
13. Processus et échanges de messages

INF7235

Hiver 2017

Aperçu

1 Introduction

2 Canaux et processus en PRuby
La classe PRuby::Channel
Une extension de la classe Proc pour des processus
simples

3 Quelques exemples en PRuby avec le style go
Un petit pipeline avec trois processus
Trois façons de calculer le mininum et le maximum d’une
série de valeurs

4 Un exemple en Go
Un petit pipeline avec trois processus
Quelques autres éléments du langage Go

Aperçu

1 Introduction

2 Canaux et processus en PRuby

3 Quelques exemples en PRuby avec le style go

4 Un exemple en Go

Les deux principaux paradigmes de programmation
concurrente

1. Communication par variables partagées

⇒ les threads partagent un espace commun

2. Communication par échange de messages

⇒ chaque processus possède sa propre mémoire, privée,
inaccessible aux autres processus

Notion clé = Canal de communication

= lien de communication entre deux ou plusieurs processus

Il y a différents styles de programmation par échange
de messages. . .
Définition implicite vs. explicite des canaux

Canaux implicites

Les canaux sont implicites, par ex., à un processus est
implicitement associé un ou plusieurs canaux (e.g., MPI)

Canaux explicites

Les canaux sont explicites = objets «de première classe»

Il y a différents styles de programmation par échange
de messages. . .
Définition statique vs. dynamique des canaux

Canaux statiques

Un canal est créé de façon statique et crée un lien direct entre
deux processus

Canaux dynamiques

De nouveaux canaux peuvent être créés en cours d’exécution
et peuvent lier différents processus

Il y a différents styles de programmation par échange
de messages. . .
Communication uni-directionnelle vs. bi-directionnelle

Canaux unidirectionnels

Transmission d’un émetteur vers un récepteur

Canaux bidirectionnels

Échange symétrique d’information entre processus

Il y a différents styles de programmation par échange
de messages. . .
Envoi synchrone vs. asynchrone

Envoi synchrone

Les deux processus doivent être prêts à communiquer pour
que l’échange ait lieu, sinon le premier attend

Envoi asynchrone

L’envoyeur peut envoyer, même si le récepteur n’est pas prêt à
recevoir

Il y a différents styles de programmation par échange
de messages. . .
Envoi synchrone vs. asynchrone

Envoi synchrone

Les deux processus doivent être prêts à communiquer pour
que l’échange ait lieu, sinon le premier attend
⇒ Pas besoin de buffer pour conserver les messages

Envoi asynchrone

L’envoyeur peut envoyer, même si le récepteur n’est pas prêt à
recevoir
⇒ Canal de communication ≈ buffer des messages

Il y a différentes sortes de canaux
Selon les langages, selon l’utilisation qu’on en fait, etc.

Boite aux lettres

Canal sur lequel n’importe quel processus peut envoyer des
messages ou à partir du quel n’importe quel processus peut en
recevoir

Port d’entrée (input port)

Canal sur lequel n’importe quel processus peut envoyer des
messages mais un seul processus en reçoit

Lien entre processus (link)

Canal utilisé par un seul émetteur et un seul récepteur

Il y a différentes sortes de canaux
Mais certaines caractéristiques sont communes à toutes les formes/sortes de canaux

Soit c un canal de communication

Écritures multiples par un même processus P

Soit P qui exécute :

P: c.send m1; c.send m2

Alors : m1 sera reçu avant m2

Écritures multiples par des processus distincts P1 et P2

Soit P1 et P2 qui exécutent de façon concurrente :

P1: c.send m1
P2: c.send m2

Alors : l’ordre de réception de m1 et m2 est indéterminé!

Il y a différentes sortes de canaux
Mais certaines caractéristiques sont communes à toutes les formes/sortes de canaux

Soit c un canal de communication

Écritures multiples par un même processus P

Soit P qui exécute :

P: c.send m1; c.send m2

Alors : m1 sera reçu avant m2

Écritures multiples par des processus distincts P1 et P2

Soit P1 et P2 qui exécutent de façon concurrente :

P1: c.send m1
P2: c.send m2

Alors : l’ordre de réception de m1 et m2 est indéterminé!

Aperçu

1 Introduction

2 Canaux et processus en PRuby

3 Quelques exemples en PRuby avec le style go

4 Un exemple en Go

2.1 La classe PRuby::Channel

Les principales méthodes de PRuby::Channel

Les principales méthodes de PRuby::Channel

Les principales méthodes de PRuby::Channel
Les méthodes de base

new : Création d’un canal

put : Envoi non bloquant — alias = «<<»

get : Réception bloquante

close : Fermeture du canal

Les principales méthodes de PRuby::Channel
Les méthodes de base

new : Création d’un canal

Par défaut⇒ tampon non borné

put : Envoi non bloquant — alias = «<<»

Transmet PRuby::EOS pour indiquer la fermeture du flux

get : Réception bloquante

Retourne PRuby::EOS de façon persistente, dès que reçu

close : Fermeture du canal

Les appels à put ne sont plus possibles, mais les
éléments encore présents seront obtenus par get

Les principales méthodes de PRuby::Channel
La méthodes each pour itérer sur les éléments d’un canal

class Channel
def put(elem); ...; end
def get; ...; end
def close; ...; end

Execute un bloc sur chaque element obtenu du canal.
#
Termine quand EOS est rencontree.
Note: EOS n’est pas transmis au bloc.
#
def each
while (v = get) != PRuby::EOS # Bloquant!

yield v
end

end

end

2.2 Une extension de la classe
Proc pour des processus

simples

Extension de la classe Proc, classe des lambdas

class Proc
def go(*canaux)
Thread.new { call *canaux }

end
end

Aperçu

1 Introduction

2 Canaux et processus en PRuby

3 Quelques exemples en PRuby avec le style go

4 Un exemple en Go

3.1 Un petit pipeline avec trois
processus

Représentation graphique du pipeline (linéaire) avec
trois processus et quatre canaux

Note : C’est le programme (thread) principal qui crée les canaux, lance les
processus, et amorce le traitement — en écrivant dans c1 — puis imprime le
résultat final — en lisant c4

Un petit pipeline
Les trois (3) processus sous forme de lambda (objets Proc)

p1 = lambda do |cin, cout|
n = cin.get
(1..n).each { |i| cout << i }
cout.close

end

p2 = lambda do |cin, cout|
cin.each { |v| cout << 10 * v }
cout.close

end

p3 = lambda do |cin, cout|
r = 0
cin.each { |v| r += v }
cout << r
cout.close

end

Un petit pipeline
Le «programme principal» qui crée quatre (4) canaux et active les processus

Creation des canaux.
c1, c2, c3, c4 = Array.new(4) { PRuby::Channel.new }

Activation des processus.
p1.go(c1, c2)
p2.go(c2, c3)
p3.go(c3, c4)

Ecriture initiale => amorce le flux des donnees.
c1 << 10

Reception du resultat.
puts c4.get # => 550

3.2 Trois façons de calculer le
mininum et le maximum d’une

série de valeurs

Le problème : Calcul distribué du min et du max

On a n processus.

Au départ :
Chaque processus possède une valeur initiale privée.

À la fin :
Tous les processus doivent connaître les valeurs minimum
et maximum parmi toutes les valeurs.

Le problème : Calcul distribué du min et du max
Trois (3) solutions

(a) Solution centralisée

(b) Solution symétrique (SPMD)

(c) Solution quasi-symétrique avec anneau de processus

Le problème : Calcul distribué du min et du max
Trois (3) solutions

Source : G.R. Andrews, «Foundations of Multithreaded, Parallel, and
Distributed Programming», Addison-Wesley, 2000.

(a) Solution centralisée : Définition du processus
maitre
C’est le processus maitre qui fait tout le travail, i.e., les comparaisons

maitre = lambda do |donnees, *resultats|
val = rand(MAX_VAL)

le_min, le_max = val, val
(n-1).times do
x = donnees.get
le_min = [le_min, x].min
le_max = [le_max, x].max

end

resultats.each do |canal|
canal.put [le_min, le_max]

end
end

(a) Solution centralisée : Définition des autres
processus
Les autres processus ne font qu’envoyer leur valeur et recevoir le résultat

travailleurs = (1...n).map do
lambda do |donnees, resultat|
val = rand(MAX_VAL)

donnees.put val
le_min, le_max = resultat.get

end
end

(a) Solution centralisée : Création des canaux et
activation des processus

Canal pour recevoir les donnees des processus.

donnees = PRuby::Channel.new

Canaux pour retourner les resultats

aux autres processus.

resultats = Array.new(n-1) { PRuby::Channel.new }

On active les processus.

maitre.go(donnees, *resultats)
(0...n-1).each do |i|
travailleurs[i].go(donnees, resultats[i])

end

(b) Solution symétrique : Définition des processus, qui
font tous exactement la même chose
C’est-à-dire tous les processus font tout le travail!

procs = (0...n).map do |i|
lambda do |mon_canal, *autres_canaux|

val = rand(MAX_VAL)

On transmet la valeur aux autres processus.

autres_canaux.each { |canal| canal.put val }

On recoit les valeurs des autres processus.

le_min, le_max = val, val
(n-1).times do

autre_val = mon_canal.get
le_min = [le_min, autre_val].min
le_max = [le_max, autre_val].max

end
end

end

(b) Solution symétrique : Création des canaux et
activation des processus

Les canaux, tous utilises de la meme facon.

canaux = Array.new(n) { PRuby::Channel.new }

On lance les processus.

(0...n).each do |i|
procs[i].go(canaux[i],

*canaux[0...i],

*canaux[i+1..-1])
end

(c) Solution en anneau. . . avec deux passes :
Définition du premier processus
C’est le premier processus qui amorce la ronde autour de l’anneau

procs = [] # Tableau des divers processus.

Initie la circulation autour de l’anneau.

procs << lambda do |gauche, droite|
val = rand(MAX_VAL)

Premiere passe.

droite.put [val, val]

Deuxieme passe.

le_min, le_max = gauche.get
droite.put [le_min, le_max]

end

(c) Solution en anneau. . . avec deux passes :
Définition des autres processus
Les autres processus

(1...n).each do |i|
procs << lambda do |gauche, droite|
val = rand(MAX_VAL)

Premiere passe.

le_min, le_max = gauche.get
le_min = [le_min, val].min
le_max = [le_max, val].max
droite.put [le_min, le_max]

Deuxieme passe.

le_min, le_max = gauche.get
droite.put [le_min, le_max]

end
end

(c) Solution en anneau. . . avec deux passes :
Définition des autres processus
Les autres processus. . . pour que tous les canaux soient vides lorsqu’on termine

(1...n).each do |i|
procs << lambda do |gauche, droite|
val = rand(MAX_VAL)

Premiere passe.

le_min, le_max = gauche.get
le_min = [le_min, val].min
le_max = [le_max, val].max
droite.put [le_min, le_max]

Deuxieme passe.

le_min, le_max = gauche.get
droite.put [le_min, le_max] unless i == n-1

end
end

(c) Solution en anneau. . . avec deux passes :
Création des canaux et activation des processus

Les canaux.

canaux = Array.new(n) { PRuby::Channel.new }

On active les processus.

(0...n).each do |i|
procs[i].go(canaux[i], # Gauche

canaux[i == n-1 ? 0 : i+1])# Droite

end

Aperçu

1 Introduction

2 Canaux et processus en PRuby

3 Quelques exemples en PRuby avec le style go

4 Un exemple en Go

Le langage Go
https://golang.org/

https://golang.org/

Le langage Go

Go est un langage de programmation compilé et
concurrent inspiré de C et Pascal. Ce langage a été
développé par Google à partir d’un concept initial de
Robert Griesemer, Rob Pike et Ken Thompson.

Source :
https://fr.wikipedia.org/wiki/Go_%28langage%29

https://fr.wikipedia.org/wiki/Go_%28langage%29

Le langage Go : La concurrence

Go intègre directement, comme Java, les traitements
de code en concurrence. Le mot clé go permet à un
appel de fonction de s’exécuter en concurrence avec
le thread courant. Ce code exécuté en concurrence se
nomme une goroutine par analogie lointaine avec les
coroutines [—] pas forcément [exécuté] dans un
nouveau thread [. . .].

Les goroutines communiquent entre elles par passage
de messages, en envoyant ou en recevant des
messages sur des canaux.

Source :
https://fr.wikipedia.org/wiki/Go_%28langage%29

https://fr.wikipedia.org/wiki/Go_%28langage%29

Le langage Go : La concurrence

Go intègre directement, comme Java, les traitements
de code en concurrence. Le mot clé go permet à un
appel de fonction de s’exécuter en concurrence avec
le thread courant. Ce code exécuté en concurrence se
nomme une goroutine par analogie lointaine avec les
coroutines [—] pas forcément [exécuté] dans un
nouveau thread [. . .].

Les goroutines communiquent entre elles par passage
de messages, en envoyant ou en recevant des
messages sur des canaux.

Source :
https://fr.wikipedia.org/wiki/Go_%28langage%29

https://fr.wikipedia.org/wiki/Go_%28langage%29

Le langage Go : Canaux et opérations de base

c chan int

<- c

c <- v

range c

close(c)

Le langage Go : Canaux et opérations de base

c chan int :
Déclaration d’un canal c pour transmettre des ints.

<- c :
Lecture d’une valeur sur c — ≈ c.get en PRuby.

c <- v :
Écriture de v sur c — ≈ c.put v en PRuby.

range c :
Énumération des éléments de c — ≈ c.each en PRuby.

close(c) :
Fermeture du canal c.

4.1 Un petit pipeline avec trois
processus

Représentation graphique du pipeline (linéaire) avec
trois processus et quatre canaux

Un petit pipeline
Les trois (3) processus

func p1(cin chan int, cout chan int) {
n := <- cin
for i := 1; i <= n; i++ { cout <- i }
close(cout)

}

func p2(cin chan int, cout chan int) {
for v := range cin { cout <- 10 * v }
close(cout)

}

func p3(cin chan int, cout chan int) {
r := 0
for v := range cin { r += v }
cout <- r
close(cout)

}

Un petit pipeline
Le programme principal

func main() {
c1 := make(chan int)
c2 := make(chan int)
c3 := make(chan int)
c4 := make(chan int)

go p1(c1, c2)
go p2(c2, c3)
go p3(c3, c4)

c1 <- 10
fmt.Printf("%d\n", <- c4)

}

4.2 Quelques autres éléments du
langage Go

Une caractéristique fondamentale des canaux en Go

Les canaux Go sont toujours bornés

Par défaut, si aucune taille n’est spécifiée, alors le tampon
est de taille nulle
⇒
l’envoi et la réception se font de façon synchrone =
rendez-vous

Les canaux PRuby peuvent être non bornés

Par défaut, si aucune taille n’est spécifiée, alors le tampon
associé est non-borné

Une caractéristique fondamentale des canaux en Go

Les canaux Go sont toujours bornés

Par défaut, si aucune taille n’est spécifiée, alors le tampon
est de taille nulle
⇒
l’envoi et la réception se font de façon synchrone =
rendez-vous

Les canaux PRuby peuvent être non bornés

Par défaut, si aucune taille n’est spécifiée, alors le tampon
associé est non-borné

L’opération select obtient un élément d’un canal
sélectionné parmi plusieurs

select {
case r1 := <- ch1:
...; return

case r2 := <- ch2:
...; return

case <-time.After(100 * time.Millisecond):
...; return

}

Va prendre un élément sur ch1 ou sur ch2, à moins que le
time-out ne survienne auparavant.

	Introduction
	Canaux et processus en PRuby
	La classe PRuby::Channel
	Une extension de la classe Proc pour des processus simples

	Quelques exemples en PRuby avec le style go
	Un petit pipeline avec trois processus
	Trois façons de calculer le mininum et le maximum d'une série de valeurs

	Un exemple en Go
	Un petit pipeline avec trois processus
	Quelques autres éléments du langage Go

