
INTERFACE EXPRESSIONS MONITORING FOR BPEL
PROCESSES

Wassim Jendoubi, Guy Tremblay, Aziz Salah
Dépt. d’informatique, UQAM, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada

jendoubi.wassim@courrier.uqam.ca,{tremblay.guy,salah.aziz}@uqam.ca

Keywords: BPEL Processes; Run-time Monitoring; Interface Protocols; Regular Expressions.

Abstract: In this paper, we show how Web services descriptions can be extended with simpledeclarativebehavior
specification usinginterface expressions, a form of regular expressions that describe the possible sequences of
externally observable events that a WS-BPEL process can perform.
We describe how a concrete (executable) WS-BPEL process can be monitored with respect to such interface
expressions, to ensure that it satisfies its associated abstract specification or to detect the occurrence, or non-
occurrence, of some particular sequences of events. More specifically, we describe the implementation of such
a run-time monitor, called BPEL.RPM, that uses the Open ESB BPEL service engine.

1 INTRODUCTION

In this paper, we show how BPEL Web services
descriptions can be extended with simple declara-
tive behavior specifications using a notation, simi-
lar to regular expressions, called “interface expres-
sions.” We also describe an architecture for monitor-
ing, at run-time, a BPEL service implementation with
respect to such interface expressions. Such a moni-
tor can detect the occurrence of particular sequences
of operations with respect to an interface expression,
whether this expression specifies a “complete” con-
tract, a particular sub-behavior, or a behavior that
should not be observed.

2 WEB SERVICES INTERFACES
AND PROTOCOLS

WS-BPEL (Andrews et al., 2003) is a notation for
describing business processes implemented as orches-
tration of Web services.

A WS-BPEL description consists of two key parts:
static interfaceanddynamic behavior. The static in-
terface describes the various types of messages ex-
changed by the service as well as the collection of op-

ˆ Start of process
$ End of process

any Arbitrary message (wildcard)
in:m Reception ofm

out:m Sending ofm
outIn:m Synchronous invocation ofm
e1; e2 Execution ofe1 followed bye2

e1 [] e2 Choice betweene1 ande2
e1 || e2 Arbitrary interleaving ofe1 ande2

e? Optional element (0 or 1 occurrence ofe)
e* Repetition (0, 1 or many occurrences ofe)
e+ Repetition (1 or many occurrences ofe)

Figure 1: Notation for interface expressions.

erationsprovidedor requiredby the service. The dy-
namic behavior is described operationally, using typ-
ical (imperative) control structures.

The static interface describes a service as a col-
lection of operations that can be invokedin any par-
ticular order, much like a Javainterface. Thus, it
does not describe the allowableconversations, i.e.,
the sequences of messages that can be ou should be
exchanged between a client and a service. Such ady-
namic interfacespecification is called aprotocol.

Various notations can be used to describe proto-
cols (Clements and al., 2003), e.g., UML’s sequence,
communication or state transition diagrams, regu-

Figure 2: Overall architecture of our BPEL run-time moni-
toring system.

lar expressions, abstract WS-BPEL processes, etc.
Figure 1 shows the key elements of one such no-
tation, called interface expressions(Tremblay and
Chae, 2005).

3 AN ARCHITECTURE FOR
MONITORING WEB SERVICES
BEHAVIOR

Run-time software monitoring can be used for var-
ious purposes, e.g., profiling, performance analysis,
fault-detection, etc. (Delgado et al., 2004). In this pa-
per, we propose a run-time monitor for behavior de-
tection that can also be used for software-fault detec-
tion.

Figure 2 shows the overall architecture of our
BPEL run-time monitoring system, expressed in a
style similar to the one used by Delgado et al. Our
architecture allows for the monitoring of various pro-
tocols expressed as interface expressions. The moni-
tor notifies, dynamically, when a specific behavior has
been detected—or when it cannot be detected.

The architecture we propose is independent of the
specific BPEL engine used for running the BPEL pro-
cesses. This architecture is also customizable and ex-
tensible with respect to how the monitor reacts when
a behavior is detected.

We allow the monitoring of a process against var-
ious interface expressions, possibly all independently
and simultaneously. Thus, given a process and a
specific interface expression, there will be a specific
monitor instance whose role will be to monitor the
expected behavior.

4 MONITORING WS-BPEL
PROCESSES USING BPEL.RPM

Figure 3 shows the overall structure of
BPEL.RPM (BPEL Run-time Process Monitor-
ing), a concrete implementation of the run-time
monitoring architecture described earlier.

BPEL.RPM is composed of three key compo-
nents:
• An Event Observer, which is specific to a particu-

lar execution engine.
• An Analyzer, which analyzes the various events

as they occur and match them with respect to a
specified interface expression.

• An Action Handler, which reacts according to
some user-defined policy when a specific behav-
ior is detected.

4.1 Interface Expression Specification

We showed earlier (Figure 1) an abstract notation for
interface expressions, used to specify behavior proto-
cols. In BPEL.RPM, we use a mixed regular expres-
sions and XML representation, where aProtocol is
characterized by two key elements:
• MonitoredActivities: The set of activities from

the BPEL process which are monitored. Thus, an
event associated with a BPEL activity not in this
set isignored.

• InterfaceExpr: The interface expression repre-
senting the behavior to be monitored. The out-
come (verdict) of monitoring depends on the
value of theExcludes attribute:1

– Excludes="no": Monitoring succeeds when
an instance of the behavior specified by the
InterfaceExpr is detected, and fails when it
definitively cannot satisfy it. This case is typi-
cally associated with an explicit contract spec-
ification, but can also be used for identifying
interestingsub-sequence of events, e.g., as re-
quired for intrusion detection.

– Excludes="yes": Monitoring succeeds when
the observed behaviordoes not matchthe in-
terface expression, and fails when it matches.

Monitoring using interface expression issimi-
lar, although not identical, to searching a stream
using grep. The key difference is that whereas
grep processes a stream of independent lines, the
monitor behaves as though it processes a stream of
incrementally-built sequences of events; that is, each

1Both are instances ofsafety properties(Schneider,
2000), as the interface expression and the trace are finite.

Event Observer

Analyzer

socket
Observer

Server

Protocol
Analyzer

Event
Analyzer

Action
Handler

BPEL

Protocol
<.../>
Xml

event

message
--->Started :
in:SimpleAuctionServiceOp...
--->Stepped :
outIn:bidingSeller@Seller...
--->Stepped :
outIn:getBuyerOffer@Buyer...
--->Stepped :
outIn:bidingSeller@Seller...

BPEL.RPM

automaton
event

Observer
Client

Open ESB

Figure 3: Concrete implementation of BPEL.RPM.

new event is added to the trace, which is then matched
against the pattern. Also, when the pattern does not
contain an explicit “end of process” marker (“$”), an
occurrence of the match will be signaled as soon as an
appropriate sequence of events is encountered. Thus,
an interface expression such as “a;b;c” is not exactly
the same as “̂.*;a; b;c;.*$”—in the latter case, a
success (as well as a failure) would be signaled only
when the monitored process terminates—, whereas
they would be equivalent in thegrep case.

4.2 Event Observer

The event observer component identifies the concrete
events from the BPEL processthat might beof inter-
est, and then transmits those events to the analyzer
component. Its implementation depends on the spe-
cific BPEL engine being used. In BPEL.RPM, we
use BPELSE, the Open ESB (Open Enterprise Ser-
vice Bus)2 BPEL Service Engine.

BPELSE allows to dynamically register informa-
tion about running BPEL process instances. This in-
formation is registered inbpelseDB, a database asso-
ciated with the BPEL process engine. To use this
database, we defined adatabase trigger, so that when-
ever information about an event is written in the
database, an associated stored procedure is executed.
This procedure transmits the information about the
event to the monitoring component, using a socket
connection, as illustrated in Figure 4, information

2http://open-esb.java.net/

BPEL SE
 BPEL Event

bpelseDB

Trigger

UDF

Observer
Client

Socket

Open ESBBPEL.RPM

Observer Server

Event Observer

Figure 4: Implementation of BPEL.RPM event observer
component.

which is then mapped into an appropriateBPEL ac-
tivity.

4.3 Analyzer

The analyzer is BPEL.RPM’s key component. Its
role is to keep track of the various events as they oc-
cur and to verify the correspondence between those
events and the patterns to be detected, as expressed
by the interface expressions. To perform this task, the
component proceeds as described in the following—
Figure 5 shows its overall implementation.

First, the interface expression relative to which a
process is to be monitored is transformed into an ap-
propriate finite state automaton. A mapping of the
automaton symbols into process activities is also cre-
ated. These steps are performed by the protocol an-
alyzer (Figure 5). The automata is created using the

Analyzer

Event
Analyzer

Protocol
Analyzer

dk.brics
.autom

aton

monitored event

regular
expression

automaton

protocol

Figure 5: Implementation of BPEL.RPM analyzer.

dk.brics.automaton3 Java package, which provides
deterministic as well as non-deterministic automata
implementation with support for standard regular ex-
pression operations.

Once the automata has been created, event ana-
lyzing and monitoring can then begin. Whenever an
event occurs, the analyzer proceeds as follows:
• The analyzer retrieves the activity associated with

the event;
• If the event activity is not one of the activities to

be monitored, the event is simply ignored. Other-
wise, if the activity is indeed one of those being
monitored, then:

– The event is added to the execution trace;
– The state of the automata is advanced according

to the received event;
– Based on the resulting automata state, callbacks

to the action handlers are performed.

Various action handlers (i.e., views) can be asso-
ciated with a specific monitor instance (i.e., model).
We use the “Observer Pattern” to decouple the ac-
tion handlers from the monitor per se, where the re-
quired callbacks are performed through an appropri-
ateMonitorListener interface.

4.4 Action handler

The run-time action handler component’s purpose is
to encapsulate a specific reaction strategy with respect
to the monitored protocol. We allow four different
types of responses (notifications) depending on the
state of the protocol:
• When monitoring of the protocol is initiated;
• When an event occurs so that the protocol state

must be changed;

3http://www.brics.dk/automaton

• When the protocol successfully reaches comple-
tion;

• When the protocol fails.

In our current prototype implementation, we use
a simple reaction strategy, namely, we simply log
the various events. However, more complex reaction
strategies are possible, including interacting with the
BPEL engine through theBPEL Management API4.

5 CONCLUSION AND FUTURE
WORK

In this paper, we presented a concrete implemen-
tation of a run-time monitor for WS-BPEL concrete
processes. Monitoring is performed with respect to
interface expressions, a form of regular expressions
that emphasize externally observable behavior, much
like behavior protocols allow for software compo-
nents (Plasil and Visnovsky, 2002). Such interface
expressions can express the overall dynamic inter-
face specification of a process as well as particular
sequences of events of interest.

A limitation of interface expressions is that they
abstract from the operations’ arguments. Thus, all in-
vocations (resp., reception) of a given operation from
a specific partner link are represented by the same
symbol. As future work, we plan to extend our ex-
pressions with message arguments specification.

REFERENCES

Andrews, T.,et al. (2003). Business process execution
language for web services (BPEL4WS) version 1.1.
http://www-128.ibm.com/developerworks/
library/ws-bpel.

Clements, P. and al. (2003).Documenting Software Archi-
tectures: Views and Beyond. Addison-Wesley.

Delgado, N., Gates, A., and Roach, S. (2004). A taxon-
omy and catalog of runtime software-fault monitoring
tools. IEEE Transactions on Software Engineering,
30(12):859–872.

Plasil, F. and Visnovsky, S. (2002). Behavior protocols
for software components. IEEE Tran. Soft. Eng.,
28(11):1056–1076.

Schneider, F. (2000). Enforceable security policies.ACM
Trans. Inf. Syst. Secur., 3(1):30–50.

Tremblay, G. and Chae, J. (2005). Towards specifying con-
tracts and protocols for Web services. InMCETECH
’05, pages 73–85.

4http://ode.apache.org/
bpel-management-api-specification.html

