13. Processus et échanges de messages

INF7235

Hiver 2017

Apercu

Introduction

Canaux et processus en PRuby
m Laclasse PRuby: :Channel
m Une extension de la classe Proc pour des processus
simples

Quelques exemples en PRuby avec le style go
m Un petit pipeline avec trois processus
m Trois fagons de calculer le mininum et le maximum d’'une
série de valeurs

Un exemple en Go
m Un petit pipeline avec trois processus
m Quelques autres éléments du langage Go

Apercu

Introduction

Les deux principaux paradigmes de programmation
concurrente

1. Communication par variables partagées

= les threads partagent un espace commun

2. Communication par échange de messages

= chaque processus possede sa propre mémoire, privée,
inaccessible aux autres processus

Notion clé = Canal de communication

= lien de communication entre deux ou plusieurs processus

Il'y a différents styles de programmation par échange
de messages. ..

Définition implicite vs. explicite des canaux

Canaux implicites

Les canaux sont implicites, par ex., a un processus est
implicitement associé un ou plusieurs canaux (e.g., MPI)

Canaux explicites

Les canaux sont explicites = objets «de premiere classe»

Il'y a différents styles de programmation par échange
de messages. ..

Définition statique vs. dynamique des canaux

Canaux statiques

Un canal est créé de fagon statique et crée un lien direct entre
deux processus

Canaux dynamiques

De nouveaux canaux peuvent étre créés en cours d’exécution
et peuvent lier différents processus

Il'y a différents styles de programmation par échange
de messages. ..

Communication uni-directionnelle vs. bi-directionnelle

Canaux unidirectionnels

Transmission d’'un émetteur vers un récepteur

Canaux bidirectionnels

Echange symétrique d’information entre processus

Il'y a différents styles de programmation par échange
de messages. ..

Envoi synchrone vs. asynchrone

Envoi synchrone

Les deux processus doivent étre préts a communiquer pour
que I'échange ait lieu, sinon le premier attend

Envoi asynchrone

Lenvoyeur peut envoyer, méme si le récepteur n’est pas prét a
recevoir

Il'y a différents styles de programmation par échange
de messages. ..

Envoi synchrone vs. asynchrone

Envoi synchrone

Les deux processus doivent étre préts a communiquer pour
que I'échange ait lieu, sinon le premier attend
= Pas besoin de buffer pour conserver les messages

Envoi asynchrone

Lenvoyeur peut envoyer, méme si le récepteur n’est pas prét a
recevoir
= Canal de communication ~ buffer des messages

Il'y a différentes sortes de canaux

Selon les langages, selon l'utilisation qu’on en fait, etc.

Boite aux lettres

Canal sur lequel n’importe quel processus peut envoyer des
messages ou a partir du quel n'importe quel processus peut en
recevoir

Port d’entrée (input port)

Canal sur lequel n’importe quel processus peut envoyer des
messages mais un seul processus en recoit

Lien entre processus (/ink)

Canal utilisé par un seul émetteur et un seul récepteur

Il'y a différentes sortes de canaux

Mais certaines caractéristiques sont communes a toutes les formes/sortes de canaux

Soit ¢ un canal de communication

Ecritures multiples par un méme processus P

Soit P qui exécute :
P: c.send my; c.send mo

Alors : my sera regu avant mo

Il'y a différentes sortes de canaux

Mais certaines caractéristiques sont communes a toutes les formes/sortes de canaux

Soit ¢ un canal de communication

Ecritures multiples par un méme processus P

Soit P qui exécute :
P: c.send my; c.send mo

Alors : my sera regu avant mo

Ecritures multiples par des processus distincts P; et P,

Soit Py et P, qui exécutent de fagon concurrente :

Py: c.send mq
P>: c.send mo

Alors : I'ordre de réception de my et m, est indéterminé!

Canaux et processus en PRuby

2.1 La classe PRuby: :Channel

Les principales méthodes de PRuby: : Channel

Instance Method Summary

- (self) close
Indique la fermeture d'un canal en lui transmettant la valeur speciale :EOQS.
- (Object) each(&block)
Permet d'executer un bloc pour chacun des elements obtenus d'un canal.
- (Bool) empty?
Determine si le canal est presentement vide.
- {(Bool) eos?
Determine si la fin du flux a ete rencontree.
- (Bool) full?
Determine si le canal est presentement plein.
- {Object) get
Obtient I'element en tete du canal.
- {Channel) initialize(name = nil, max size = 0, contents = []) m
Constructeur de base.
- {Object) peek
Lit I'element en tete du canal, mais sans le retirer du canal.
- (self) put(elem) (alsoc: #<<)
Ajoute un element a la queue du canal.

Les principales méthodes de PRuby: : Channel

o0 = Channel.new

Les principales méthodes de PRuby: : Channel

Les méthodes de base

m new : Création d’un canal

m put : Envoi non bloquant — alias = «<<»

m get : Réception bloquante

B close : Fermeture du canal

Les principales méthodes de PRuby: : Channel

Les méthodes de base

m new : Création d’un canal

Par défaut = tampon non borné

m put : Envoi non bloquant — alias = «<<»

Transmet PRuby : : EOS pour indiquer la fermeture du flux

m get : Réception bloquante

Retourne PRuby : : EOS de fagon persistente, dés que recu

B close : Fermeture du canal

Les appels a put ne sont plus possibles, mais les
éléments encore présents seront obtenus par get

Les principales méthodes de PRuby: : Channel

La méthodes each pour itérer sur les éléments d’'un canal

class Channel

def put(elem); ...; end
def get; ...; end
def close; ...; end

Execute un bloc sur chaque element obtenu du canal.
#
Termine quand EOS est rencontree.
Note: EOS n’est pas transmis au bloc.
#
def each

while (v = get) != PRuby::EO0S # Blogquant!

yield v

end

end

end

2.2 Une extension de la classe
Proc pour des processus
simples

Extension de la classe Proc, classe des 1ambdas

class Proc
def go(*canaux)
Thread.new { call *canaux }
end
end

Quelques exemples en PRuby avec le style go

3.1 Un petit pipeline avec trois
processus

Représentation graphique du pipeline (linéaire) avec

trois processus et quatre canaux

p3.gof{c3, cd)

cl c2 c3 cd

Note : C’est le programme (thread) principal qui crée les canaux, lance les
processus, et amorce le traitement — en écrivant dans c1 — puis imprime le
résultat final — en lisant c4

Un petit pipeline

Les trois (3) processus sous forme de 1ambda (objets Proc)

pl = lambda do |cin, cout|
n = cin.get
(1..n).each { |i] cout << 1 }
cout.close

end

p2 = lambda do |cin, cout|
cin.each { |v| cout << 10 * v }
cout.close

end

p3 = lambda do |cin, cout|
r =20
cin.each { |v| ¥ += v }
cout << r
cout.close

end

Un petit pipeline

Le «programme principal>» qui crée quatre (4) canaux et active les processus

Creation des canaux.
cl, c2, c3, c4 = Array.new(4) { PRuby::Channel.new }

Activation des processus.
pl.go(cl, c2)
p2.go0(c2, c3)
p3.g0(c3, c4)

Ecriture initiale => amorce le flux des donnees.
cl << 10

Reception du resultat.
puts cd.get # => 550

3.2 Trois fagcons de calculer le
mininum et le maximum d’'une
série de valeurs

Le probleme : Calcul distribué du min et du max

m On a n processus.

m Au départ :
Chaque processus possede une valeur initiale privée.

m Alafin:
Tous les processus doivent connaitre les valeurs minimum
et maximum parmi toutes les valeurs.

Le probléme : Calcul distribué du min et du max

Trois (3) solutions

(a) Solution centralisée

(b) Solution symétrique (SPMD)

(c) Solution quasi-symétrique avec anneau de processus

Le probléme : Calcul distribué du min et du max

Trois (3) solutions

Py p,—FP2~__ p,— Pz-..\\
P 1 Py
\\ / ,ﬁ' / / P3
PC' —P3 Pﬂ P4 P /
N\ ~
Ps Py

0 P
Ps/ \PS'—" 4

{a) Centralized solution (b) Symmetric solution {c) Ring solution
Figure 7.14 Communication structures of the three programs.

Copyright © 2000 by Addison Wesley Longman, Inc.

Source : G.R. Andrews, «Foundations of Multithreaded, Parallel, and
Distributed Programming», Addison-Wesley, 2000.

(a) Solution centralisée : Définition du processus

maitre

C’est le processus maitre qui fait tout le travail, i.e., les comparaisons

maitre = lambda do |donnees, x*resultats|
val = rand (MAX_VAL)

le_min, le_max = val, val
(n-1) .times do
x = donnees.get

le_min = [le_min, x].min
le_max = [le_max, X].max
end

resultats.each do |canal|
canal.put [le_min, le_max]
end
end

(a) Solution centralisée : Définition des autres

processus

Les autres processus ne font qu’envoyer leur valeur et recevoir le résultat

travailleurs = (l...n).map do
lambda do |donnees, resultat|
val = rand (MAX_VAL)

donnees.put val
le_min, le_max = resultat.get
end
end

(a) Solution centralisée : Création des canaux et

activation des processus

Canal pour recevoir les donnees des processus.
donnees = PRuby::Channel.new

Canaux pour retourner les resultats
aux autres processus.
resultats = Array.new(n-1) { PRuby::Channel.new }

On active les processus.
maitre.go(donnees, =xresultats)
(0...n-1) .each do |1i|
travailleurs[i].go(donnees, resultats[i])
end

(b) Solution symeétrique : Définition des processus, qui

font tous exactement la méme chose

C’est-a-dire tous les processus font tout le travail!

procs = (0...n).map do |i]
lambda do |mon_canal, *autres_canaux|
val = rand (MAX_VAL)

On transmet la valeur aux autres processus.
autres_canaux.each { |canal| canal.put val }

On recoit les valeurs des autres processus.
le_min, le_max = wval, val
(n-1) .times do

autre_val = mon_canal.get

le_min = [le_min, autre_val].min
le_max = [le_max, autre_val].max
end

(b) Solution symétrique : Création des canaux et

activation des processus

Les canaux, tous utilises de la meme facon.
canaux = Array.new(n) { PRuby::Channel.new }

On lance les processus.

(0...n).each do |1
procs[i] .go(canaux[i],
*canaux[0...117,
*canaux[i+1..-1])

end

(c) Solution en anneau. .. avec deux passes :

Définition du premier processus

C’est le premier processus qui amorce la ronde autour de I'anneau

procs = [] # Tableau des divers processus.

Initie la circulation autour de 1’anneau.
procs << lambda do |gauche, droite]
val = rand (MAX_VAL)

Premiere passe.
droite.put [val, val]

Deuxieme passe.

le_min, le_max = gauche.get

droite.put [le_min, le_max]
end

(c) Solution en anneau. .. avec deux passes :

Définition des autres processus

Les autres processus

(1...n) .each do |1]
procs << lambda do |gauche, droite]
val = rand (MAX_VAL)

Premiere passe.

le_min, le_max = gauche.get
le_min = [le_min, val].min
le_max = [le_max, val].max
droite.put [le_min, le_max]

Deuxieme passe.
le_min, le_max = gauche.get
droite.put [le_min, le_max]
end
end

(c) Solution en anneau. .. avec deux passes :

Définition des autres processus

Les autres processus. .. pour que tous les canaux soient vides lorsqu’on termine

(1...n) .each do |1]
procs << lambda do |gauche, droite]
val = rand (MAX_VAL)

Premiere passe.

le_min, le_max = gauche.get
le_min = [le_min, val].min
le_max = [le_max, val].max
droite.put [le_min, le_max]

Deuxieme passe.
le_min, le_max = gauche.get
droite.put [le_min, le_max] wunless i == n-1
end
end

(c) Solution en anneau. .. avec deux passes :

Création des canaux et activation des processus

Les canaux.
canaux = Array.new(n) { PRuby::Channel.new }

On active les processus.

(0...n) .each do |1]
procs[i] .go(canaux[i], # Gauche
canaux[i == n-1 ? 0 : 1i+1])# Droite

end

Un exemple en Go

Le langage Go

https://golang.org/

Go is an open source programming language
that makes it easy to build simple, reliable, and
efficient software.

@@@

Download Go

Binary distributions available for
Linux, Mac OS X, Windows, and more.

https://golang.org/

Le langage Go

Go est un langage de programmation compilé et
concurrent inspiré de C et Pascal. Ce langage a été
développé par Google a partir d’'un concept initial de
Robert Griesemer, Rob Pike et Ken Thompson.

Source :
https://fr.wikipedia.org/wiki/Go_%28langage$29

https://fr.wikipedia.org/wiki/Go_%28langage%29

Le langage Go : La concurrence

Go integre directement, comme Java, les traitements
de code en concurrence. Le mot clé go permet a un
appel de fonction de s’exécuter en concurrence avec
le thread courant. Ce code exécuté en concurrence se
nomme une goroutine par analogie lointaine avec les
coroutines [—] pas forcément [exécuté] dans un
nouveau thread [...].

Les goroutines communiquent entre elles par passage
de messages, en envoyant ou en recevant des
messages sur des canaux.

Source :
https://fr.wikipedia.org/wiki/Go_%28langage$29

https://fr.wikipedia.org/wiki/Go_%28langage%29

Le langage Go : La concurrence

Go integre directement, comme Java, les traitements
de code en concurrence. Le mot clé go permet a un
appel de fonction de s’exécuter en concurrence avec
le thread courant. Ce code exécuté en concurrence se
nomme une goroutine par analogie lointaine avec les
coroutines [—] pas forcément [exécuté] dans un
nouveau thread [...].

Les goroutines communiquent entre elles par passage
de messages, en envoyant ou en recevant des
messages sur des canaux.

Source :
https://fr.wikipedia.org/wiki/Go_%28langage$29

https://fr.wikipedia.org/wiki/Go_%28langage%29

Le langage Go : Canaux et opérations de base

B c chan int

Hc <-v

B range c

close (c)

Le langage Go : Canaux et opérations de base

B c chan int:
Déclaration d’un canal ¢ pour transmettre des ints.

m<- C.
Lecture d’'une valeur sur c — = c.get en PRuby.

B cCc <—- vVv.:
Ecriture de v sur c — ~ c.put v en PRuby.

B range c:
Enumération des éléments de ¢ — ~ c.each en PRuby.

W close(c) :
Fermeture du canal c.

4.1 Un petit pipeline avec trois
processus

Représentation graphique du pipeline (linéaire) avec

trois processus et quatre canaux

go p3{c3, cd)

é:l ;:2 c3 cd

Un petit pipeline

Les trois (3) processus

func pl(cin chan int, cout chan int) {
n := <— cin
for 1 := 1; i <= n; 1i++ { cout <- 1 }

close(cout)

func p2(cin chan int, cout chan int) {
for v := range cin { cout <- 10 % v }
close(cout)

func p3(cin chan int, cout chan int) {
r := 0
for v := range cin { r += v }

cout <- r
close (cout)

Un petit pipeline

Le programme principal

func main ()
cl := make(chan int

{

(

c2 := make(chan int
c3 := make(chan int
cd4d := make(chan int
go pl(cl, c2)
go p2(c2, c3)
go p3(c3, c4)

cl <= 10
fmt .Printf ("%d\n", <- c4)

4.2 Quelques autres eléments du
langage Go

Une caractéristique fondamentale des canaux en Go

Les canaux Go sont toujours bornés

m Par défaut, si aucune taille n’est spécifiée, alors le tampon
est de taille nulle
=
I'envoi et la réception se font de fagon synchrone =
rendez-vous

Une caractéristique fondamentale des canaux en Go

Les canaux Go sont toujours bornés

m Par défaut, si aucune taille n’est spécifiée, alors le tampon
est de taille nulle
=
I'envoi et la réception se font de fagon synchrone =
rendez-vous

Les canaux PRuby peuvent étre non bornés

m Par défaut, si aucune taille n’est spécifiée, alors le tampon
associé est non-borné

Lopération select obtient un élément d’'un canal

sélectionné parmi plusieurs

select {
case rl := <- chl:
.; return
case r2 := <— ch2:

.; return

case <-time.After (100 * time.Millisecond) :
.; return

m Va prendre un élément sur ch1 ou sur ch2, a moins que le
time-out ne survienne auparavant.

	Introduction
	Canaux et processus en PRuby
	La classe PRuby::Channel
	Une extension de la classe Proc pour des processus simples

	Quelques exemples en PRuby avec le style go
	Un petit pipeline avec trois processus
	Trois façons de calculer le mininum et le maximum d'une série de valeurs

	Un exemple en Go
	Un petit pipeline avec trois processus
	Quelques autres éléments du langage Go

