Un apercu de git, un outil de controle du code
source

MGL7460
Automne 2016

Table des matiéres

1 Introduction : Qu’est-ce qu’un systéme de controéle du code source?
2 Qu’est-ce que git?

3 Quelques caractéristiques de git

4 Concepts de base de git

5 Les principales commandes

6 Les trois niveaux d’un projet sour le contréle de git : Exemple

7 Stratégie d’utilisation pour un laboratoire ou devoir simple

8 Comparaisons avec svn et CVS

Références

HE B H e o e =

La premiére chose a faire pour développer du code
de facon professionnelle. ..

« You need to get the development infrastructure environment in order. That means
adopting (or improving) the fundamental Starter Kit practices:

e Version control
o Unit testing
o Build automation

Version control needs to come before anything else. It’s the first bit of infras-
tructure we set up on any project.»

«Practices of an Agile Developer— Working in the Real World», Subramaniam
& Hunt, 2006.

1 Introduction : Qu’est-ce qu’un systéme de con-

trole du code source?

A source code control system [is like/ a giant | UNDO | key—a project-wide

time machine that can return you to those alcyon days of last week, when the code
actually compiled and ran.

«The Pragmatic Programmery, Hunt & Thomas, 2000.
Alcyon :

1.

2.

Calm and peaceful; tranquil.

Prosperous; golden: halcyon years.

Que permet de faire un systéme de controle du code source?

Conserver tout le code source

Prendre note de tous les changements effectués au code source et a sa docu-
mentation
= permet de retourner a une version antérieure (qui, elle, fonctionnait!!)

Identifier quels fichiers ont été modifiés

Déterminer qui a modifié un bout de code

Comparer des versions

Fusionner des versions développées de facon concurrente

Identifier et gérer les releases, les versions, les branches de développe-
ment

The Pragmatic Programmer’s Tip 23

Always Use Source Code Control

Always. Fven if you are a single-person team on a one-week project.
FEven if it’s a “throw-away” prototype. Even if the stuff you’re work-
ing on isn’t source code. Make sure that everything is under source
code control!

«The Pragmatic Programmery, Hunt & Thomas, 2000.

2 Qu’est-ce que git?

Ce document présente un bref aper¢u de l'outil git, un systéme de controle du
code source — on dit aussi «systéme de controle des versions», donc le méme genre
d’outil que CVS et svn (SubVersion), mais avec une approche quelque peu différente :
distribuée plutot que centralisée.

Git is a distributed revision control system with an emphasis on speed,
data integrity, and support for distributed, non-linear workflows. Git
was initially designed and developed by Linus Torvalds for Linuz
kernel development in 2005, and has since become one of the most widely
adopted version control systems for software development.

Source : https: //en. wikipedia. org/wiki/Git_ (software)

https://en.wikipedia.org/wiki/Git_(software)

3 Quelques caractéristiques de git

e Systéme sans verrouillage, permettant & plusieurs personnes de travailler «en
méme temps» sur un méme groupe de fichiers.

e Dépot distribué plutot que centralisé :

— CVS et svn : dépdt centralisé = tous les checkout, branch et commit
entrainent des communications réseaux pour accéder au dépot centralisé.

— git : dépot distribué = on peut faire des checkout, commit, branch, etc.,
sans accéder au dépot central — donc sans connexion Internet!

Ceci signifie qu’on peut préserver un historique détaillé de 1’évolution locale
d’un projet sans interférer avec le code dans le dépot central. Ce n’est que
lorsqu’on est certain que tout est correct qu’on peut alors faire un push pour
transmettre les changements appropriés au dépot central.

e Avec git, on garde la trace non pas des noms de fichiers comme dans les autres
systémes... mais bien des contenus.

In many ways you can just see git as a filesystem—it is content-
addressable, and it has a notion of versioning, but I really really
designed it coming at the problem from the viewpoint of a filesystem
person (hey, kernels is what I do), and I actually have absolutely
zero interest in creating a traditional SCM system.

L. Torvald

e Avec git, la création de tags et de branchs est peu cotiteusen, donc il ne
faut pas s’en priver.

e Une commande, bisect, permet de parcourir automatiquement un historique
de commits pour trouver la version qui a introduit un bogue.

4 Concepts de base de git

e Répertoire courant = Espace de travail = collection de répertoires et de
fichiers — certains sous le «contrdle» de git, d’autres non.

e Index — appelé aussi staging area = Fichiers, nouveaux et modifiés, ayant
été ajoutés avec |git add|, donc sous le controle de git.

L’index regroupe les fichiers qui formeront le prochain commit.

e Commit = Ensemble de fichiers (et de répertoires) conservés dans le dépot.
Un nouveau commit est créé, a partir du contenu de I'index, avec la commande

st comit]

A chaque commmit est associé diverses méta-données — identificateur (SHA
checksum), auteur, date, description (message du commit), possiblement tag,
etc.

Chaque commit posséde un ou plusieurs parents — d’oil la structure d’arborescence.

e Dépodt = Arborescence de commits.

La commande ‘ git checkout ‘ a pour effet de modifier le contenu du répertoire
courant pour qu’il contienne les fichiers du commit indiqué.

e Branche = Un commit spécifique associé a un point de développement in-
dépendant.

e HEAD = La branche courante, qui deviendra le parent du prochain commit.

Répertoire Staging Dépot git

courant area (commits}

git checkout

git add

git commit

|
I
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1
1
1
I
>
1
1
1
1
1

X

Figure 1: Les trois niveaux d’un dépot local git. Adapté de [Cha(9].

La figure [I] présente les trois niveaux d’'un projet sour le contrdle de git, et les
principales actions qui permettent de «transférer» un fichier d’un niveau a un autre.

5 Les principales commandes

5.1 Configuration

$ git config --global --list
fatal: unable to read config file ’/home/inf5171/.gitconfig’:
No such file or directory

$ git config --global user.name ’Guy Tremblay’
$ git config --global user.email ’tremblay.guy@ugam.ca’
$ git config --global color.ui ’auto’

$ git config --global --list
user .name=Guy Tremblay
user.email=tremblay.guy@uqgam.ca
color.ui=auto

$ more ~/.gitconfig
[user]

name = Guy Tremblay

email = tremblay.guyQ@ugam.ca
[color]

ui = auto

Important : Il ne faut jamais mettre dans le dépot les fichiers de sauve-
garde, les fichiers temporaires, les fichiers qui sont générés par le compilateur,
ete.:

$ cd ProjetJava

$ more .gitignore
*.class

Fichiers d’archives
*.jar

*.war

Fichiers de sauvegarde generes par emacs

5.2 Création et initialisation d’un dépoét local

$ mkdir Projetl
$ cd Projetl

$ # Notez le "." apres init
Initialized empty Git repository in /home/inf5171/Projetl/.git/

$ 1s

$ 1s -a

. .git
$ 1s .git

branches config description HEAD hooks info objects refs

$

5.3 Ajout de fichiers

$ emacs factoriel.rb

$ emacs factoriel_spec.rb

$ 1s

factoriel.rb factoriel_spec.rb

git status

On branch master
Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

factoriel.rb
factoriel_spec.rb
nothing added to commit but untracked files present (use "git add" to track)

HOH H H H H H HE H S

$ ‘git add factoriel.rb factoriel_spec.rb

s [git stavus
On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

5.4 Création d’un premier commit, puis d’un autre et examen
de l’historique

$ ’git commit -m "Creation initiale du programme et fichier de test"‘

[master (root-commit) fd77def] Creation initiale du programme et fichier de test
2 files changed, 247 insertions(+)

create mode 100644 factoriel.rb

create mode 100644 factoriel_spec.rb

$ git status
On branch master
nothing to commit, working directory clean

s g% 1o

Author: Guy Tremblay <tremblay.guy@ugam.ca>
Date: Mon Sep 7 09:04:41 2015 -0400

Creation initiale du programme et fichier de test
$ emacs factoriel.spec
$ git status

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: factoriel.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git commit -a -m "Corrrectionn erreur cas recursif"
[master 31f0385] Corrrectionn erreur cas recursif
1 file changed, 1 insertion(+), 1 deletion(-)

10

$ |git commit -a -m "Correction erreur cas de base" --amend
[master 0e6e655] Correction erreur cas de base
1 file changed, 1 insertion(+), 1 deletion(-)

$ git log

Author: Guy Tremblay <tremblay.guy@ugam.ca>
Date: Mon Sep 7 09:04:58 2015 -0400

Correction erreur cas de base

Author: Guy Tremblay <tremblay.guy@ugam.ca>
Date: Mon Sep 7 09:04:41 2015 -0400

Creation initiale du programme et fichier de test

M

fd77defdcO... Oebeb655637...

A

‘HEAD ‘

Figure 2: La structure du dépot apres les deux premiers commits.

11

5.5 Examen des modifications et différences

Remarque : Dans ce qui suit, pour alléger la présentation, les caractéres «#» en
début de ligne seront omis — comme cela est fait de toute fagcon pour certaines
versions de git.

git diff ——cached

Répertoire Staging Dépot git
courant areq {commits)}
< : .
| git diff HEAD |
- |
i git diff i
| »

______________‘____1_____

Différences répertoire courant vs. index : «git diff»
$ emacs factoriel.rb
$ git status

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)

modified: factoriel.rb

no changes added to commit (use "git add" and/or "git commit -a")

12

s [git airt

diff --git a/factoriel.rb b/factoriel.rb

index 5d63d76..7ba6e02 100644
--- a/factoriel.rb

+++ b/factoriel.rb

@@ -1,5 +1,6 Q@

require ’pruby’

def fact_seq_lineaire(n)
if n ==

Différences index vs. dép6t — fichiers ajoutés mais non commités :

diff --cached»
$ git add factoriel.rb
$ git status

On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

$ git diff

$ [git diff --cached|

diff --git a/factoriel.rb b/factoriel.rb

index 5d63d76..7ba6e02 100644
--- a/factoriel.rb

+++ b/factoriel.rb

@@ -1,5 +1,6 Q@

require ’pruby’

def fact_seq_lineaire(n)
if n ==

13

«git

Différences répertoire courant vs. dernier commit du dépé6t : «git diff
HEAD»

$ emacs factoriel.rb
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)
modified: factoriel.rb
$ git diff

diff --git a/factoriel.rb b/factoriel.rb
index 7ba6e02..9b6e7e2 100644
--- a/factoriel.rb
+++ b/factoriel.rb
@@ -1,6 +1,9 Q@
require ’pruby’

Programme pour calculer factoriel(n) de differentes faconms.

def fact_seq_lineaire(n)
if n ==

$ |git diff HEAD
diff --git a/factoriel.rb b/factoriel.rb
index 5d63d76..9b6e7e2 100644
--- a/factoriel.rb
+++ b/factoriel.rb
©e@ -1,5 +1,9 @@
require ’pruby’

14

def fact_seq_lineaire(n)
if n ==

Description d’un commit

$ git commit -am "Ajout d’un commentaire explicatif"
[master £8a5114] Ajout d’un commentaire explicatif
1 file changed, 4 insertions(+)

$ |git show f8a5114

Author: Guy Tremblay <tremblay.guy@ugam.ca>
Date: Mon Sep 7 09:21:12 2015 -0400

Ajout d’un commentaire explicatif

diff --git a/factoriel.rb b/factoriel.rb
index 5d63d76..9b6e7e2 100644

--- a/factoriel.rb

+++ b/factoriel.rb

@0 -1,5 +1,9 @@

require ’pruby’

def fact_seq_lineaire(n)
if n ==

Différences entre deux commits

$ ’git log --abbrev-commit --pretty=oneline
Ajout d’un commentaire explicatif
Correction erreur cas de base

Creation initiale du programme et fichier de test

$ [git diff £8a5114 0e6e655|
diff --git a/factoriel.rb b/factoriel.rb

15

index 9b6e7e2..5d63d76 100644
--- a/factoriel.rb

+++ b/factoriel.rb

@@ -1,9 +1,5 @@

require ’pruby’

-# Programme pour calculer factoriel(n) de differentes facons.
-#

-# Ecrit par Guy Tremblay, 2015.

-#

def fact_seq_lineaire(n)
ifn==0

$ |git diff Oebe655 f8ab5114
diff --git a/factoriel.rb b/factoriel.rb
index 5d63d76..9b6e7e2 100644
--- a/factoriel.rb
+++ b/factoriel.rb
@0 -1,5 +1,9 @@
require ’pruby’

def fact_seq_lineaire(n)
if n ==

Qui a fait quoi et quand?

$ ‘git blame factoriel.rb‘

~£d77def (Guy Tremblay 2015-09-07 09:04:41 -0400 1) require ’pruby’

~fd77def (Guy Tremblay 2015-09-07 09:04:41 -0400 2)

£8a51148 (Guy Tremblay 2015-09-07 09:21:12 -0400 3) # Programme pour calculer factoriel(n) de dif:
£8a51148 (Guy Tremblay 2015-09-07 09:21:12 -0400 4) #

£8a51148 (Guy Tremblay 2015-09-07 09:21:12 -0400 5) # Ecrit par Guy Tremblay, 2015.

£8a51148 (Guy Tremblay 2015-09-07 09:21:12 -0400 6) #

0e6e6556 (Guy Tremblay 2015-09-07 09:04:58 -0400 7)

~fd77def (Guy Tremblay 2015-09-07 09:04:41 -0400 8) def fact_seq_lineaire(n)

~£d77def (Guy Tremblay 2015-09-07 09:04:41 -0400 9) if n ==

~£d77def (Guy Tremblay 2015-09-07 09:04:41 -0400 10) 1
~£d77def (Guy Tremblay 2015-09-07 09:04:41 -0400 11) else
~fd77def (Guy Tremblay 2015-09-07 09:04:41 -0400 12) n *

fact_seq_lineaire(n-1)
~£d77def (Guy Tremblay 2015-09-07 09:04:41 -0400 13) end
~£d77def (Guy Tremblay 2015-09-07 09:04:41 -0400 14) end

16

5.6 Pour retourner en arriére
Pour laisser tomber des modifications pas encore ajoutées

$ git status
On branch master
nothing to commit, working directory clean

$ emacs factoriel.rb
$ git status

On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: factoriel.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

$ |git checkout -- factoriel.rb

$ git status
On branch master
nothing to commit, working directory clean

Pour laisser tomber des modifications ajoutées mais pas encore com-
mitées

$ git status

On branch master

nothing to commit, working directory clean
$ emacs factoriel.rb

$ git add factoriel.rb
$ git status

On branch master
Changes to be committed:

17

(use "git reset HEAD <file>..." to unstage)

#
#
#
#

$ ‘git reset HEAD factoriel.rb
Unstaged changes after reset:
M factoriel.rb

$ git status
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: factoriel.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

Pour retourner dans le passé... de facon temporaire

On sauve l'état courant sur la pile (stash) puis on va voir un vieux commit :

$ |git checkout £d77def |
error: Your local changes to the following files would be overwritten
by checkout:
factoriel.rb
Please, commit your changes or stash them before you can switch branches.
Aborting

s [git stash
Saved working directory and index state WIP on master: 9cddf4b Ajout d’un commentaire explic
HEAD is now at 9cddf4b Ajout d’un commentaire explicatif

$ git stash list

stash@0: WIP on master: 9cddf4b Ajout d’un commentaire explicatif

$ [git checkout fd77def
Note: checking out ’fd77def’.

You are in ’detached HEAD’ state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in
this state without impacting any branches by performing another checkout.

18

If you want to create a new branch to retain commits you create, you
may do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name
HEAD is now at fd77def... Creation initiale du programme et fichier de test
On retourne a la branche master et on dépile ce qu’on avait commencé a faire :
$ git status
fd77def
$ git log

Author: Guy Tremblay <tremblay.guy@ugam.ca>
Date: Sat Sep 5 09:41:33 2015 -0400

Creation initiale du programme et fichier de test

$ |git checkout master
Previous HEAD position was fd77def... Creation initiale du programme et fichier de test

Switched to branch ’master’

$ ‘git stash list‘
stash@0: WIP on master: 9cddf4b Ajout d’un commentaire explicatif

$ ‘git stash pop‘
On branch master
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: factoriel.rb

#

no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@0 (2b12d77023f04b2f0898abaf189c85144£245980)

19

5.7 Pour créer une branche a partir de la branche principale
(master)

Ce qu’est une branche et pourquoi en créer :

e Un dépot git est une arborescence de commits. Une branche est simplement
un chemin alternatif de la branche principale de ’arborescence — du tronc
(trunk).

e Une branche permet de travailler sur le projet de facon indépendante, en
«paralléle» au projet principal, sans modifier la branche master.

e En git, on est toujours sur une branche :le projet principal est simplement la
branche nomméemaster.

e On peut créer une branche pour diverses raisons :

— Pour développer une nouvelle fonctionnalité.Lorsque le développement
de la fonctionnalité est complété, on peut alors intégrer la branche a la
branche principale.

— Pour corriger un bogue. Lorsque le bogue est corrigé, on intégre alors les
modifications appropriées a la branche principale en intégrant la branche.

— Pour faire des expérimentations, des essais. Lorsque ces essais sont ter-
minés, on peut alors laisser tomber la branche — i.e., la détruire sans
I'intégrer.

— Pour permettre a des sous-équipes de travailler en paralléle sur des sous-
projets.

e (C’est l'opération merge qui permet d’intégrer — de fusionner — une autre
branche dans la branche courante :

— S’il n’y a aucun conflit — il n’y a pas une méme ligne qui est modifiée
dans les deux branches — alors il n’y a rien de spécial a faire.

— S’il y a un conflit — une ou plusieurs lignes ont été modifiées dans les
deux branches — alors il faut résoudre le conflit, donc choisir les bonnes
modifications.

Remarque : Le principe est le méme pour créer une branche a partir de n’importe
quel autre commit que HEAD.

20

Exemple de création d’une branche pour corriger un bogue et son inté-
gration sans conflit

$ ’git branch —a‘
* master

$ ’git checkout -b CORRECTION_BOGUE_CAS_BASE‘
Switched to a new branch ’>CORRECTION_BOGUE_CAS_BASE’

$ ’git branch -a
* CORRECTION_BOGUE_CAS_BASE
master

$ emacs factoriel.rb

$ git status

On branch CORRECTION_BOGUE_CAS_BASE
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)
#

modified: factoriel.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

$ git commit -am "Modification du cas de base pour x = 0"
[CORRECTION_BOGUE_CAS_BASE 5b91373] Modification du cas de base pour x = 0

$ ’git checkout master
Switched to branch ’master’
(master) Projetl@linux $ git br -a

$ git status
On branch master
nothing to commit, working directory clean

$ ’git merge CORRECTION_BOGUE_CAS_BASE
Updating £8ab114..6a47805
Fast-forward

factoriel.rb | 2

1 file changed, 2 insertions(+)

$ ’git branch -d CORRECTION_BOGUE_CAS_BASE‘
Deleted branch CORRECTION_BOGUE_CAS_BASE (was 5b91373).

21

$ git branch -a
* master

$ |git log --abbrev-commit --pretty=oneline
Modification du cas de base pour x = 0
Ajout d’un commentaire explicatif
Correction erreur cas de base
Creation initiale du programme et fichier de test

5.8 Pour utiliser un dépot distant

Jusqu’a présent, toutes les opérations présentées se faisaient sur un dépoét local
— donc toute I'information était conservée dans le sous-répertoire .git local, sans
connexion a distance.

On peut évidemment travailler sur des dépots distants — pour collaborer avec
d’autres développeurs ou simplement pour avoir une copie externe.

Briévement, les principales commandes sont les suivantes :

e Pour obtenir une copie d'un dépot distant :

$ |git clone <URL dépét distant>

e Pour donner un nom local au dépot distant :

$ |git remote add <dépdt distant> <URL dépét distant>

e Pour transférer des modifications vers le dépot distant :

$ |git push <dépdét distant>

e Pour mettre a jour la copie locale du dépot distant :

$ |git pull <dépét distant>

Note : Pour plus de détails, voir la documentation git. Notamment, on peut
configurer pour que la branche courante master soit vers le dépot distant
(remote tracking branch, ce qui évite d’avoir a spécifier explicitement le dépot
avec push et pull.

22

6 Les trois niveaux d’un projet sour le contrdle de

H H T o H* =

H ¥ H*H

H H H* o

git : Exemple

echo ’a’ > foo.txt

Repertoire courant: foo.

git add foo.txt
Repertoire courant: foo
Index: foo.txt = [’a’];

echo ’bb’ >> foo.txt
Repertoire courant: foo
Index: foo.txt = [’a’];

git commit -m "Ajout de

Repertoire courant: foo.

Index:

txt [’a’]; untracked file

txt = [Pa’]

changes to be commited, new file

.txt = [’a’, ’bb’]; changed not staged, modified

changes to be commited, new file

ligne a"
txt = [’a’, ’bb’]; changed not staged, modified

Depot@HEAD: foo.txt = [’a’]

git add foo.txt

Repertoire courant: foo.

txt = [’a’, ’bb’]

Index: foo.txt = [’a’, ’bb’]; changes to be commited, modified
Depot@HEAD: foo.txt = [’a’]

git commit -m "Ajout de

Repertoire courant: foo.

Index:

Depot@HEAD: foo.txt = [’

ligne bb"
txt = [’a’, ’bb’]

a’ s ,bb’]

23

7 Stratégie d’utilisation pour un laboratoire ou de-
voir simple

e Définissez vos parameétre d’identification :

$ git config --global user.email ’tremblay.guy@ugam.ca’
$ git config --global user.name ’Guy Tremblay’

e Obtenez une copie locale du code :
$ git clone http://www.labunix.uqam.ca/ tremblay/git/Labo.git

e Ensuite, répétez jusqu’a ce que le laboratoire ou devoir soit terminé :

— Faites des modifications aux fichiersqui vous ont été fournis.

— Si vous désirer ajouter un nouveau fichier, par ex., foo.c, vous devez
I’ajouter explicitement :

$ git add foo.c

— Lorsque vous atteignez une étape clé (milestone), par exemple, I'une des
versions a développer est complétée et semble fonctionnelle, faites un
commit :

$ git commit -am ’Explications du changement’

e Si vous faites alors git status, vous pourriez obtenir quelque chose comme
suit (projet en C) :

git status
On branch master
Your branch is ahead of ’origin/master’ by 2 commits.

(use "git add <file>..." to include in what will be committed)

$
#
#
#
Untracked files:
#
#
foo.o
a.out

nothing added to commit but untracked files present (use "git add" to track)

C’est tout a fait correct : les fichiers binaires et exécutables générés par le pro-
cessus de compilation et d’assemblage du programme n’ont pas a étre mis sous
le controle du code source. De plus, ce que vous avez dans votre compte est une
copie locale du dépot (origin/master), auquel vous ne pouvez évidemment
pas accéder en mode écriture!

24

e Pour voir les différents commits effectués, vous pouvez utiliser la commande
suivante :

$ git log

e Pour donner un nom symbolique explicite a votre commit, par exemple VERSION_SEQUENTIELLE_C
vous pouvez utiliser la commande suivante :

$ git tag VERSION_SEQUENTIELLE_OK
Par la suite, pour revenir a ce commit :

$ git checkout VERSION_SEQUENTIELLE_OK

25

8 Comparaisons avec svn et CVS

Le tableau (1| présente une bréve comparaison entre les outils git, svn et CVS... si
vous connaissez 1'un de ces deux outils.

’ Commande git

\ Commande svn

‘ Commande CVS

git init svnadmin create cvs -d<repo> init

git clone svn checkout cvs -d<repo> co <module>
git pull svn update cvs update -dP

git add svn add cvs add

git add; git commit svn commit cvs commit

git status svn status cvs status

git checkout <branch> svn switch <branch> cvs co -r <branch>

git merge <branch> svn merge <branch> cvs update -j

git checkout <file> svn revert <file> cvs update -C

Tableau 1: Comparaisons entre git, svn et CVS.

26

Références

[Cha09] S. Chacon. Pro Git. Apress, 2009.

[Swi08] T. Swicegood. Pragmatic Version Control Using Git. The Pragmatic Bookshelf,
2008.

27

	Introduction : Qu'est-ce qu'un système de contrôle du code source?
	Qu'est-ce que git?
	Quelques caractéristiques de git
	Concepts de base de git
	Les principales commandes
	Les trois niveaux d'un projet sour le contrôle de git : Exemple
	Stratégie d'utilisation pour un laboratoire ou devoir simple
	Comparaisons avec svn et CVS
	Références

