoute le résultat à y[i]. Une mise en
oeuvre séquentielle en C de saxpy a donc l’allure suivante :

void saxpy(float a, float x[], float y[], int n)
{

for (int i = 0; i < n; i++) {
y[i] += a*x[i];

}
}

La procédure à la page suivante présente un squelette pour une version parallèle en MPI/C du
calcul saxpy, procédure à laquelle deux arguments additionnels ont été ajoutés :

• Le processus racine, qui a initialement le scalaire a, les vecteurs x et y et la taille n. C’est
aussi ce processus vers lequel le résultat final y doit ensuite être retourné ;

• Le communicateur qui doit être utilisé pour les communications durant l’exécution de saxpy.

Un appel de cette procédure aurait donc l’allure suivante :

// Exemple d’appel

// On suppose ici que tous les processus de MPI_COMM_WORLD seront utilisés.
// On crée un communicateur clone pour ne pas interférer avec d’autres appels.
MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD, &comm);

// Le scalaire a et les vecteurs x et y sont uniquement sur le processus 0.
saxpy(a, x, y, n, 0, comm);
// Le vecteur résultant y est maintenant sur le processus 0.

MPI_Comm_free(&comm);

Complétez la procédure saxpy à la page suivante. On suppose qu’on utilise une machine semblable
au cluster utilisé durant les labos, donc un petit cluster comptant une trentaine de noeuds. On
suppose aussi que n peut être très grand!

Vous pouvez poser des hypothèses appropriées sur le nombre de processus et/ou la valeur de n,
et ce en indiquant explicitement ces hypothèses l’aide d’appels à assert.

Examen final 11

//
// Le scalaire a et les vecteurs x et y sont uniquement sur le processus racine.
// Le vecteur final résultant devra être sur le processus racine.
//
void saxpy(float a, float x[], float y[], int n, int racine, MPI_Comm comm)
{

}

Examen final 12

6. Parallélisation d’un problème de distance d’édition (10 pts)

Le problème

La section 7.1 des notes de cours présente un algorithme pour le calcul de la distance d’édition entre
deux chaines ainsi que l’analyse des dépendances entre les calculs — donnant lieu à un calcul de
type wavefront. (Pour rappel, l’algorithme séquentiel et les figures résultants de l’analyse des
dépendances sont présentés à la page suivante.)

On veut développer un programme parallèle qui analysera, avec la distance d’édition, un grand
nombre de très longues chaines. Les données et résultats seront comme suit :

• Argument : Une série de noms de fichier. Chaque fichier contient du texte, interprété comme
une unique (possiblement très longue) chaine de caractères.

• Résultat : La distance d’édition entre le contenu de chaque fichier — sans répétition.
Par exemple, voici «l’allure» du résultat d’une exécution de ce programme sur dix fichiers f[0-9].txt :
$ mpirun -np 30 distances f0.txt f1.txt f2.txt ... f9.txt
distance(f0.txt, f1.txt) = 92304
distance(f0.txt, f2.txt) = 12320
...
distance(f0.txt, f9.txt) = 9975

distance(f1.txt, f2.txt) = 1292
...
distance(f1.txt, f9.txt) = 9924

...

distance(f7.txt, f8.txt) = 8233
distance(f7.txt, f9.txt) = 786

distance(f8.txt, f9.txt) = 3786

La machine et le modèle de programmation

Le programme à développer s’exécutera sur un petit cluster. La machine compte une trentaine de
noeuds, connectés par un réseau dédié à haute vitesse. Chaque noeud est une machine multicoeurs
comptant de 2 à 4 coeurs et se partageant l’accès à une mémoire.

Le modèle de programmation utilisé est un modèle hybride :

• Pour la répartition du travail entre les noeuds, on utilise une approche SPMD avec MPI/C.

• Pour la répartition du travail à l’intérieur d’un noeud, on utilise OpenMP/C.

Ce que vous devez faire

Décrivez et comparez (avantages et désavantages, forces et faiblesses) diverses façons (au moins 2!)
de concevoir un programme parallèle pour résoudre ce problème.

Vous n’avez pas à écrire de code. Vous devez uniquement décrire les grandes lignes des
approches proposées — en termes d’identification des tâches, distribution des données, communi-
cations, etc.

Vous devez aussi conclure en indiquant l’approche que vous suggéreriez d’utiliser, de façon à
bien exploiter les ressources de la machine — autant les noeuds distribués que les processeurs
multicoeurs.

Examen final 13

Note: Exemple de la methode "*" sur des Ranges
(1..3)*(2..3) = [[1,2], [1,3], [2,2], [2,3], [3,2], [3,3]]

def distance_seq(ch1 , ch2)
n1 = ch1.size
n2 = ch2.size
d = Matrice.new(n1+1, n2+1)

Cas de base.
d[0,0] = 0
(1..n1).each do |i|

d[i, 0] = i
end
(1..n2).each do |j|

d[0, j] = j
end

Cas recursifs.
((1..n1)*(1.. n2)). each do |i, j|

d[i, j] = [d[i-1, j] + 1,
d[i, j-1] + 1,
d[i-1, j-1] + cout_subst(ch1[i], ch2[j])

].min
end

d[n1 , n2]
end

Examen final 14

Note: Pour cette question, vous pouvez écrire au verso si nécessaire, ou utilisez les feuilles lignées
mises à votre disposition — numérotez chacune des feuilles additionnelles et indiquez votre nom!

