
MGL7460 — Automne 2016

Tests d’acceptation et BDD
(Behavior Driven Development)

Guy Tremblay
Professeur

Département d’informatique
UQAM

http://www.labunix.uqam.ca/~tremblay

13–20 octobre 2016

MGL7460 — Automne 2016

Tests d’acceptation et BDD
(Behavior Driven Development)

Guy Tremblay
Professeur

Département d’informatique
UQAM

http://www.labunix.uqam.ca/~tremblay

13–20 octobre 2016

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

MGL7460 — Automne 2016

•

http://www.labunix.uqam.ca/~tremblay
http://www.labunix.uqam.ca/~tremblay

Contenu

1 Introduction : Tests unitaires de style TDD vs. BDD

2 Que sont les tests d’acceptation ?

3 Les tests d’acceptation et l’approche BDD

4 Des outils pour le BDD

5 D’autres outils pour les tests d’acceptation

6 Un exemple plus détaillé avec cucumber : biblio

7 Conclusion

Contenu

1 Introduction : Tests unitaires de style TDD vs. BDD

2 Que sont les tests d’acceptation ?

3 Les tests d’acceptation et l’approche BDD

4 Des outils pour le BDD

5 D’autres outils pour les tests d’acceptation

6 Un exemple plus détaillé avec cucumber : biblio

7 Conclusion

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Contenu

•

1. Introduction : Tests unitaires
de style TDD vs. BDD

Suggestion de D. North (2003)

Le nom d’une méthode de test devrait être une
phrase qui nous éclaire sur le comportement de
la méthode testée, y compris en cas de
traitement d’erreur ou d’exception

Suggestion de D. North (2003)

Le nom d’une méthode de test devrait être une
phrase qui nous éclaire sur le comportement de
la méthode testée, y compris en cas de
traitement d’erreur ou d’exception

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Suggestion de D. North (2003)

• Pour bien nommer les cas de test, il faut tenir compte que pour une
méthode du code à tester, par exemple, retirer, on aura plusieurs
cas de tests à écrire — plusieurs méthodes de tests — et ce pour
tester différents aspects, différentes situations : retirer une partie,
retirer tout, retirer plus que le solde, etc. On ne pourra pas
simplement appeler ces méthodes tester_retirer, car ce ne
serait pas assez spécifique.
• De plus, il faut aussi avoir des cas de test les plus indépendants
possibles, pour bien cerner/identifier les erreurs problèmes possibles
quand quelque chose ne fonctionne pas.
• Mais ceci a amené une autre question, à savoir : quel est un nom
approprié, significatif, pour un cas de test (une méthode de test) ?
Parce que les règles pour le nommage des méthodes habituelles ne
s’appliquent pas, style, prédicat pour les observateur, verbe pour les
actions ! Le nom de la méthode de test doit plutôt nous renseigner sur
l’aspect du module/classe/méthode qui est testé.

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Contre-exemple

JUnit 3.0

public void testRetirer() {
c.retirer(c.solde());

assertEquals(0, c.solde());
}

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Contre-exemple

JUnit 3.0

public void testRetirer() {
c.retirer(c.solde());

assertEquals(0, c.solde());
}

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Le nom d’une méthode de test devrait être
une phrase qui décrit le comportement
attendu : Contre-exemple•

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Contre-exemple

JUnit 4.0

@Test
public void retirer() {

c.retirer(c.solde());

assertEquals(0, c.solde());
}

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Contre-exemple

JUnit 4.0

@Test
public void retirer() {
c.retirer(c.solde());

assertEquals(0, c.solde());
}

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Le nom d’une méthode de test devrait être
une phrase qui décrit le comportement
attendu : Contre-exemple•

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Suggestion

Convention suggérée pour les noms des méthodes de test :

NomDeMéthode_ÉtatTesté_RésultatAttendu

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Suggestion

Convention suggérée pour les noms des méthodes de test :

NomDeMéthode_ÉtatTesté_RésultatAttendu

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Le nom d’une méthode de test devrait être
une phrase qui décrit le comportement
attendu : Suggestion• Motivations de cette convention :

• Le nom du test devrait exprimer une exigence spécifique

• Le nom du test devrait inclure les données ou l’état, tant en
entrée qu’en sortie

• Le nom du test devrait inclure le nom de la méthode ou classe
testée

• Autre motivation :

• Le nom du test devrait nous aider à comprendre le
comportement attendu y compris (surtout !) lorsque le test
«échoue».

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Exemple

JUnit 4.0

@Test
public void Retirer_LeSoldeComplet_RetourneSoldeNul() {

c.retirer(c.solde());

assertEquals(0, c.solde());
}

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Exemple

JUnit 4.0

@Test
public void Retirer_LeSoldeComplet_RetourneSoldeNul() {
c.retirer(c.solde());

assertEquals(0, c.solde());
}

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Le nom d’une méthode de test devrait être
une phrase qui décrit le comportement
attendu : Exemple• Donc, en Java avec JUnit, ça peut donner un nom de méthode qui

aurait l’allure suivante, donc pas nécessairement facile à lire, et
encore moins à écrire /

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Exemple

Ruby (Test : :Unit)

def test_retirer_le_solde_complet_retourne_solde_nul
@c.retirer(@c.solde)

assert_equal 0, @c.solde
end

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Exemple

Ruby (Test : :Unit)

def test_retirer_le_solde_complet_retourne_solde_nul
@c.retirer(@c.solde)

assert_equal 0, @c.solde
end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Le nom d’une méthode de test devrait être
une phrase qui décrit le comportement
attendu : Exemple• En Ruby, avec Test::Unit, ça donnerait cela — sauf pour les

noms de classe, on utilise pas le CamelCase en Ruby. Là non plus,
ce n’est pas l’idéal.

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Exemple

Ruby (à la RSpec)

test "retirer le solde complet retourne solde nul" do
@c.retirer(@c.solde)

assert_equal 0, @c.solde
end

Le nom d’une méthode de test devrait être une phrase
qui décrit le comportement attendu : Exemple

Ruby (à la RSpec)

test "retirer le solde complet retourne solde nul" do
@c.retirer(@c.solde)

assert_equal 0, @c.solde
end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Le nom d’une méthode de test devrait être
une phrase qui décrit le comportement
attendu : Exemple• Par contre, en Ruby, il y a plein de «trucs» qu’on peut faire, difficile

ou impossible à faire en Java.
• Par exemple, cette façon d’écrire le nom du test ne serait-elle pas
plus simple à écrire et à lire ?

Suggestion de D. North (2003)

Débuter le nom d’une méthode de test par
should aide à ce que le test soit mieux ciblé

Exemple :

Retirer

devrait retourner un solde nul lorsqu’on retire tout
devrait échouer lorsqu’on retire plus que le solde courant
. . .

Et aussi : quand le test échoue, un nom de test expressif aide à
mieux comprendre où est le problème

Suggestion de D. North (2003)

Débuter le nom d’une méthode de test par
should aide à ce que le test soit mieux ciblé

Exemple :

Retirer

devrait retourner un solde nul lorsqu’on retire tout
devrait échouer lorsqu’on retire plus que le solde courant
. . .

Et aussi : quand le test échoue, un nom de test expressif aide à
mieux comprendre où est le problème

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Suggestion de D. North (2003)

• . . .

JBehave (North, 2003)

Extension de JUnit which removed any reference to testing
and replaced it with a vocabulary built around verifying
behaviour

L’étape de vérification s’exprime. . . sans «assertion»

assert_equal resultat_attendu, resultat_obtenu

⇒
resultat_obtenu.should == resultat_attendu

Notation Ruby/RSpec

JBehave (North, 2003)

Extension de JUnit which removed any reference to testing
and replaced it with a vocabulary built around verifying
behaviour

L’étape de vérification s’exprime. . . sans «assertion»

assert_equal resultat_attendu, resultat_obtenu

⇒
resultat_obtenu.should == resultat_attendu

Notation Ruby/RSpec

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

JBehave (North, 2003)

• Donc, North, en 2003, a développé JBehave, un outil permettant de
spécifier des cas de tests en Java en s’inspirant de ces constatations
et suggestions.
• Dans ce qui suit, je vais toutefois l’illustrer en Ruby, avec RSpec,
avec lequel je suis plus familier. . . et qui a eu plus de succès que
JBehave.

JBehave (North, 2003)

I found the shift from thinking in tests to thinking in
behaviour so profound that I started to refer to TDD as
BDD, or behaviour-driven developement

Source: Dan North,
http://dannorth.net/introducing-bdd/

JBehave (North, 2003)

I found the shift from thinking in tests to thinking in
behaviour so profound that I started to refer to TDD as
BDD, or behaviour-driven developement

Source: Dan North,
http://dannorth.net/introducing-bdd/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

JBehave (North, 2003)

•

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

RSpec (Chelimsky, North et al., 2007)

Cadre de tests Ruby
inspiré de JBehave

RSpec (Chelimsky, North et al., 2007)

Cadre de tests Ruby
inspiré de JBehave

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

RSpec (Chelimsky, North et al., 2007)

•

Exemple RSpec
Définition de Compte

class Compte
attr_reader :solde, :client

def initialize(client, solde_init)
@client, @solde = client, solde_init

end

def deposer(montant)
@solde += montant

end

def retirer(montant)
fail "Solde insuffisant" if montant > solde

@solde -= montant
end

end

Exemple RSpec
Définition de Compte

class Compte
attr_reader :solde, :client

def initialize(client, solde_init)
@client, @solde = client, solde_init

end

def deposer(montant)
@solde += montant

end

def retirer(montant)
fail "Solde insuffisant" if montant > solde

@solde -= montant
end

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Exemple RSpec

• Donc, soit à nouveau notre classe pour un Compte bancaire simple.

Exemple RSpec
Spécification de Compte (1). . . avec «devrait»

describe Compte do
before(:each) { @c = Compte.new("Guy T.", 100) }

describe ".new" do
it "devrait creer un compte avec le solde initial indique" do
@c.solde. should == 100

end
end

describe "#deposer" do
it "devrait ajouter le montant indique au solde du compte" do
solde_initial = @c.solde

@c.deposer(100)
@c.solde. should == solde_initial + 100

end
end

Exemple RSpec
Spécification de Compte (1). . . avec «devrait»

describe Compte do
before(:each) { @c = Compte.new("Guy T.", 100) }

describe ".new" do
it "devrait creer un compte avec le solde initial indique" do

@c.solde. should == 100
end

end

describe "#deposer" do
it "devrait ajouter le montant indique au solde du compte" do

solde_initial = @c.solde

@c.deposer(100)
@c.solde. should == solde_initial + 100

end
end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Exemple RSpec

• Voici des tests équivalents à ceux vus précédemment, avec en plus
des tests pour retirer.
• Éléments de «convention» pour décrire les tests :

• Le premier niveau de describe indique pour quelle classe on
est en train de spécifier le comportement.

• Chaque niveau interne de describe indique alors la méthode
décrite/spécifiée — avec le préfixe «.» pour les méthodes de
classe et avec le préfixe «#» pour les méthodes d’instance.

• Un it représente un cas de test.

• Les assertions utilisées sont exprimées d’une façon différente.
Dans les premières versions de RSpec, on utilisait des should :

assert_equal solde_initial+100, @c.solde

@c.solde.should == solde_initial + 100

Exemple RSpec
Spécification de Compte (1). . . sans «devrait»

describe Compte do
before(:each) { @c = Compte.new("Guy T.", 100) }

describe ".new" do
it "cree un compte avec le solde initial indique" do
@c.solde. should == 100

end
end

describe "#deposer" do
it "ajoute le montant indique au solde du compte" do
solde_initial = @c.solde

@c.deposer(100)
@c.solde. should == solde_initial + 100

end
end

Exemple RSpec
Spécification de Compte (1). . . sans «devrait»

describe Compte do
before(:each) { @c = Compte.new("Guy T.", 100) }

describe ".new" do
it "cree un compte avec le solde initial indique" do

@c.solde. should == 100
end

end

describe "#deposer" do
it "ajoute le montant indique au solde du compte" do

solde_initial = @c.solde

@c.deposer(100)
@c.solde. should == solde_initial + 100

end
end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Exemple RSpec

• Certains suggéraient, les premiers temps, que les tests débutent
avec «should». Mais maintenant, c’est considéré comme une
mauvaise pratique : pourquoi dire «devrait faire X» quand on peut
dire tout aussi clairement et simplement «fait X».

Exemple RSpec
Spécification de Compte (2). . . sans «devrait»

describe "#retirer" do
it "deduit le montant lorsque ne depasse pas le solde" do
solde_initial = @c.solde
@c.retirer(50)
@c.solde. should == solde_initial - 50

end

it "vide le compte lorsque le montant egale le solde" do
@c.retirer(@c.solde)
@c.solde. should == 0

end

it "signale une erreur lorsque le montant depasse le solde" do
solde_initial = @c.solde
lambda{ @c.retirer(2050) }. should raise_error

end
end

end
Exemple RSpec
Spécification de Compte (2). . . sans «devrait»

describe "#retirer" do
it "deduit le montant lorsque ne depasse pas le solde" do

solde_initial = @c.solde
@c.retirer(50)
@c.solde. should == solde_initial - 50

end

it "vide le compte lorsque le montant egale le solde" do
@c.retirer(@c.solde)
@c.solde. should == 0

end

it "signale une erreur lorsque le montant depasse le solde" do
solde_initial = @c.solde
lambda{ @c.retirer(2050) }. should raise_error

end
end

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Exemple RSpec

• Cet exemple pour retirer illustre qu’il peut y avoir , et c’est
généralement le cas, plusieurs cas de tests (plusieurs it) pour une
méthode à tester.
• Dans les versions plus récentes de RSpec, on n’utilise même plus
des should dans les assertions, on utilise plutôt des expect —
parce que les should créaient parfois des problèmes dans certains
programmes — mise en oeuvre avec «Monkey patching».
• Les avis sont assez partagés quant à cette nouvelle forme.
Personnellement, je préfère nettement l’ancienne forme, c’est cela
qui m’a attiré vers RSpec. L’autre forme ressemble plus aux
anciennes assertions, même si c’est quand même différent.

Exemple RSpec
Résultats d’exécution : Format progress (défaut)

$ rspec -I. .
.....

Finished in 0.00361 seconds (files took 0.08863 seconds to load)
5 examples, 0 failures

Exemple RSpec
Résultats d’exécution : Format progress (défaut)

$ rspec -I. .
.....

Finished in 0.00361 seconds (files took 0.08863 seconds to load)
5 examples, 0 failures

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Exemple RSpec

• Format progress = format par défaut = sortie style JUnit standard
• On remarque qu’on ne parle plus de tests mais d’exemples.

Exemple RSpec
Résultats d’exécution : Format documentation

$ rspec -I. . --format documentation
Compte

.new
cree un compte avec le solde initial indique

#deposer
ajoute le montant indique au solde du compte

#retirer
deduit le montant lorsque ne depasse pas le solde
vide le compte lorsque le montant egale le solde
signale une erreur lorsque le montant depasse le solde

Finished in 0.00371 seconds (files took 0.08794 seconds to load)
5 examples, 0 failures

Exemple RSpec
Résultats d’exécution : Format documentation

$ rspec -I. . --format documentation
Compte

.new
cree un compte avec le solde initial indique

#deposer
ajoute le montant indique au solde du compte

#retirer
deduit le montant lorsque ne depasse pas le solde
vide le compte lorsque le montant egale le solde
signale une erreur lorsque le montant depasse le solde

Finished in 0.00371 seconds (files took 0.08794 seconds to load)
5 examples, 0 failures20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Introduction : Tests unitaires de style TDD vs.
BDD

Exemple RSpec

• Format documentation = donne les différents tests exécutés
avec les describes et les its !
• Si les phrases de describe et des it sont bien formulées, cela
peut parfois/souvent ressembler à une spécification informelle !
• Donc, les résulats attendus de l’exécution des tests deviennent une
spécification du comportement de l’entité.

2. Que sont les tests
d’acceptation ?

Différents niveaux de tests

Différents niveaux de tests

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

Différents niveaux de tests

•

Différents niveaux de tests

Tests unitaires
Vérification du fonctionnement d’un composant (procédure,
fonction, méthode, classe, module) de façon indépendante des
autres composants.

Tests de système
Vérification du fonctionnement du système dans son ensemble.

Tests d’acceptation
Vérification, par le «client», du fonctionnement du système
dans son ensemble — tests fonctionnels⇒ user facing.

Différents niveaux de tests

Tests unitaires
Vérification du fonctionnement d’un composant (procédure,
fonction, méthode, classe, module) de façon indépendante des
autres composants.

Tests de système
Vérification du fonctionnement du système dans son ensemble.

Tests d’acceptation
Vérification, par le «client», du fonctionnement du système
dans son ensemble — tests fonctionnels⇒ user facing.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

Différents niveaux de tests

• Tests de type alpha : Tests d’acceptation faits dans un
environnement de développement
• Tests de type béta : Tests d’acceptation faits dans un
environnement de production, donc une fois le système déployé. . .
pour un nombre limité d’usagers.

Les tests d’acceptation selon RUP

Acceptance Test
The complete application (or system) is tested by end users (or
representatives) for the purpose of determining readiness for
deployment.
Source: «The Rational Unified Process—An Introducion (Second Edition)», Kruchten

Readiness for deployment
⇒ Préalable pour l’intégration continue

(qu’on verra dans quelques semaines)

Les tests d’acceptation selon RUP

Acceptance Test
The complete application (or system) is tested by end users (or
representatives) for the purpose of determining readiness for
deployment.
Source: «The Rational Unified Process—An Introducion (Second Edition)», Kruchten

Readiness for deployment
⇒ Préalable pour l’intégration continue

(qu’on verra dans quelques semaines)20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

Les tests d’acceptation selon RUP

• On verra, bientôt, le lien avec l’assemblage et le déploiement de
logiciels⇒ Intégration continue !

Les tests d’acceptation selon XP

Acceptance tests are created from user stories.

During an iteration the user stories selected during the iteration
planning meeting will be translated into acceptance tests.

The customer specifies scenarios to test when a user story
has been correctly implemented.

A story can have one or many acceptance tests, whatever it
takes to ensure the functionality works.

Source: http://www.extremeprogramming.org/rules/functionaltests.html

Les tests d’acceptation selon XP

Acceptance tests are created from user stories.

During an iteration the user stories selected during the iteration
planning meeting will be translated into acceptance tests.

The customer specifies scenarios to test when a user story
has been correctly implemented.

A story can have one or many acceptance tests, whatever it
takes to ensure the functionality works.

Source: http://www.extremeprogramming.org/rules/functionaltests.html20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

Les tests d’acceptation selon XP

http://www.extremeprogramming.org/rules/functionaltests.html
http://www.extremeprogramming.org/rules/functionaltests.html

Les tests d’acceptation selon XP (suite)

Acceptance tests are black box system tests. Each
acceptance test represents some expected result from the
system.

The name acceptance tests was changed from functional tests.
This better reflects the intent, which is to guarantee that a customer’s
requirements have been met and the system is acceptable.
Source: http://www.extremeprogramming.org/rules/functionaltests.html

Les tests d’acceptation selon XP (suite)

Acceptance tests are black box system tests. Each
acceptance test represents some expected result from the
system.

The name acceptance tests was changed from functional tests.
This better reflects the intent, which is to guarantee that a customer’s
requirements have been met and the system is acceptable.
Source: http://www.extremeprogramming.org/rules/functionaltests.html20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

Les tests d’acceptation selon XP (suite)

http://www.extremeprogramming.org/rules/functionaltests.html
http://www.extremeprogramming.org/rules/functionaltests.html

Une autre définition des tests d’acceptation ?

Acceptance tests are tests that define the business value each
story must deliver. They may verify functional requirements or
nonfunctional requirements such as performance or reliability.
Although they are used to help guide development, it is at a
higher level than the unit-level tests used for code design in
test-driven development. Acceptance test is a broad term that
may include both business-facing and technology-facing tests.
Source: «Agile Testing—A Practical Guide for Testers and Agile Teams», Crispin & Gregory

Une autre définition des tests d’acceptation ?

Acceptance tests are tests that define the business value each
story must deliver. They may verify functional requirements or
nonfunctional requirements such as performance or reliability.
Although they are used to help guide development, it is at a
higher level than the unit-level tests used for code design in
test-driven development. Acceptance test is a broad term that
may include both business-facing and technology-facing tests.
Source: «Agile Testing—A Practical Guide for Testers and Agile Teams», Crispin & Gregory

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

Une autre définition des tests d’acceptation ?

•

Source: http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

Source: http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Que sont les tests d’acceptation ?

•

http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/
http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

3. Les tests d’acceptation et
l’approche BDD

Constatation de North et Matts (2004) : L’approche
BDD peut aussi s’appliquer. . . aux exigences

Toward the end of 2004, while I was describing my
new found, behaviour-based vocabulary to Matts, he
said, “But that’s just like analysis.” There was a long
pause while we processed this, and then we decided
to apply all of this behaviour-driven thinking to defining
requirements.

Source: Dan North,
http://dannorth.net/introducing-bdd/

Constatation de North et Matts (2004) : L’approche
BDD peut aussi s’appliquer. . . aux exigences

Toward the end of 2004, while I was describing my
new found, behaviour-based vocabulary to Matts, he
said, “But that’s just like analysis.” There was a long
pause while we processed this, and then we decided
to apply all of this behaviour-driven thinking to defining
requirements.

Source: Dan North,
http://dannorth.net/introducing-bdd/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Constatation de North et Matts (2004) :
L’approche BDD peut aussi s’appliquer. . .
aux exigences

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

Constatation de North et Matts (2004) : L’approche
BDD peut aussi s’appliquer. . . aux exigences

Le comportement attendu d’un logiciel représente le critère
d’acceptation de ce logiciel :

«If the system fulfills all the acceptance criteria,
it’s behaving correctly ; if it doesn’t, it isn’t.»
(D. North)

⇒ On peut aussi utiliser une approche «à la
TDD» pour les exigences et les tests
d’acceptation :

On décrit les exigences à l’aide de scénarios
compréhensibles par les divers intervenants

Les scénarios sont testés de façon automatique

Constatation de North et Matts (2004) : L’approche
BDD peut aussi s’appliquer. . . aux exigences

Le comportement attendu d’un logiciel représente le critère
d’acceptation de ce logiciel :

«If the system fulfills all the acceptance criteria,
it’s behaving correctly ; if it doesn’t, it isn’t.»
(D. North)

⇒ On peut aussi utiliser une approche «à la
TDD» pour les exigences et les tests
d’acceptation :

On décrit les exigences à l’aide de scénarios
compréhensibles par les divers intervenants

Les scénarios sont testés de façon automatique

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Constatation de North et Matts (2004) :
L’approche BDD peut aussi s’appliquer. . .
aux exigences• Donc, dans un premier temps, BDD est une façon de spécifier des

tests unitaires en utilisant un style différent de spécification —
spécification par des exemples.
• Donc on devrait pouvoir faire du TDD aussi à l’étape d’analyse
• Avec des scénarios qui soient exécutables, comme des tests
• Qu’on pourra tester lors des tests systèmes et d’acceptation

Qu’est-ce que le BDD ?
Twitter feed de D. North, oct. 2016 (https://twitter.com/tastapod)

Qu’est-ce que le BDD ?
Twitter feed de D. North, oct. 2016 (https://twitter.com/tastapod)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Qu’est-ce que le BDD ?

https://twitter.com/tastapod
https://twitter.com/tastapod

Qu’est-ce que le BDD ?

«[Le] BDD consiste à étendre le TDD en écrivant non
plus du code compréhensible uniquement par des
développeurs, mais sous forme de scénario
compréhensible par toutes les personnes impliquées
dans le projet.

Autrement dit, il s’agit d’écrire des tests qui décrivent
le comportement attendu du système et que tout le
monde peut comprendre.»

Source: http://arnauld.github.io/incubation/
Getting-Started-with-JBehave.html

Qu’est-ce que le BDD ?

«[Le] BDD consiste à étendre le TDD en écrivant non
plus du code compréhensible uniquement par des
développeurs, mais sous forme de scénario
compréhensible par toutes les personnes impliquées
dans le projet.

Autrement dit, il s’agit d’écrire des tests qui décrivent
le comportement attendu du système et que tout le
monde peut comprendre.»

Source: http://arnauld.github.io/incubation/
Getting-Started-with-JBehave.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Qu’est-ce que le BDD ?

• «[G]énéralement, ces scénarios sont écrits et définis avant que
l’implémentation ne commence. Ils servent à la fois à définir le besoin
mais vont guider le développement en le focalisant sur la
fonctionnalité décrite. Dans l’absolu, on continue à faire du TDD mais
on ajoute en plus l’expression du besoin en langage naturel. Alors
que le TDD garantit d’une certaine façon la qualité technique d’une
implémentation, il ne garantit pas la qualité fonctionnelle. Plusieurs
éléments peuvent ainsi être techniquement valides mais une fois mis
ensemble ne répondent pas du tout au besoin réellement exprimé par
le client. De manière un peu caricatural, le BDD va guider le
développement d’une fonctionalité, tandis que le TDD guidera son
implementation.

http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html
http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html
http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html
http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html

TDD vs. BDD : TDD et BDD

Source: http://msdn.microsoft.com/en-us/magazine/gg490346.aspx

TDD vs. BDD : TDD et BDD

Source: http://msdn.microsoft.com/en-us/magazine/gg490346.aspx

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

TDD vs. BDD : TDD et BDD

•

http://msdn.microsoft.com/en-us/magazine/gg490346.aspx
http://msdn.microsoft.com/en-us/magazine/gg490346.aspx

North et Matts ont dû développer un langage pour la
spécification des exigences, les critères d’acceptation

If we could develop a consistent vocabulary for
analysts, testers, developers, and the business, then
we would be well on the way to eliminating some of
the ambiguity and miscommunication that occur when
technical people talk to business people.

Source: Dan North, http://dannorth.net/introducing-bdd/

North et Matts ont dû développer un langage pour la
spécification des exigences, les critères d’acceptation

If we could develop a consistent vocabulary for
analysts, testers, developers, and the business, then
we would be well on the way to eliminating some of
the ambiguity and miscommunication that occur when
technical people talk to business people.

Source: Dan North, http://dannorth.net/introducing-bdd/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

North et Matts ont dû développer un langage
pour la spécification des exigences, les
critères d’acceptation

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

Donc, North et Matts ont développé un ubiquitous
language pour l’analyse

Ubiquitous Language
Ubiquitous Language = A design approach described in Eric
Evans’ “Domain Driven Design” (2003), which consists notably
of striving to use the vocabulary of a given business domain,
not only in discussions about the requirements for a software
product, but in discussions of design as well and all the way
into “the product’s source code itself”.

Source: http://guide.agilealliance.org/guide/ubiquitous.html

Donc, North et Matts ont développé un ubiquitous
language pour l’analyse

Ubiquitous Language
Ubiquitous Language = A design approach described in Eric
Evans’ “Domain Driven Design” (2003), which consists notably
of striving to use the vocabulary of a given business domain,
not only in discussions about the requirements for a software
product, but in discussions of design as well and all the way
into “the product’s source code itself”.

Source: http://guide.agilealliance.org/guide/ubiquitous.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Donc, North et Matts ont développé un
ubiquitous language pour l’analyse

http://guide.agilealliance.org/guide/ubiquitous.html
http://guide.agilealliance.org/guide/ubiquitous.html

Récit utilisateur vs. Scénario utilisateur

User story
A user story is a brief statement that identifies the user and her
need.

User scenario
A user scenario expands upon your user stories by including
details about how a system might be interpreted, experienced,
and used. [. . .] Your scenarios should anticipate the user’s
goal, specify any assumed knowledge, and speculate on the
details of the user’s interaction experience.

Source: https://www.newfangled.com/how-to-tell-the-users-story/

Récit utilisateur vs. Scénario utilisateur

User story
A user story is a brief statement that identifies the user and her
need.

User scenario
A user scenario expands upon your user stories by including
details about how a system might be interpreted, experienced,
and used. [. . .] Your scenarios should anticipate the user’s
goal, specify any assumed knowledge, and speculate on the
details of the user’s interaction experience.

Source: https://www.newfangled.com/how-to-tell-the-users-story/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Récit utilisateur vs. Scénario utilisateur

•

https://www.newfangled.com/how-to-tell-the-users-story/
https://www.newfangled.com/how-to-tell-the-users-story/

Caractéristiques des récits utilisateurs

The general guidelines for the user stories themselves
is that they must be testable, be small enough to
implement in one iteration, and have business value.

Source: «Engineering Software as a Service», Fox & Patterson

Caractéristiques des récits utilisateurs

The general guidelines for the user stories themselves
is that they must be testable, be small enough to
implement in one iteration, and have business value.

Source: «Engineering Software as a Service», Fox & Patterson

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Caractéristiques des récits utilisateurs

•

Les scénarios utilisateur décrivent les conditions
d’acceptation pour un récit utilisateur

This, then, is the role of a Story. It has to be a
description of a requirement and its business benefit,
and a set of criteria by which we all agree that it is
“done”.

[The acceptance criteria] are presented as Scenarios.

Source: http://dannorth.net/whats-in-a-story/

Les scénarios utilisateur décrivent les conditions
d’acceptation pour un récit utilisateur

This, then, is the role of a Story. It has to be a
description of a requirement and its business benefit,
and a set of criteria by which we all agree that it is
“done”.

[The acceptance criteria] are presented as Scenarios.

Source: http://dannorth.net/whats-in-a-story/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Les scénarios utilisateur décrivent les
conditions d’acceptation pour un récit
utilisateur•

http://dannorth.net/whats-in-a-story/
http://dannorth.net/whats-in-a-story/

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature

•

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature
http://itsadeliverything.com/
agile-requirements-snail-feature-to-user-story-to-scenario

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature
http://itsadeliverything.com/
agile-requirements-snail-feature-to-user-story-to-scenario

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature

•

http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario
http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario
http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario
http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario

Récits utilisateurs : Un gabarit «standard»
(style connextra)

User stories are short, simple descriptions of a feature
told from the perspective of the person who desires
the new capability, usually a user or customer of the
system.

They typically follow a simple template :

As a <type of user>,
I want <some goal>
so that <some reason>.

Source: https://www.mountaingoatsoftware.com/agile/user-stories

Récits utilisateurs : Un gabarit «standard»
(style connextra)

User stories are short, simple descriptions of a feature
told from the perspective of the person who desires
the new capability, usually a user or customer of the
system.

They typically follow a simple template :

As a <type of user>,
I want <some goal>
so that <some reason>.

Source: https://www.mountaingoatsoftware.com/agile/user-stories

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Récits utilisateurs : Un gabarit «standard»
(style connextra)

•

https://www.mountaingoatsoftware.com/agile/user-stories
https://www.mountaingoatsoftware.com/agile/user-stories

Scénarios utilisateurs : Le gabarit de North & Matts

Scenario: name of the scenario

Given some initial context

When an event occurs

Then ensure some outcomes

North et Matts, avec JBehave, ont conçu une façon d’exécuter
des scénarios exprimés dans ce langage

Scénarios utilisateurs : Le gabarit de North & Matts

Scenario: name of the scenario

Given some initial context

When an event occurs

Then ensure some outcomes

North et Matts, avec JBehave, ont conçu une façon d’exécuter
des scénarios exprimés dans ce langage20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Les tests d’acceptation et l’approche BDD

Scénarios utilisateurs : Le gabarit de North &
Matts

•

4. Des outils pour le BDD

4.1 cucumber

4.1 cucumber

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

•

Cucumber (Hellesoy, 2008)

Pour la spécification et
l’exécution des tests
d’acceptation !

Cucumber (Hellesoy, 2008)

Pour la spécification et
l’exécution des tests
d’acceptation !

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Cucumber (Hellesoy, 2008)

• Cette idée de scénario exécutable a alors été reprise, en Ruby, par
Hellesoy, dans un outil appelé cucumber, que je vais vous présenter.
• C’est cet outil que je présente en premier, car c’est celui avec lequel
je suis plus familier.

Cucumber : Principe général de fonctionnement

Cucumber : Principe général de fonctionnement

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Cucumber : Principe général de
fonctionnement

•

Les features de cucumber vs. les user stories

User Stories are a planning tool. They exist until
they’re implemented, and then they disappear,
absorbed into the code.

Cucumber features are a communication tool. They
describe how the system behaves today, so that if you
need to check how it works, you don’t need to read
code or go punching buttons on the live system.

[We] use Cucumber to document [a user story’s]
acceptance criteria as scenarios that we can use to
drive out the behaviour we need to get this story done.

Source: http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/

Les features de cucumber vs. les user stories

User Stories are a planning tool. They exist until
they’re implemented, and then they disappear,
absorbed into the code.

Cucumber features are a communication tool. They
describe how the system behaves today, so that if you
need to check how it works, you don’t need to read
code or go punching buttons on the live system.

[We] use Cucumber to document [a user story’s]
acceptance criteria as scenarios that we can use to
drive out the behaviour we need to get this story done.

Source: http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Les features de cucumber vs. les user
stories

• Aussi : «User Stories are a great way to plan your work. You can
take a big hairy requirement and break it down into chunks that are
small enough to work on without anyone freaking out. When you’ve
crumbled up your big hairy requirement into little user story chunks,
you can pick and choose which chunk to build first, and even drop
some chunks altogether when you realise they’re not that important.
Great stuff.»

http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/
http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/

Les trois sortes de steps qui composent un
scenario Cucumber

Given
Identifie l’état courant/initial, dans lequel le scénario va
s’appliquer.

When
Identifie l’action ou l’événement qui déclenche le scénario

Then
Identifie les conséquences du traitement de l’action.

Les trois sortes de steps qui composent un
scenario Cucumber

Given
Identifie l’état courant/initial, dans lequel le scénario va
s’appliquer.

When
Identifie l’action ou l’événement qui déclenche le scénario

Then
Identifie les conséquences du traitement de l’action.20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Les trois sortes de steps qui composent un
scenario Cucumber

•

Les trois sortes de steps qui composent un
scenario Cucumber ?

The purpose of Givens is to put the system in a known
state before the user (or external system) starts
interacting with the system (in the When steps).

The purpose of When steps is to describe the key
action the user performs [. . .].

The purpose of Then steps is to observe outcomes.
The observations should be related to the business
value/benefit in your feature description. The
observations should also be on some kind of output —
that is something that comes out of the system (report,
user interface, message)[. . .].

Source: https://github.com/cucumber/cucumber/wiki/Given-When-Then

Les trois sortes de steps qui composent un
scenario Cucumber ?

The purpose of Givens is to put the system in a known
state before the user (or external system) starts
interacting with the system (in the When steps).

The purpose of When steps is to describe the key
action the user performs [. . .].

The purpose of Then steps is to observe outcomes.
The observations should be related to the business
value/benefit in your feature description. The
observations should also be on some kind of output —
that is something that comes out of the system (report,
user interface, message)[. . .].

Source: https://github.com/cucumber/cucumber/wiki/Given-When-Then

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Les trois sortes de steps qui composent un
scenario Cucumber ?

•

https://github.com/cucumber/cucumber/wiki/Given-When-Then
https://github.com/cucumber/cucumber/wiki/Given-When-Then

Les trois sortes de steps qui composent un
scenario Cucumber ?

Given-When-Then is a style of representing tests — or
as its advocates would say — specifying a system’s
behavior using SpecificationByExample.

The given part describes the state of the world before
you begin the behavior you’re specifying in this
scenario. You can think of it as the pre-conditions to
the test.

The when section is that behavior that you’re
specifying.

Finally the then section describes the changes you
expect due to the specified behavior.

Source: http://martinfowler.com/bliki/GivenWhenThen.html

Les trois sortes de steps qui composent un
scenario Cucumber ?

Given-When-Then is a style of representing tests — or
as its advocates would say — specifying a system’s
behavior using SpecificationByExample.

The given part describes the state of the world before
you begin the behavior you’re specifying in this
scenario. You can think of it as the pre-conditions to
the test.

The when section is that behavior that you’re
specifying.

Finally the then section describes the changes you
expect due to the specified behavior.

Source: http://martinfowler.com/bliki/GivenWhenThen.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Les trois sortes de steps qui composent un
scenario Cucumber ?

•

http://martinfowler.com/bliki/GivenWhenThen.html
http://martinfowler.com/bliki/GivenWhenThen.html

Cucumber : Principe général de fonctionnement

Cucumber : Principe général de fonctionnement

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Cucumber : Principe général de
fonctionnement

•

Exemple Ruby avec cucumber et gherkin :
Classe à tester

class Compte
attr_reader :solde, :client

def initialize(client, solde_initial)
@client, @solde = client, solde_initial

end

def deposer(montant)
@solde += montant

end

def retirer(montant)
fail "Solde insuffisant" if montant > solde

@solde -= montant
end

end

Exemple Ruby avec cucumber et gherkin :
Classe à tester

class Compte
attr_reader :solde, :client

def initialize(client, solde_initial)
@client, @solde = client, solde_initial

end

def deposer(montant)
@solde += montant

end

def retirer(montant)
fail "Solde insuffisant" if montant > solde

@solde -= montant
end

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Exemple Ruby avec cucumber et
gherkin :Classe à tester

Exemple Ruby avec cucumber et gherkin :
Scénarios d’utilisation d’un compte bancaire

On veut écrire des scénarios pour les comptes bancaires
(simples) vus précédemment

$ tree Compte
Compte
|-- compte.rb
|-- compte_spec.rb
|-- courriel.rb

|-- features

| |-- compte_steps.rb

| ‘-- retirer.feature
|-- Rakefile
‘-- spec-helper.rb

1 directory, 7 files

Exemple Ruby avec cucumber et gherkin :
Scénarios d’utilisation d’un compte bancaire

On veut écrire des scénarios pour les comptes bancaires
(simples) vus précédemment

$ tree Compte
Compte
|-- compte.rb
|-- compte_spec.rb
|-- courriel.rb

|-- features

| |-- compte_steps.rb

| ‘-- retirer.feature
|-- Rakefile
‘-- spec-helper.rb

1 directory, 7 files

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Exemple Ruby avec cucumber et gherkin :
Scénarios d’utilisation d’un compte bancaire

Exemple Ruby avec cucumber et gherkin :
features/retirer.feature (1)

Feature: Retrait d’un montant d’un compte
En tant que responsable d’un compte
Je veux pouvoir retirer un montant de mon compte
Afin d’avoir de l’argent comptant sous la main

Scenario: J’ai assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 50 dollars

Then je recois 50 dollars
And le solde de mon compte est de 150 dollars

Exemple Ruby avec cucumber et gherkin :
features/retirer.feature (1)

Feature: Retrait d’un montant d’un compte
En tant que responsable d’un compte
Je veux pouvoir retirer un montant de mon compte
Afin d’avoir de l’argent comptant sous la main

Scenario: J’ai assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 50 dollars

Then je recois 50 dollars
And le solde de mon compte est de 150 dollars20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Exemple Ruby avec cucumber et gherkin :
features/retirer.feature (1)

• Voici un exemple pour la version simplifiée de la banque.
• cucumber = l’outil d’exécution des scénarios
• gherkin = le langage de description/spécification des scénarios
• La description de la «feature», au tout début, avant les scénarios,
est arbitraire (texte non analysé par l’outil). Toutefois, la
suggestion/convention est d’utiliser gabarit dit Connextra format pour
la description des récits utilisateurs (user stories).

Exemple Ruby avec cucumber et gherkin :
features/retirer.feature (2)

Scenario: J’ai assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 200 dollars

Then je recois 200 dollars
And le solde de mon compte est de 0 dollars

Scenario: Je n’ai pas assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 500 dollars

Then je recois un message d’erreur
And le solde de mon compte est de 200 dollars

Exemple Ruby avec cucumber et gherkin :
features/retirer.feature (2)

Scenario: J’ai assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 200 dollars

Then je recois 200 dollars
And le solde de mon compte est de 0 dollars

Scenario: Je n’ai pas assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 500 dollars

Then je recois un message d’erreur
And le solde de mon compte est de 200 dollars

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Exemple Ruby avec cucumber et gherkin :
features/retirer.feature (2)

•

Exécution initiale. . . avec des étapes pending (suite)

Exécution initiale. . . avec des étapes pending (suite)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Exécution initiale. . . avec des étapes
pending (suite)

• L’exécution initiale de ces scénarios, sans mises en oeuvre des
diverses étapes, donnerait alors un résultat comme celui-ci.
• On remarque que cela dit «3 scenarios» et «12 steps». Chaque
étape correspond à un Given, When ou Then.
• Dans l’état initial, ces étapes ne sont pas encore mises en oeuvre,
et cucumber nous donne des suggestions quant à ce qu’il faut faire
pour démarrer leur mise en oeuvre.

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb

NB = Transform /^\d+$/ do |nb| nb.to_i end

Given(/^mon compte a un solde de (#{NB}) dollars$/) do |montant|
@c = Compte.new("MOI", montant)

end

When(/^je retire (#{NB}) dollars$/) do |montant|
@montant_recu = nil
begin

@c.retirer montant
@montant_recu = montant

rescue Exception => e
@erreur = e

end
end

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb

NB = Transform /^\d+$/ do |nb| nb.to_i end

Given(/^mon compte a un solde de (#{NB}) dollars$/) do |montant|
@c = Compte.new("MOI", montant)

end

When(/^je retire (#{NB}) dollars$/) do |montant|
@montant_recu = nil
begin

@c.retirer montant
@montant_recu = montant

rescue Exception => e
@erreur = e

end
end20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Mise en oeuvrè avec RSpec (très
simplifiée) : features/compte_steps.rb

• Voici maintenant une mise en oeuvre très simplifiée des diverses
étapes, qui permet d’exécuter les divers scénarios de tests avec
succès.
• Dans un premier temps, voici les Given et les When, donc les
pré-conditions.
• Qu’est-ce que je vais faire pour satisfaire cet antécédent. . . je vais
créer un compte avec un certain solde — donc c’est comme le setup
d’un test unitaire.

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb (suite)

Then(/^le solde de mon compte est de (#{NB}) dollars$/)
do |montant|

expect(@c.solde).to eq montant
end

Then(/^je recois (#{NB}) dollars$/) do |montant|
expect(@montant_recu).to eq montant

end

Then(/^je recois un message d’erreur$/) do
expect(@erreur).not_to be_nil

end

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb (suite)

Then(/^le solde de mon compte est de (#{NB}) dollars$/)
do |montant|

expect(@c.solde).to eq montant
end

Then(/^je recois (#{NB}) dollars$/) do |montant|
expect(@montant_recu).to eq montant

end

Then(/^je recois un message d’erreur$/) do
expect(@erreur).not_to be_nil

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb (suite)

• Voici ensuite les Then, donc les post-conditions.

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb (suite)

Then(/^le solde de mon compte est de (#{NB}) dollars$/)
do |montant|

expect(@c.solde).to eq montant
end

Then(/^je recois (#{NB}) dollars$/) do |montant|
expect(@montant_recu).to eq montant

end

Then(/^je recois un message d’erreur$/) do
expect(@erreur).not_to be_nil

end

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb (suite)

Then(/^le solde de mon compte est de (#{NB}) dollars$/)
do |montant|

expect(@c.solde).to eq montant
end

Then(/^je recois (#{NB}) dollars$/) do |montant|
expect(@montant_recu).to eq montant

end

Then(/^je recois un message d’erreur$/) do
expect(@erreur).not_to be_nil

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Mise en oeuvrè avec RSpec (très simplifiée) :
features/compte_steps.rb (suite)

• Je vous signale que les attentes sont exprimées dans le nouveau
style aussi suggéré par RSpec, donc avec des expect plutôt qu’avec
des should.

Exécution. . . après avoir finalisé les «étapes»

Exécution. . . après avoir finalisé les «étapes»

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Exécution. . . après avoir finalisé les
«étapes»

• Voici donc les résultats d’exécution une fois qu’on a défini ces
étapes.

Le DSL de cucumber, gherkin, supporte de
nombreux langages, notamment le français

Scénario: J’ai assez d’argent dans mon compte
Soit mon compte a un solde de 200 dollars

Quand je retire 200 dollars

Alors je recois 200 dollars
Et le solde de mon compte est de 0 dollars

Scénario: Je n’ai pas assez d’argent dans mon compte
Soit mon compte a un solde de 200 dollars

Quand je retire 500 dollars

Alors je recois un message d’erreur
Et le solde de mon compte est de 200 dollars

Le DSL de cucumber, gherkin, supporte de
nombreux langages, notamment le français

Scénario: J’ai assez d’argent dans mon compte
Soit mon compte a un solde de 200 dollars

Quand je retire 200 dollars

Alors je recois 200 dollars
Et le solde de mon compte est de 0 dollars

Scénario: Je n’ai pas assez d’argent dans mon compte
Soit mon compte a un solde de 200 dollars

Quand je retire 500 dollars

Alors je recois un message d’erreur
Et le solde de mon compte est de 200 dollars

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Le DSL de cucumber, gherkin, supporte
de nombreux langages, notamment le
français• Le langage gherkin supporte une très grande quantité de

langues : 37 en date de Nov. 2013 !

Le DSL de cucumber, gherkin, permet de définir
des familles de cas de tests

Scenario Outline: J’ai assez d’argent dans mon compte
Given mon compte a un solde de <solde_initial> dollars

When je retire <montant> dollars

Then je recois <montant> dollars
And le solde de mon compte est de <solde_final> dollars

Scenarios:
solde_initial	montant	solde_final
200	50	150
200	200	0

Le DSL de cucumber, gherkin, permet de définir
des familles de cas de tests

Scenario Outline: J’ai assez d’argent dans mon compte
Given mon compte a un solde de <solde_initial> dollars

When je retire <montant> dollars

Then je recois <montant> dollars
And le solde de mon compte est de <solde_final> dollars

Scenarios:
solde_initial	montant	solde_final
200	50	150
200	200	0

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

Le DSL de cucumber, gherkin, permet de
définir des familles de cas de tests

•

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
cucumber

•

4.2 JBehave

4.2 JBehave

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

•

Quelques caractéristiques de JBehave

Open source
Mise en oeuvre entièrement Java
Utilise des annotations pour associer une méthode Java à
une étape

Quelques caractéristiques de JBehave

Open source
Mise en oeuvre entièrement Java
Utilise des annotations pour associer une méthode Java à
une étape

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

Quelques caractéristiques de JBehave

•

Quelques caractéristiques de JBehave
JBehave peut être exécuté de différentes façons

Source: http://jbehave.org/

Quelques caractéristiques de JBehave
JBehave peut être exécuté de différentes façons

Source: http://jbehave.org/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

Quelques caractéristiques de JBehave

•

http://jbehave.org/
http://jbehave.org/

La description des scénarios ≈ comme cucumber
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

Narrative:
In order to develop an application that requires

a stack efficiently
As a development team
I would like to use an interface

and implementation in Java directly

Scenario: Basic functionality of a Stack

Given an empty stack
When the string Java is added
And the string C++ is added
And the last element is removed again
Then the resulting element should be Java

La description des scénarios ≈ comme cucumber
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

Narrative:
In order to develop an application that requires

a stack efficiently
As a development team
I would like to use an interface

and implementation in Java directly

Scenario: Basic functionality of a Stack

Given an empty stack
When the string Java is added
And the string C++ is added
And the last element is removed again
Then the resulting element should be Java

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

La description des scénarios ≈ comme
cucumber

•

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

La description des scénarios ≈ comme cucumber
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

Scenario: Stack search

Given an empty stack
When the string Java is added
And the string C++ is added
And the string PHP is added
And the element Java is searched for
Then the position returned should be 3

La description des scénarios ≈ comme cucumber
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

Scenario: Stack search

Given an empty stack
When the string Java is added
And the string C++ is added
And the string PHP is added
And the element Java is searched for
Then the position returned should be 3

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

La description des scénarios ≈ comme
cucumber

•

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

La mise en oeuvre des étapes = Java avec
annotations
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

public class StackStories extends Embedder {

private Stack<String> testStack;
private String searchElement;

@Given("an empty stack")
public void anEmptyStack() {

testStack = new Stack<String>();
}

@When("the string $element$element is added")
public void anElementIsAdded(String elementelement) {

testStack.push(element);
}

La mise en oeuvre des étapes = Java avec
annotations
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

public class StackStories extends Embedder {

private Stack<String> testStack;
private String searchElement;

@Given("an empty stack")
public void anEmptyStack() {
testStack = new Stack<String>();

}

@When("the string $element$element is added")
public void anElementIsAdded(String elementelement) {
testStack.push(element);

}20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

La mise en oeuvre des étapes = Java avec
annotations

•

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

La mise en oeuvre des étapes = Java avec
annotations
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

@When("the last element is removed again")
public void removeLastElement() {

testStack.pop();
}

@When("the element $element is searched for")
public void searchForElement(String element) {

searchElement = element;
}

La mise en oeuvre des étapes = Java avec
annotations
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

@When("the last element is removed again")
public void removeLastElement() {
testStack.pop();

}

@When("the element $element is searched for")
public void searchForElement(String element) {
searchElement = element;

}

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

La mise en oeuvre des étapes = Java avec
annotations

•

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

La mise en oeuvre des étapes = Java avec
annotations
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

@Then("the resulting element should be $result")
public void theResultingElementShouldBe(String result) {

Assert.assertEquals(testStack.pop(), result);
}

@Then("the position returned should be $pos")
public void thePositionReturnedShouldBe(int pos) {

Assert.assertEquals(testStack.search(searchElement),
pos);

}
}

La mise en oeuvre des étapes = Java avec
annotations
Tiré de https://blog.codecentric.de/en/2011/03/
automated-acceptance-testing-using-jbehave/

@Then("the resulting element should be $result")
public void theResultingElementShouldBe(String result) {
Assert.assertEquals(testStack.pop(), result);

}

@Then("the position returned should be $pos")
public void thePositionReturnedShouldBe(int pos) {
Assert.assertEquals(testStack.search(searchElement),

pos);
}

}

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
JBehave

La mise en oeuvre des étapes = Java avec
annotations

•

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

4.3 Fit

4.3 Fit

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

•

Fit : Framework for Integrated Tests
W. Cunningham = Inventeur/concepteur du premier wiki

Fit : Framework for Integrated Tests
W. Cunningham = Inventeur/concepteur du premier wiki

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Fit : Framework for Integrated Tests

•

Fit : Framework for Integrated Tests

Framework for Integrated Test, or “Fit”, is an
open-source tool for automated customer tests. It
integrates the work of customers, analysts, testers,
and developers.

Source: https://en.wikipedia.org/wiki/Framework_for_integrated_test

Fit : Framework for Integrated Tests

Framework for Integrated Test, or “Fit”, is an
open-source tool for automated customer tests. It
integrates the work of customers, analysts, testers,
and developers.

Source: https://en.wikipedia.org/wiki/Framework_for_integrated_test

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Fit : Framework for Integrated Tests

•

https://en.wikipedia.org/wiki/Framework_for_integrated_test
https://en.wikipedia.org/wiki/Framework_for_integrated_test

Fit : Framework for Integrated Tests

Customers provide examples of how their software
should work. Those examples are then connected to
the software with programmer-written test fixtures and
automatically checked for correctness.

The customers’ examples are formatted in tables and
saved as HTML using ordinary business tools such as
Microsoft Excel. When Fit checks the document, it
creates a copy and colors the tables green, red, and
yellow according to whether the software behaved as
expected.

Source: https://en.wikipedia.org/wiki/Framework_for_integrated_test

Fit : Framework for Integrated Tests

Customers provide examples of how their software
should work. Those examples are then connected to
the software with programmer-written test fixtures and
automatically checked for correctness.

The customers’ examples are formatted in tables and
saved as HTML using ordinary business tools such as
Microsoft Excel. When Fit checks the document, it
creates a copy and colors the tables green, red, and
yellow according to whether the software behaved as
expected.

Source: https://en.wikipedia.org/wiki/Framework_for_integrated_test

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Fit : Framework for Integrated Tests

•

https://en.wikipedia.org/wiki/Framework_for_integrated_test
https://en.wikipedia.org/wiki/Framework_for_integrated_test

Les concepts de base de Fit

Fit table
A Fit table is a way of expressing the business logic using a
simple HTML table. These examples help developers better
understand the requirements and are used as acceptance test
cases. Analysts create Fit tables using a tool like MS Word, MS
Excel, or even a text editor (assumes familiarity with HTML
tags).

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Les concepts de base de Fit

Fit table
A Fit table is a way of expressing the business logic using a
simple HTML table. These examples help developers better
understand the requirements and are used as acceptance test
cases. Analysts create Fit tables using a tool like MS Word, MS
Excel, or even a text editor (assumes familiarity with HTML
tags).

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Les concepts de base de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Les concepts de base de Fit

Fixture
A fixture is an interface between the test instrumentation (in our
case, the Fit framework), test cases (Fit tables), and the system
under test (SUT). Fixtures are Java classes usually written by
developers.

Donc : Semblables aux step definitions de Cucumber.

Trois sortes de fixture
Column fixture for testing calculations
Action fixture for testing the user interfaces or workflow
Row fixture for validating a collection of domain objects

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Les concepts de base de Fit

Fixture
A fixture is an interface between the test instrumentation (in our
case, the Fit framework), test cases (Fit tables), and the system
under test (SUT). Fixtures are Java classes usually written by
developers.

Donc : Semblables aux step definitions de Cucumber.

Trois sortes de fixture
Column fixture for testing calculations
Action fixture for testing the user interfaces or workflow
Row fixture for validating a collection of domain objects

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Les concepts de base de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Les concepts de base de Fit

Test runner
Fit provides a main driver class, fit.FileRunner, that can be
used to execute tests. FileRunner takes two parameters : the
name of an input HTML file that has one or more test cases
expressed as Fit tables and the name of an output file where Fit
records test results.

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Les concepts de base de Fit

Test runner
Fit provides a main driver class, fit.FileRunner, that can be
used to execute tests. FileRunner takes two parameters : the
name of an input HTML file that has one or more test cases
expressed as Fit tables and the name of an output file where Fit
records test results.

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Les concepts de base de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Les concepts de base de Fit

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Les concepts de base de Fit

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Les concepts de base de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
On identifie les récits utilisateurs

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
On identifie les récits utilisateurs

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Processus d’utilisation de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
On crée les tables d’exemples, par exemple, dans un fichier Excel

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html
Processus d’utilisation de Fit
On crée les tables d’exemples, par exemple, dans un fichier Excel

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Processus d’utilisation de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
Des fichiers HTML sont générés à partir des tables des fichiers Excel

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
Des fichiers HTML sont générés à partir des tables des fichiers Excel

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Processus d’utilisation de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
On écrit le code Java qui fait le lien avec les exemples

package sample;
import fit.ColumnFixture;

public class VerifyRating extends ColumnFixture {
public String teamName;
public int played;
public int won;
public int drawn;
public int lost;
Team team = null;

public long rating(){
team = new Team(teamName,played,won,drawn,lost);
return team.rating;

}
}

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html Processus d’utilisation de Fit
On écrit le code Java qui fait le lien avec les exemples

package sample;
import fit.ColumnFixture;

public class VerifyRating extends ColumnFixture {
public String teamName;
public int played;
public int won;
public int drawn;
public int lost;
Team team = null;

public long rating(){
team = new Team(teamName,played,won,drawn,lost);
return team.rating;

}
}

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Processus d’utilisation de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
On écrit le code Java qui met en oeuvre le modèle d’affaire

public class Team {
public String name;
public int played, won, drawn, lost, rating;

public Team(String name, int played, int won, int drawn, int lost) {
super();
this.name = name; this.played = played;
this.won = won; this.drawn = drawn;
this.lost = lost; calculateRating();

}

private void calculateRating() {
float value = ((10000f*(won*3+drawn))/(3*played))/100;
rating = Math.round(value);

}
}

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html Processus d’utilisation de Fit
On écrit le code Java qui met en oeuvre le modèle d’affaire

public class Team {
public String name;
public int played, won, drawn, lost, rating;

public Team(String name, int played, int won, int drawn, int lost) {
super();
this.name = name; this.played = played;
this.won = won; this.drawn = drawn;
this.lost = lost; calculateRating();

}

private void calculateRating() {
float value = ((10000f*(won*3+drawn))/(3*played))/100;
rating = Math.round(value);

}
}

Source: http://www.javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Processus d’utilisation de Fit

•

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d’utilisation de Fit
On lance le test runner pour vérifier que tous les exemples sont satisfaits

Source: http://fit.c2.com/wiki.cgi?IntroductionToFit

Processus d’utilisation de Fit
On lance le test runner pour vérifier que tous les exemples sont satisfaits

Source: http://fit.c2.com/wiki.cgi?IntroductionToFit

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
Fit

Processus d’utilisation de Fit

• Pas le même exemple que les précédents. Illustre seulement les
cellules vertes et rouges.

http://fit.c2.com/wiki.cgi?IntroductionToFit
http://fit.c2.com/wiki.cgi?IntroductionToFit

4.4 D’autres outils pour le BDD

4.4 D’autres outils pour le BDD

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
D’autres outils pour le BDD

•

De nombreux autres outils sont disponibles pour
l’approche BDD

De nombreux autres outils sont disponibles pour
l’approche BDD

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
D’autres outils pour le BDD

De nombreux autres outils sont disponibles
pour l’approche BDD

•

De nombreux autres outils sont disponibles pour
l’approche BDD

De nombreux autres outils sont disponibles pour
l’approche BDD

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
D’autres outils pour le BDD

De nombreux autres outils sont disponibles
pour l’approche BDD

•

De nombreux autres outils sont disponibles pour
l’approche BDD

De nombreux autres outils sont disponibles pour
l’approche BDD

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
D’autres outils pour le BDD

De nombreux autres outils sont disponibles
pour l’approche BDD

•

De nombreux autres outils sont disponibles pour
l’approche BDD

De nombreux autres outils sont disponibles pour
l’approche BDD

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Des outils pour le BDD
D’autres outils pour le BDD

De nombreux autres outils sont disponibles
pour l’approche BDD

•

5. D’autres outils pour les tests
d’acceptation

Fait : L’interface
personne–machine de

nombreux systèmes repose
sur l’utilisation de pages

Web et de fureteurs

Fait : L’interface
personne–machine de

nombreux systèmes repose
sur l’utilisation de pages

Web et de fureteurs

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation

Comment peut-on interagir,
dans un programme de

tests, avec des sites Web ?

Comment peut-on interagir,
dans un programme de

tests, avec des sites Web ?

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation

A-t-on besoin d’un fureteur
(browser) pour interagir
avec des sites Web ?

A-t-on besoin d’un fureteur
(browser) pour interagir
avec des sites Web ?

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation

5.1 Contrôleurs de fureteurs vs.
fureteurs «sans tête»

5.1 Contrôleurs de fureteurs vs.
fureteurs «sans tête»

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Contrôleurs de fureteurs vs. fureteurs «sans
tête»

•

Certains outils permettent de contrôler l’exécution d’un
«vrai» fureteur = Browser drivers
http://www.seleniumhq.org/selenium-rc.png

Certains outils permettent de contrôler l’exécution d’un
«vrai» fureteur = Browser drivers
http://www.seleniumhq.org/selenium-rc.png

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Contrôleurs de fureteurs vs. fureteurs «sans
tête»

Certains outils permettent de contrôler
l’exécution d’un «vrai» fureteur = Browser
drivers

•

http://www.seleniumhq.org/selenium-rc.png
http://www.seleniumhq.org/selenium-rc.png

Exemple : Tests unitaires de l’application Web d’Oto

Vidéo illustrant une partie de l’exécution des tests unitaires de
l’application Web d’Oto avec Firefox :
http://www.labunix.uqam.ca/~tremblay/MGL7460/
Materiel/video-tests-oto.mov

Exemple : Tests unitaires de l’application Web d’Oto

Vidéo illustrant une partie de l’exécution des tests unitaires de
l’application Web d’Oto avec Firefox :
http://www.labunix.uqam.ca/~tremblay/MGL7460/
Materiel/video-tests-oto.mov

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Contrôleurs de fureteurs vs. fureteurs «sans
tête»

Exemple : Tests unitaires de l’application
Web d’Oto•

http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov
http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov
http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov
http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov

D’autres outils mettent en oeuvre des fureteurs. . .
sans GUI ! = Headless browser
http://techyworks.blogspot.ca/2014/08/headless-browser-testing-using-selenium.html

D’autres outils mettent en oeuvre des fureteurs. . .
sans GUI ! = Headless browser
http://techyworks.blogspot.ca/2014/08/headless-browser-testing-using-selenium.html

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Contrôleurs de fureteurs vs. fureteurs «sans
tête»

D’autres outils mettent en oeuvre des
fureteurs. . . sans GUI ! = Headless browser•

http://techyworks.blogspot.ca/2014/08/headless-browser-testing-using-selenium.html
http://techyworks.blogspot.ca/2014/08/headless-browser-testing-using-selenium.html

Headless browser

What is a headless browser ?
Headless browser is a term used to define browser
simulation programs which do not have a GUI. These
programs behave just like a browser but don’t show
any GUI.

Source:

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

Headless browser

What is a headless browser ?
Headless browser is a term used to define browser
simulation programs which do not have a GUI. These
programs behave just like a browser but don’t show
any GUI.

Source:

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Contrôleurs de fureteurs vs. fureteurs «sans
tête»

Headless browser
•

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/
http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

Headless browser

What is the use of Headless browsers ?
1 You have a central build tool which does not have any

browser installed on it.

2 You want [. . .] a program that goes through different pages
and collects data, [and] you really don’t care about opening
a browser. All you need is to access the webpages.

3 You would like to simulate multiple browser versions on the
same machine.

Source:

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

Headless browser

What is the use of Headless browsers ?
1 You have a central build tool which does not have any

browser installed on it.

2 You want [. . .] a program that goes through different pages
and collects data, [and] you really don’t care about opening
a browser. All you need is to access the webpages.

3 You would like to simulate multiple browser versions on the
same machine.

Source:

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Contrôleurs de fureteurs vs. fureteurs «sans
tête»

Headless browser
•

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/
http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

5.2 Langages de description
d’interactions avec des sites Web

5.2 Langages de description
d’interactions avec des sites Web

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

•

Question : Comment peut-on interagir, dans un
programme de tests, avec des sites Web ?

Réponse = En utilisant un langage qui permet
de décrire les interactions avec les sites Web

Question : Comment peut-on interagir, dans un
programme de tests, avec des sites Web ?

Réponse = En utilisant un langage qui permet
de décrire les interactions avec les sites Web

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Question : Comment peut-on interagir, dans
un programme de tests, avec des sites
Web ?

•

Capybara

Capybara

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

•

Capybara est un outil Ruby pour interagir avec des
sites Web, avec ou sans fureteur

Capybara
Capybara is an integration testing tool for rack based web
applications. It simulates how a user would interact with a
website.

Capybara est un outil Ruby pour interagir avec des
sites Web, avec ou sans fureteur

Capybara
Capybara is an integration testing tool for rack based web
applications. It simulates how a user would interact with a
website.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara est un outil Ruby pour interagir
avec des sites Web, avec ou sans fureteur•

Capybara est un outil Ruby pour interagir avec des
sites Web, avec ou sans fureteur ?

Capybara
Capybara is a tool that Ruby on Rails developers mostly use for
testing their web applications. This tool, however, can be also
used to automate boring/repeating/long running tasks on the
web or scraping information from web sites that were not kind
enough to provide API.

Capybara est un outil Ruby pour interagir avec des
sites Web, avec ou sans fureteur ?

Capybara
Capybara is a tool that Ruby on Rails developers mostly use for
testing their web applications. This tool, however, can be also
used to automate boring/repeating/long running tasks on the
web or scraping information from web sites that were not kind
enough to provide API.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara est un outil Ruby pour interagir
avec des sites Web, avec ou sans fureteur ?•

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Navigation

visit(’/projects’)
visit(’http://oto.uqam.ca’)

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Navigation

visit(’/projects’)
visit(’http://oto.uqam.ca’)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara définit un DSL pour décrire des
interactions avec des sites Web•

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Clics

click_link(’id-of-link’)
click_link(’Link Text’)

click_button(’Save’)

click_on(’Link Text’)
click_on(’Button Value’)

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Clics

click_link(’id-of-link’)
click_link(’Link Text’)

click_button(’Save’)

click_on(’Link Text’)
click_on(’Button Value’)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara définit un DSL pour décrire des
interactions avec des sites Web•

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Formulaires

fill_in(’First Name’, :with => ’John’)
fill_in(’Password’, :with => ’Seekrit’)
fill_in(’Description’, :with => ’Really Long Text...’)

choose(’A Radio Button’)

check(’A Checkbox’)
uncheck(’A Checkbox’)

attach_file(’Image’, ’/path/to/image.jpg’)

select(’Option’, :from => ’Select Box’)

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Formulaires

fill_in(’First Name’, :with => ’John’)
fill_in(’Password’, :with => ’Seekrit’)
fill_in(’Description’, :with => ’Really Long Text...’)

choose(’A Radio Button’)

check(’A Checkbox’)
uncheck(’A Checkbox’)

attach_file(’Image’, ’/path/to/image.jpg’)

select(’Option’, :from => ’Select Box’)20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara définit un DSL pour décrire des
interactions avec des sites Web•

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Requêtes

page.has_selector?(’table tr’)
page.has_selector?(:xpath, ’//table/tr’)

page.has_xpath?(’//table/tr’)
page.has_css?(’table tr.foo’)

page.has_content?(’foo’)

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Requêtes

page.has_selector?(’table tr’)
page.has_selector?(:xpath, ’//table/tr’)

page.has_xpath?(’//table/tr’)
page.has_css?(’table tr.foo’)

page.has_content?(’foo’)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara définit un DSL pour décrire des
interactions avec des sites Web•

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Recherches

find_field(’First Name’).value

find_link(’Hello’, :visible => :all).visible?

find_button(’Send’).click

find(:xpath, ’//table/tr’).click
find(’#overlay’).find(’h1’).click

Capybara définit un DSL pour décrire des
interactions avec des sites Web

Recherches

find_field(’First Name’).value

find_link(’Hello’, :visible => :all).visible?

find_button(’Send’).click

find(:xpath, ’//table/tr’).click
find(’#overlay’).find(’h1’).click

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Capybara définit un DSL pour décrire des
interactions avec des sites Web•

Divers drivers peuvent être utilisés, avec un «vrai»
fureteur ou avec un fureteur «sans tête»

Driver Rack
Driver par défaut de Capybara
Interagit avec un serveur sans GUI (Headless browser)
Ne peut pas exécuter de JavaScript

Driver Selenium
Peut contrôler un vrai fureteur : Voir la vidéo plus loin
Ne peut pas exécuter de JavaScript

Example
Les tests unitaires de l’application Web pour l’outil de correction
Oto sont décrits avec le DSL de Capybara, et exécutés avec le
driver Selenium pour Firefox.

Divers drivers peuvent être utilisés, avec un «vrai»
fureteur ou avec un fureteur «sans tête»

Driver Rack
Driver par défaut de Capybara
Interagit avec un serveur sans GUI (Headless browser)
Ne peut pas exécuter de JavaScript

Driver Selenium
Peut contrôler un vrai fureteur : Voir la vidéo plus loin
Ne peut pas exécuter de JavaScript

Example
Les tests unitaires de l’application Web pour l’outil de correction
Oto sont décrits avec le DSL de Capybara, et exécutés avec le
driver Selenium pour Firefox.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Divers drivers peuvent être utilisés, avec un
«vrai» fureteur ou avec un fureteur «sans
tête»

•

Autre exemple d’utilisation de Capybara : Une
application pour gérer des prêts de livres

Voir plus loin !

Autre exemple d’utilisation de Capybara : Une
application pour gérer des prêts de livres

Voir plus loin !

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Autre exemple d’utilisation de Capybara :
Une application pour gérer des prêts de
livres

•

Selenium WebDriver

Selenium WebDriver

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

•

Des DSL semblables sont disponibles pour d’autres
outils et d’autres langages
Exemple : WebDriver de Selenium pour Java

WebDriver
WebDriver driver

= new FirefoxDriver();

driver.get("http://localhost.8080/#/welcome");

driver.findElement(By.name("email"))
.sendKeys("jane.smith@acme.com");

driver.findElement(By.name("password"))
.sendKeys("s3cr3t");

driver.findElement(By.id("signin"))
.click();

WebElement welcomeMsg
= driver.findElement(By.id("welcome-message"));

assertThat(welcomeMsg.text()).isEqualTo("Welcome Jane");

Source: «BDD in action», Smart
Des DSL semblables sont disponibles pour d’autres
outils et d’autres langages
Exemple : WebDriver de Selenium pour Java

WebDriver
WebDriver driver

= new FirefoxDriver();

driver.get("http://localhost.8080/#/welcome");

driver.findElement(By.name("email"))
.sendKeys("jane.smith@acme.com");

driver.findElement(By.name("password"))
.sendKeys("s3cr3t");

driver.findElement(By.id("signin"))
.click();

WebElement welcomeMsg
= driver.findElement(By.id("welcome-message"));

assertThat(welcomeMsg.text()).isEqualTo("Welcome Jane");

Source: «BDD in action», Smart

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Langages de description d’interactions avec des
sites Web

Des DSL semblables sont disponibles pour
d’autres outils et d’autres langages•

5.3 Outils de capture et de
réexécution

5.3 Outils de capture et de
réexécution

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils de capture et de réexécution

•

Question : Comment peut-on interagir, dans un
programme de tests, avec des sites Web ?

Réponse = En «enregistrant» des interactions
faites de façon manuelle, puis en «rejouant» les
actions enregistrées

Question : Comment peut-on interagir, dans un
programme de tests, avec des sites Web ?

Réponse = En «enregistrant» des interactions
faites de façon manuelle, puis en «rejouant» les
actions enregistrées

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils de capture et de réexécution

Question : Comment peut-on interagir, dans
un programme de tests, avec des sites
Web ?•

Certains outils permettent de capturer les interactions
avec un fureteur, puis de les reproduire

Certains outils permettent de capturer les interactions
avec un fureteur, puis de les reproduire

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils de capture et de réexécution

Certains outils permettent de capturer les
interactions avec un fureteur, puis de les
reproduire•

Selenium

Selenium

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils de capture et de réexécution

•

Source: http://www.seleniumhq.org/

Source: http://www.seleniumhq.org/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils de capture et de réexécution

•

http://www.seleniumhq.org/
http://www.seleniumhq.org/

Selenium est un outil pour interagir avec des sites
Web, dans divers langages et environnements

[It] provides a record/playback tool for authoring tests
without learning a test scripting language (Selenium IDE).

[It] provides a test domain-specific language (Selenese) to
write tests in a number of popular programming languages,
including Java, C#, Groovy, Perl, PHP, Python and Ruby.

The tests can then be run against most modern web
browsers.

[It] deploys on Windows, Linux, and Macintosh platforms.

Source: https://en.wikipedia.org/wiki/Selenium_(software)

Selenium est un outil pour interagir avec des sites
Web, dans divers langages et environnements

[It] provides a record/playback tool for authoring tests
without learning a test scripting language (Selenium IDE).

[It] provides a test domain-specific language (Selenese) to
write tests in a number of popular programming languages,
including Java, C#, Groovy, Perl, PHP, Python and Ruby.

The tests can then be run against most modern web
browsers.

[It] deploys on Windows, Linux, and Macintosh platforms.

Source: https://en.wikipedia.org/wiki/Selenium_(software)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils de capture et de réexécution

Selenium est un outil pour interagir avec des
sites Web, dans divers langages et
environnements• It is open-source software, released under the Apache 2.0 license,

and can be downloaded and used without charge.

https://en.wikipedia.org/wiki/Selenium_(software)
https://en.wikipedia.org/wiki/Selenium_(software)

5.4 Outils en ligne de
commandes

5.4 Outils en ligne de
commandes

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

•

Question : Comment peut-on interagir, dans un
programme de tests, avec des sites Web ?

Réponse = En exécutant, via un script, des
commandes au niveau de la «ligne de
commandes»

Question : Comment peut-on interagir, dans un
programme de tests, avec des sites Web ?

Réponse = En exécutant, via un script, des
commandes au niveau de la «ligne de
commandes»

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

Question : Comment peut-on interagir, dans
un programme de tests, avec des sites
Web ?•

curl

curl

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

•

Source: https://curl.haxx.se/

Source: https://curl.haxx.se/

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

•

https://curl.haxx.se/
https://curl.haxx.se/

curl permet de faire des accès Web en mode «ligne
de commandes»

curl is a tool to transfer data from or to a server, using
one of the supported protocols (DICT, FILE, FTP,
FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP,
LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP,
SMTP, SMTPS, TELNET and TFTP).

The command is designed to work without user
interaction.

Source: man curl

⇒ Parfait pour utilisation dans des scripts de tests

curl permet de faire des accès Web en mode «ligne
de commandes»

curl is a tool to transfer data from or to a server, using
one of the supported protocols (DICT, FILE, FTP,
FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP,
LDAPS, POP3, POP3S, RTMP, RTSP, SCP, SFTP,
SMTP, SMTPS, TELNET and TFTP).

The command is designed to work without user
interaction.

Source: man curl

⇒ Parfait pour utilisation dans des scripts de tests

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

curl permet de faire des accès Web en
mode «ligne de commandes»

•

L’opération par défaut de curl est GET

Opération GET
$ curl http://www.labunix.uqam.ca/~tremblay/MGL7460/
<HTML>
<HEAD>
<TITLE>Réalisation et maintenance de logiciels</TITLE>
</HEAD>

<FRAMESET ROWS="10%,*">
<FRAME NAME="Banniere" src="haut.html">

<FRAMESET COLS="20%,*">
<FRAME NAME="Menu" src="menu.html" TARGET="Principal">
<FRAME NAME="Principal" src="accueil.html">
</FRAMESET>

</FRAMESET>

</HTML>

L’opération par défaut de curl est GET

Opération GET
$ curl http://www.labunix.uqam.ca/~tremblay/MGL7460/
<HTML>
<HEAD>
<TITLE>Réalisation et maintenance de logiciels</TITLE>
</HEAD>

<FRAMESET ROWS="10%,*">
<FRAME NAME="Banniere" src="haut.html">

<FRAMESET COLS="20%,*">
<FRAME NAME="Menu" src="menu.html" TARGET="Principal">
<FRAME NAME="Principal" src="accueil.html">
</FRAMESET>

</FRAMESET>

</HTML>

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

L’opération par défaut de curl est GET

•

Mais toute autre opération HTTP peut aussi être
exécutée

Opération POST pour un formulaire avec champs à remplir
$ curl --cookie\

-F "champ1=..."\
-F "champ2=..."\
-F "submit=..."\
http://www.labunix.uqam.ca/...

Mais toute autre opération HTTP peut aussi être
exécutée

Opération POST pour un formulaire avec champs à remplir
$ curl --cookie\

-F "champ1=..."\
-F "champ2=..."\
-F "submit=..."\
http://www.labunix.uqam.ca/...

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

Mais toute autre opération HTTP peut aussi
être exécutée

•

Quand un tel outil peut-il
être utile ?

Quand un tel outil peut-il
être utile ?

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

Exemple : Utilisation de curl pour l’application Web
d’Oto — tests de stress et de concurrence
Script de haut niveau

Pendant plusieurs rondes, on lance plusieurs utilisateurs (10)
qui vont accéder l’application «en même temps»
(concurrence) :

Extraits du script run-tests-curl

for ((i=1; i<=$NB_RONDES; i++)); do
for ((j=0; j<$NB_TESTEURS; j++)); do

verifier-puis-rendre-tp testeur$j ... &
done
wait
...

done

Exemple : Utilisation de curl pour l’application Web
d’Oto — tests de stress et de concurrence
Script de haut niveau

Pendant plusieurs rondes, on lance plusieurs utilisateurs (10)
qui vont accéder l’application «en même temps»
(concurrence) :

Extraits du script run-tests-curl

for ((i=1; i<=$NB_RONDES; i++)); do
for ((j=0; j<$NB_TESTEURS; j++)); do
verifier-puis-rendre-tp testeur$j ... &

done
wait
...

done20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

Exemple : Utilisation de curl pour
l’application Web d’Oto — tests de stress et
de concurrence• Raisons de ces tests : L’application Web semblait bien fonctionner,

sauf parfois lors de la remise des laboratoires, donc lorsqu’il y avait
une période de deux heures allouées pour faire un travail et que les
remises se faisaient alors «presque toutes en même temps» à la fin
de la période de remise.
• Je soupçonnais évidemment une «situation de compétition» (race
condition), mais je n’arrivais pas à voir où et, surtout, je n’arrivais pas,
avec des tests manuels ou avec des tests Capybara, à reproduire le
problème. Par contre, l’utilisation de ces scripts curl m’a permis de
réussir à reproduire le bogue, ce qui m’a permis ensuite de mieux
cerner où était le problème puis de le régler — ajout de 3 lignes de
code, en utilisant un verrou pour protéger un accès à une ressource
partagée.

Exemple : Utilisation de curl pour l’application Web
d’Oto — tests de stress et de concurrence
Les appels curl dans verifier-puis-rendre-tp

Extraits du script verifier-puis-rendre-tp
SERVEUR="https://oto.labunix.uqam.ca/application-web"

On se connecte
curl --cookie-jar $COOKIE\

--data "utilisateur=$ETUDIANT"\
--data-urlencode "motdepasse=$MOT_DE_PASSE"\
--data "groupe=etudiant"\
--data "submit=Connexion"\
$SERVEUR/connexion

On verifie le TP.
curl --cookie $COOKIE\

-F "evaluation=$EVALUATION"\
-F "enseignant=$ENSEIGNANT"\
-F "submit=Vérifier"\
-F "fichierverification=@$PROGRAMME"\
$SERVEUR/etudiant/verifier-tp

Exemple : Utilisation de curl pour l’application Web
d’Oto — tests de stress et de concurrence
Les appels curl dans verifier-puis-rendre-tp

Extraits du script verifier-puis-rendre-tp
SERVEUR="https://oto.labunix.uqam.ca/application-web"

On se connecte
curl --cookie-jar $COOKIE\

--data "utilisateur=$ETUDIANT"\
--data-urlencode "motdepasse=$MOT_DE_PASSE"\
--data "groupe=etudiant"\
--data "submit=Connexion"\
$SERVEUR/connexion

On verifie le TP.
curl --cookie $COOKIE\

-F "evaluation=$EVALUATION"\
-F "enseignant=$ENSEIGNANT"\
-F "submit=Vérifier"\
-F "fichierverification=@$PROGRAMME"\
$SERVEUR/etudiant/verifier-tp

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

Exemple : Utilisation de curl pour
l’application Web d’Oto — tests de stress et
de concurrence•

Exemple : Utilisation de curl pour l’application Web
d’Oto — tests de stress et de concurrence
Les appels curl dans verifier-puis-rendre-tp

Extraits du script verifier-puis-rendre-tp (suite)
On rend le TP
curl --cookie $COOKIE\

-F "boite=$BOITE"\
-F "enseignant=$ENSEIGNANT"\
-F "submit=Rendre"\
-F "equipe=$EQUIPE"\
-F "fichier1=@$PROGRAMME"\
$SERVEUR/etudiant/rendre-tp

On se deconnecte
curl --cookie $COOKIE\

$SERVEUR/deconnexion

Exemple : Utilisation de curl pour l’application Web
d’Oto — tests de stress et de concurrence
Les appels curl dans verifier-puis-rendre-tp

Extraits du script verifier-puis-rendre-tp (suite)
On rend le TP
curl --cookie $COOKIE\

-F "boite=$BOITE"\
-F "enseignant=$ENSEIGNANT"\
-F "submit=Rendre"\
-F "equipe=$EQUIPE"\
-F "fichier1=@$PROGRAMME"\
$SERVEUR/etudiant/rendre-tp

On se deconnecte
curl --cookie $COOKIE\

$SERVEUR/deconnexion

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
Outils en ligne de commandes

Exemple : Utilisation de curl pour
l’application Web d’Oto — tests de stress et
de concurrence•

5.5 How much web testing do
you really need ?

5.5 How much web testing do
you really need ?

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
How much web testing do you really need ?

•

Extraits de «BDD in Action»

Web tests clearly have their uses. But you rarely need
to test every aspect of a system using web tests, and
doing so is generally not a good idea. In fact, in a
typical BDD project, a significant proportion of
automated acceptance tests will be implemented as
non-web tests.
[. . .]
Many automated acceptance criteria, particularly
those related to business rules or calculations, are
more effectively done using the application code
rather than via the user-interface, as non-web tests
can test specific business rules more quickly and more
precisely then an end-to-end web test.

Extraits de «BDD in Action»

Web tests clearly have their uses. But you rarely need
to test every aspect of a system using web tests, and
doing so is generally not a good idea. In fact, in a
typical BDD project, a significant proportion of
automated acceptance tests will be implemented as
non-web tests.
[. . .]
Many automated acceptance criteria, particularly
those related to business rules or calculations, are
more effectively done using the application code
rather than via the user-interface, as non-web tests
can test specific business rules more quickly and more
precisely then an end-to-end web test.20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
How much web testing do you really need ?

Extraits de «BDD in Action»

•

Extraits de «BDD in Action» (suite)

You only need a web test for two things :
Illustrating the user’s journey through the system
Illustrating how a business rule is represented in
the user interface

Web tests [. . .] don’t need to show every possible path
through the system—just the more significant ones.
More exhaustive testing can be left to faster-running
unit tests.
[. . .]
A good rule of thumb is to ask yourself whether you’re
illustrating how the user interacts with the application
or underlying business logic that’s independent of the
user interface.

Extraits de «BDD in Action» (suite)

You only need a web test for two things :
Illustrating the user’s journey through the system
Illustrating how a business rule is represented in
the user interface

Web tests [. . .] don’t need to show every possible path
through the system—just the more significant ones.
More exhaustive testing can be left to faster-running
unit tests.
[. . .]
A good rule of thumb is to ask yourself whether you’re
illustrating how the user interacts with the application
or underlying business logic that’s independent of the
user interface.20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

D’autres outils pour les tests d’acceptation
How much web testing do you really need ?

Extraits de «BDD in Action» (suite)

•

6. Un exemple plus détaillé avec
cucumber : biblio

Le logiciel biblio : Première version C (≈ 1998)

biblio

= Petit logiciel pour prendre en note les livres prêtés et
rapportés, rappeler un livre, etc.

Première version développée en C (≈ fin des années 90)
(projet d’étudiants du certificat en informatique)
Utilisation en mode «ligne de commandes»

/ Programme monolithique
/ Pas DRY (plein de code dupliqué)
/ Aucun test

Le logiciel biblio : Première version C (≈ 1998)

biblio

= Petit logiciel pour prendre en note les livres prêtés et
rapportés, rappeler un livre, etc.

Première version développée en C (≈ fin des années 90)
(projet d’étudiants du certificat en informatique)
Utilisation en mode «ligne de commandes»

/ Programme monolithique
/ Pas DRY (plein de code dupliqué)
/ Aucun test20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Le logiciel biblio : Première version C (≈
1998)

•

Le logiciel biblio : Deuxième version C (≈ 2005)

biblio

= Petit logiciel pour prendre en note les livres prêtés et
rapportés, rappeler un livre, etc.

Deuxième version développée en C
Utilisation en mode «ligne de commandes»

, Programme modulaire
, DRY (code propre et bien structuré)
, Nombreux tests unitaires

Le logiciel biblio : Deuxième version C (≈ 2005)

biblio

= Petit logiciel pour prendre en note les livres prêtés et
rapportés, rappeler un livre, etc.

Deuxième version développée en C
Utilisation en mode «ligne de commandes»

, Programme modulaire
, DRY (code propre et bien structuré)
, Nombreux tests unitaires20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Le logiciel biblio : Deuxième version C (≈
2005)

•

Le logiciel biblio : Version Ruby (2014)

biblio

Nouvelle version développée en Ruby
Avec tests

Tests unitaires (rspec)
Tests d’acceptation (cucumber)

Deux modes d’utilisation
Mode ligne de commande (gli)
Mode Web (Ruby on Rails)

Le logiciel biblio : Version Ruby (2014)

biblio

Nouvelle version développée en Ruby
Avec tests

Tests unitaires (rspec)
Tests d’acceptation (cucumber)

Deux modes d’utilisation
Mode ligne de commande (gli)
Mode Web (Ruby on Rails)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Le logiciel biblio : Version Ruby (2014)

•

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Architecture de biblio

• Voici donc ce que ça donne dans le contexte de mon application
biblio pour la gestion de prêts de livres.

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Architecture de biblio

• Quand on veut changer d’interface personne-machine pour une
application Web, il suffit essentiellement de définir un nouveau
composant, qui va utiliser les autres composants déjà définis.

6.1 Spécification de biblio

6.1 Spécification de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

•

biblio — version ligne de commandes

$ biblio emprunter "Guy T." tremblay.guy@uqam.ca\
"The RSpec Book" "Chelimsky et al."

$ biblio emprunteur "The RSpec Book"
Guy T.

$ biblio rappeler_livre "The RSpec Book"
Un courriel a ete transmis a tremblay.guy@uqam.ca.

$ biblio rapporter "The RSpec Book"

$ biblio emprunteur "The RSpec Book"
error: Aucun livre emprunte avec le titre

’The RSpec Book’.

biblio — version ligne de commandes

$ biblio emprunter "Guy T." tremblay.guy@uqam.ca\
"The RSpec Book" "Chelimsky et al."

$ biblio emprunteur "The RSpec Book"
Guy T.

$ biblio rappeler_livre "The RSpec Book"
Un courriel a ete transmis a tremblay.guy@uqam.ca.

$ biblio rapporter "The RSpec Book"

$ biblio emprunteur "The RSpec Book"
error: Aucun livre emprunte avec le titre

’The RSpec Book’.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

biblio — version ligne de commandes
• Un exemple qui illustre ces notions, plus particulièrement dans le
contexte TDD/BDD
• Pourquoi ligne de commandes ? Parce que c’est ma façon
habituelle de travailler. Parce que c’est plus simple à mettre en
oeuvre et à expliquer dans un exemple. Parce que c’est donc la
première mise en oeuvre que j’ai développée.
• Parce que j’ai aussi déjà une version fonctionnelle en C, développée
il y a quelques années par un groupe d’étudiants et qui a ensuite été
utilisé comme «corpus de maintenance» dans le cours INF3135.
• Ce qui m’intéresse aujourd’hui, c’est de présenter l’allure générale
de la solution, des scénarios et de certains tests, plus spécifiquement
pour rappeler_livre.

biblio — version Web

biblio — version Web

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

biblio — version Web
• Mais, plus récemment, j’ai aussi mis en oeuvre une version, simple,
avec une interface Web réalisée avec Ruby on Rails.

Spécification cucumber : emprunter.feature
(modes ligne de commandes et Web)

Fonctionnalité: Emprunt de livres
En tant qu’usager
Je veux pouvoir indiquer l’emprunt de livres
Afin de savoir à qui je les ai prêtés

Scénario: J’emprunte plusieurs livres
Soit "./.biblio.txt" existe et est vide

Quand "nom1" ["@"] emprunte "titre1" ["auteurs1"]
Et "nom2" ["@"] emprunte "titre2" ["auteurs2"]

Alors il y a 2 emprunts
Et l’emprunteur de "titre1" est "nom1"
Et l’emprunteur de "titre2" est "nom2"

Spécification cucumber : emprunter.feature
(modes ligne de commandes et Web)

Fonctionnalité: Emprunt de livres
En tant qu’usager
Je veux pouvoir indiquer l’emprunt de livres
Afin de savoir à qui je les ai prêtés

Scénario: J’emprunte plusieurs livres
Soit "./.biblio.txt" existe et est vide

Quand "nom1" ["@"] emprunte "titre1" ["auteurs1"]
Et "nom2" ["@"] emprunte "titre2" ["auteurs2"]

Alors il y a 2 emprunts
Et l’emprunteur de "titre1" est "nom1"
Et l’emprunteur de "titre2" est "nom2"20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Spécification cucumber :
emprunter.feature
(modes ligne de commandes et Web)

•

Spécification cucumber : rapporter.feature
(modes ligne de commandes et Web)

Fonctionnalité: Retour de livres
En tant qu’usager
Je veux pouvoir indiquer les livres qui me sont rapportés

Scénario: J’emprunte plusieurs livres et j’en rapporte un
Soit "./.biblio.txt" existe et est vide

Quand "nom1" ["@"] emprunte "titre1" ["auteurs1"]
Et "nom2" ["@"] emprunte "titre2" ["auteurs2"]

Quand on rapporte "titre2"
Et on demande l’emprunteur de "titre2"

Alors le livre n’est pas emprunté
Et il y a maintenant 1 emprunts
Et l’emprunteur de "titre1" est "nom1"

Spécification cucumber : rapporter.feature
(modes ligne de commandes et Web)

Fonctionnalité: Retour de livres
En tant qu’usager
Je veux pouvoir indiquer les livres qui me sont rapportés

Scénario: J’emprunte plusieurs livres et j’en rapporte un
Soit "./.biblio.txt" existe et est vide

Quand "nom1" ["@"] emprunte "titre1" ["auteurs1"]
Et "nom2" ["@"] emprunte "titre2" ["auteurs2"]

Quand on rapporte "titre2"
Et on demande l’emprunteur de "titre2"

Alors le livre n’est pas emprunté
Et il y a maintenant 1 emprunts
Et l’emprunteur de "titre1" est "nom1"

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Spécification cucumber :
rapporter.feature
(modes ligne de commandes et Web)

•

Spécification cucumber : rappeler.feature
(mode ligne de commandes seulement)

Fonctionnalité: Rappel d’un livre prêté
En tant qu’usager
Je veux pouvoir facilement contacter les personnes

qui ont emprunté certains de mes livres
Afin que ces personnes me les rapportent

Scénario: Je demande le rappel d’un livre spécifique
Soit ".biblio.txt" existe et est vide
Et "Tremblay" ["tremblay.guy.phd@gmail.com"]

emprunte "Titre1" ["Auteurs1"]

Quand on rappelle "Titre1"
Alors the output should contain:
"""
Un courriel a ete transmis a tremblay.guy.phd@gmail.com
"""
Et the exit status should be 0

Spécification cucumber : rappeler.feature
(mode ligne de commandes seulement)

Fonctionnalité: Rappel d’un livre prêté
En tant qu’usager
Je veux pouvoir facilement contacter les personnes

qui ont emprunté certains de mes livres
Afin que ces personnes me les rapportent

Scénario: Je demande le rappel d’un livre spécifique
Soit ".biblio.txt" existe et est vide
Et "Tremblay" ["tremblay.guy.phd@gmail.com"]

emprunte "Titre1" ["Auteurs1"]

Quand on rappelle "Titre1"
Alors the output should contain:
"""
Un courriel a ete transmis a tremblay.guy.phd@gmail.com
"""
Et the exit status should be 0

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Spécification cucumber :
rappeler.feature
(mode ligne de commandes seulement)

•

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Architecture de biblio
• Voici donc ce que ça donne dans le contexte de mon application
biblio pour la gestion de prêts de livres.

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Architecture de biblio
• Quand on veut changer d’interface personne-machine pour une
application Web, il suffit essentiellement de définir un nouveau
composant, qui va utiliser les autres composants déjà définis.

Exécution des scénarios avec Cucumber :
Version ligne de commande

Exécution des scénarios avec Cucumber :
Version ligne de commande

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Exécution des scénarios avec Cucumber :
Version ligne de commande•

Exécution des scénarios avec Cucumber :
Version Web

Exécution des scénarios avec Cucumber :
Version Web

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Exécution des scénarios avec Cucumber :
Version Web•

Étapes cucumber/aruba, version ligne de
commandes : biblio_steps.rb

Soit(/^"(.*)" existe et est vide$/) do |fich|
step %{I successfully run

‘bin/biblio --depot=#{fich} init --detruire‘}
end

Quand(/^"(.*?)" \["(.*?)"\] emprunte "(.*?)" \["(.*?)"\]$/)
do |nom, courriel, titre, auteurs|

step %{I run ‘bin/biblio emprunter\
#{nom} #{courriel} #{titre} #{auteurs}‘}

end

Étapes cucumber/aruba, version ligne de
commandes : biblio_steps.rb

Soit(/^"(.*)" existe et est vide$/) do |fich|
step %{I successfully run

‘bin/biblio --depot=#{fich} init --detruire‘}
end

Quand(/^"(.*?)" \["(.*?)"\] emprunte "(.*?)" \["(.*?)"\]$/)
do |nom, courriel, titre, auteurs|

step %{I run ‘bin/biblio emprunter\
#{nom} #{courriel} #{titre} #{auteurs}‘}

end20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Étapes cucumber/aruba, version ligne de
commandes : biblio_steps.rb• Le gem aruba définit un ensemble d’étape gherkin prédéfinies

qui permettent de définir des conditions, événements, résultats au
niveau de l’exécution de commandes au niveau du shell.

Étapes cucumber/rails, version Web :
biblio_steps.rb

Soit(/^"(.*)" existe et est vide$/) do |fich|
visit "/biblio/vider"

end

Quand(/^"(.*?)" \["(.*?)"\] emprunte "(.*?)" \["(.*?)"\]$/)
do |nom, courriel, titre, auteurs|

visit "/biblio/emprunter"
fill_in "Titre", :with => titre
fill_in "Auteurs", :with => auteurs
fill_in "Nom", :with => nom
fill_in "Courriel", :with => courriel
click_button "Emprunter"

end

Étapes cucumber/rails, version Web :
biblio_steps.rb

Soit(/^"(.*)" existe et est vide$/) do |fich|
visit "/biblio/vider"

end

Quand(/^"(.*?)" \["(.*?)"\] emprunte "(.*?)" \["(.*?)"\]$/)
do |nom, courriel, titre, auteurs|

visit "/biblio/emprunter"
fill_in "Titre", :with => titre
fill_in "Auteurs", :with => auteurs
fill_in "Nom", :with => nom
fill_in "Courriel", :with => courriel
click_button "Emprunter"

end20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Étapes cucumber/rails, version Web :
biblio_steps.rb• Mais ces étapes, si elles sont définies à un niveau d’abstractions

dans les scénarios, peuvent aussi être mises en oeuvre à l’aide
d’opérations sur un fureteur Web.
• Donc, la mise en oeuvre des étapes est spécifique à mon interface
personne–machine.

Étapes cucumber/aruba, version ligne de
commandes : biblio_steps.rb

Alors(/^l’emprunteur de "(.*?)" est "(.*?)"$/) do |titre, nom|
step %{I successfully run ‘bin/biblio emprunteur #{titre}‘}
step %{the stdout should contain "#{nom}"}

end

Étapes cucumber/aruba, version ligne de
commandes : biblio_steps.rb

Alors(/^l’emprunteur de "(.*?)" est "(.*?)"$/) do |titre, nom|
step %{I successfully run ‘bin/biblio emprunteur #{titre}‘}
step %{the stdout should contain "#{nom}"}

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Étapes cucumber/aruba, version ligne de
commandes : biblio_steps.rb•

Étapes cucumber/rails, version Web :
biblio_steps.rb (suite)

Alors(/^l’emprunteur de "(.*?)" est "(.*?)"$/) do |titre, nom|
visit "/biblio/emprunteur"
fill_in "Titre recherché", :with => titre
click_button "Trouver emprunteur"
expect(page).to have_content(nom)

end

Étapes cucumber/rails, version Web :
biblio_steps.rb (suite)

Alors(/^l’emprunteur de "(.*?)" est "(.*?)"$/) do |titre, nom|
visit "/biblio/emprunteur"
fill_in "Titre recherché", :with => titre
click_button "Trouver emprunteur"
expect(page).to have_content(nom)

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Spécification de biblio

Étapes cucumber/rails, version Web :
biblio_steps.rb (suite)• Donc :

• On a des scénarios qui sont abstraits

• On a des étapes qui sont spécifiques/particulières à chacune
des interfaces personne–machine.

• On va voir que ces étapes, liées à chaque IPM, sont mises en
oeuvre par des contrôleurs qui vont utiliser la même couche de
modèle.

6.2 Mises en oeuvre de biblio

6.2 Mises en oeuvre de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio

•

Architecture en couches :
three tier architecture

Architecture en couches :
three tier architecture

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Architecture en couches :
three tier architecture• Tout le monde connait cette architecture en couche, souvent

présentée pour illustrer une bonne architecture d’un système
fonctionnant avec diverses interfaces persone-machine.

Architecture en couches :
four tier architecture

Source: http://www.infoq.com/fr/minibooks/domain-driven-design-quickly

Architecture en couches :
four tier architecture

Source: http://www.infoq.com/fr/minibooks/domain-driven-design-quickly

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Architecture en couches :
four tier architecture• Une autre variante d’une architecture multi-couche est celle-ci, avec

4 couches, dont une dédiée à la représentation du domaine.

http://www.infoq.com/fr/minibooks/domain-driven-design-quickly
http://www.infoq.com/fr/minibooks/domain-driven-design-quickly

Architecture en couches :
hexagonal (ports and adapters) architecture

Source: Cockburn, http://alistair.cockburn.us/Hexagonal+architecture

Introduite par A. Cockburn, popularisée par «DDD»

Avantage = Tester le modèle (l’application) indépendamment
des «services» externes.

Architecture en couches :
hexagonal (ports and adapters) architecture

Source: Cockburn, http://alistair.cockburn.us/Hexagonal+architecture

Introduite par A. Cockburn, popularisée par «DDD»

Avantage = Tester le modèle (l’application) indépendamment
des «services» externes.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Architecture en couches :
hexagonal (ports and adapters) architecture• C’est une forme d’architecture, plus générale que l’approche à

quatre couches, qu’on retrouve dans les références plus récentes qui
traitent de DDD, par exemple, le bouquin de Vernon, «Implementing
Domain Driven Design».
• Patron introduit par Alistair Cockburn, circa 2004, initialement sous
le nom de «Hexagonal architecture», puis sous le nom de «Ports and
adapters architecture».
• Dixit Cockburn : «Create your application to work without either a UI
or a database so you can run automated regression-tests against the
application, work when the database becomes unavailable, and link
applications together without any user involvement.»
http://alistair.cockburn.us/Hexagonal+architecture

• «Advantages of this architecture : The core logic can be tested
independent of outside services. It is easy to replace services by
other ones that are more fit in view of changing requirements.»
http://www.dossier-andreas.net/software_

architecture/ports_and_adapters.html

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
http://www.dossier-andreas.net/software_architecture/ports_and_adapters.html
http://www.dossier-andreas.net/software_architecture/ports_and_adapters.html

Architecture en couches :
hexagonal (ports and adapters) architecture (bis)

Architecture en couches :
hexagonal (ports and adapters) architecture (bis)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Architecture en couches :
hexagonal (ports and adapters) architecture
(bis)

•

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Architecture de biblio

• Voici donc ce que ça donne dans le contexte de mon application
biblio pour la gestion de prêts de livres.

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Architecture de biblio

• Quand on veut changer d’interface personne-machine pour une
application Web, il suffit essentiellement de définir un nouveau
composant, qui va utiliser les autres composants déjà définis.

Mise en oeuvre de biblio : version ligne de
commandes

Utilise gli = Gem Ruby (DSL) pour
spécifier des «suites de commandes»

gli = git like interface command line
parser

Mise en oeuvre de biblio : version ligne de
commandes

Utilise gli = Gem Ruby (DSL) pour
spécifier des «suites de commandes»

gli = git like interface command line
parser

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Mise en oeuvre de biblio : version ligne de
commandes•

Mise en oeuvre avec gli : bin/biblio

#!/usr/bin/env ruby

...

include GLI::App

program_desc ’Programme pour la gestion de prets de livres’

Option globale
desc ’Fichier contenant le depot’
arg_name "depot"
default_value ’./.biblio.txt’
flag [:depot]

Mise en oeuvre avec gli : bin/biblio

#!/usr/bin/env ruby

...

include GLI::App

program_desc ’Programme pour la gestion de prets de livres’

Option globale
desc ’Fichier contenant le depot’
arg_name "depot"
default_value ’./.biblio.txt’
flag [:depot]20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Mise en oeuvre avec gli : bin/biblio

• Présentation descendante
• Le programme principal, la racine de l’exécutable, est bin/biblio
• Cet exécutable est un script Ruby, analysé et exécuté par
l’interpréteur Ruby grâce au shebang = «# !»
• En termes d’architecture hexagonale, le fichier bin/biblio
représente le «primary driver», associé aux interactions avec l’usager

Mise en oeuvre avec gli : bin/biblio

desc "Indique l’emprunt d’un livre (ou [..] stdin)"
arg_name "nom courriel titre auteurs"
command :emprunter do |c|

c.action do |global_options,options,args|
verifier_nb_args args, 4

avec_biblio(global_options[:depot]) do |bib|
bib.emprunter(*args)

end
end

end

Mise en oeuvre avec gli : bin/biblio

desc "Indique l’emprunt d’un livre (ou [..] stdin)"
arg_name "nom courriel titre auteurs"
command :emprunter do |c|

c.action do |global_options,options,args|
verifier_nb_args args, 4

avec_biblio(global_options[:depot]) do |bib|
bib.emprunter(*args)

end
end

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Mise en oeuvre avec gli : bin/biblio

• Chaque commande de la suite est définie par un appel à command,
suivi du nom de la commande à définir, suivi d’un bloc qui spécifie les
détails de la commande — notamment, le plus important, l’action à
exécuter
• Ces différentes commandes représentant, dans la terminologie
MVC, les différents controleurs, qui font appel aux opérations du
modèle = du domaine.

Mise en oeuvre avec gli : bin/biblio

desc "Indique le retour d’un livre"
arg_name ’titre’
command :rapporter do |c|

c.action do |global_options,options,args|
verifier_nb_args args, 1
titre = args[0]

avec_biblio(global_options[:depot]) do |bib|
bib.rapporter(titre)

end
end

end

...

exit run(ARGV)

Mise en oeuvre avec gli : bin/biblio

desc "Indique le retour d’un livre"
arg_name ’titre’
command :rapporter do |c|

c.action do |global_options,options,args|
verifier_nb_args args, 1
titre = args[0]

avec_biblio(global_options[:depot]) do |bib|
bib.rapporter(titre)

end
end

end

...

exit run(ARGV)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Mise en oeuvre avec gli : bin/biblio

• Une fois les commandes spécifiées, il suffit ensuite simplement
d’appeler la méthode run, définie dans GLI::App.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio

• Par défaut, une commande help est automatiquement générée,
produisant la documentation illustrée dans la figure ci-haut.

Mise en oeuvre de biblio : version Web

Utilise rails = Framework Ruby pour
développer des applications Web

Rails utilise une approche de «convention
plutôt que configuration»

Mise en oeuvre de biblio : version Web

Utilise rails = Framework Ruby pour
développer des applications Web

Rails utilise une approche de «convention
plutôt que configuration»

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Mise en oeuvre de biblio : version Web

• Toutefois, faute de temps — ce pourrait être un séminaire complet à
lui seul — je ne vous présenterai pas du tout de détails de la mise en
oeuvre avec Rails.

Structure du code pour la version Rails (1)

|-- app
| |-- assets
| | |-- images
| | |-- javascripts
| | ‘-- stylesheets
| |-- controllers
| | |-- application_controller.rb
| | |-- biblio_controller.rb
| | ‘-- concerns
| |-- helpers

...
| |-- mailers
| |-- models
| | ‘-- concerns

Structure du code pour la version Rails (1)

|-- app
| |-- assets
| | |-- images
| | |-- javascripts
| | ‘-- stylesheets
| |-- controllers
| | |-- application_controller.rb
| | |-- biblio_controller.rb
| | ‘-- concerns
| |-- helpers

...
| |-- mailers
| |-- models
| | ‘-- concerns20

16
-1

0-
14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Structure du code pour la version Rails (1)

•

Structure du code pour la version Rails (2)

| ‘-- views
| |-- biblio
| | |-- emprunter.html.erb
| | |-- emprunteur.html.erb
| | |-- fermer.html.erb
| | |-- index.html.erb
| | |-- l_emprunt.html.erb
| | |-- le_titre_a_rapporter.html.erb
| | |-- le_titre.html.erb
| | |-- lister.html.erb
| | |-- rapporter.html.erb
| | ‘-- vider.html.erb
| ‘-- layouts
| ‘-- application.html.erb
|-- bin
...

Structure du code pour la version Rails (2)

| ‘-- views
| |-- biblio
| | |-- emprunter.html.erb
| | |-- emprunteur.html.erb
| | |-- fermer.html.erb
| | |-- index.html.erb
| | |-- l_emprunt.html.erb
| | |-- le_titre_a_rapporter.html.erb
| | |-- le_titre.html.erb
| | |-- lister.html.erb
| | |-- rapporter.html.erb
| | ‘-- vider.html.erb
| ‘-- layouts
| ‘-- application.html.erb
|-- bin
...

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Structure du code pour la version Rails (2)

•

Structure du code pour la version Rails (3)

|-- config
...
| |-- environments
| | |-- development.rb
| | |-- production.rb
| | ‘-- test.rb
...
| |-- routes.rb
| ‘-- secrets.yml
|-- features
| |-- emprunter.feature
| |-- rapporter.feature
| |-- step_definitions
| | ‘-- biblio_steps.rb
...
|-- lib
...
54 directories, 114 files

Structure du code pour la version Rails (3)

|-- config
...
| |-- environments
| | |-- development.rb
| | |-- production.rb
| | ‘-- test.rb
...
| |-- routes.rb
| ‘-- secrets.yml
|-- features
| |-- emprunter.feature
| |-- rapporter.feature
| |-- step_definitions
| | ‘-- biblio_steps.rb
...
|-- lib
...
54 directories, 114 files

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Mises en oeuvre de biblio
Structure du code pour la version Rails (3)

•

6.3 Tests des services externes
(avec RSpec)

6.3 Tests des services externes
(avec RSpec)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)

•

ServiceCourrielGmail.
envoyer_courriel

ServiceCourrielGmail.
envoyer_courriel

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)

•

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Architecture de biblio

• Voici donc ce que ça donne dans le contexte de mon application
biblio pour la gestion de prêts de livres.

Mise en oeuvre de
ServiceCourrielGmail.envoyer_courriel
Fichier lib/services/service-courriel-gmail.rb

module ServiceCourrielGmail

def self.envoyer_courriel(destinataire, sujet, contenu)
Source: http://thinkingeek.com/2012/07/29/sending-emails-google-mail-ruby/

...
Net::SMTP.enable_tls(OpenSSL::SSL::VERIFY_NONE)
Net::SMTP.start(’smtp.gmail.com’ ...) do |smtp|
smtp.send_message(...)

end
end

end

Mise en oeuvre de
ServiceCourrielGmail.envoyer_courriel
Fichier lib/services/service-courriel-gmail.rb

module ServiceCourrielGmail

def self.envoyer_courriel(destinataire, sujet, contenu)
Source: http://thinkingeek.com/2012/07/29/sending-emails-google-mail-ruby/

...
Net::SMTP.enable_tls(OpenSSL::SSL::VERIFY_NONE)
Net::SMTP.start(’smtp.gmail.com’ ...) do |smtp|

smtp.send_message(...)
end

end

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de
ServiceCourrielGmail.envoyer_courriel• On va maintenant s’attarder aux interactions avec les entités

externes, parce que c’est là que cela devient intéressant au niveau
des tests.
• Voici la méthode qui permet de transmettre un courriel, en utilisant
le compte gmail du prêteur de livres. C’est donc cette méthode qui
connaît les détails, très techniques, de mise en oeuvre de l’envoi de
courriel.
• Et c’est cette méthode qui doit être appelée, directement ou
indirectement, par la méthode rappeler, qui permet d’envoyer un
courriel de rappel à un emprunteur

Tests unitaires de
ServiceCourrielGmail.envoyer_courriel
Fichier spec/services/service-courriel_spec.rb

describe ServiceCourrielGmail do
describe "#envoyer_courriel" do

def envoyer(*args)
ServiceCourrielGmail.envoyer_courriel(*args)

end

it "ne transmet pas de courriel lorsque usager pas ok" do
modifier_temporairement("USAGER_GMAIL", "DSF!S!!") do

expect{ envoyer("tremblay.guy@uqam.ca", "S", "C") }.
to raise_error(Net::SMTPAuthenticationError)

end
end

it "transmet un courriel lorsque tout ok" do
expect{ envoyer("tremblay.guy@uqam.ca", "S", "C") }.

to_not raise_error
Et je devrais recevoir un vrai courriel!?

end
end

end
Tests unitaires de
ServiceCourrielGmail.envoyer_courriel
Fichier spec/services/service-courriel_spec.rb

describe ServiceCourrielGmail do
describe "#envoyer_courriel" do

def envoyer(*args)
ServiceCourrielGmail.envoyer_courriel(*args)

end

it "ne transmet pas de courriel lorsque usager pas ok" do
modifier_temporairement("USAGER_GMAIL", "DSF!S!!") do

expect{ envoyer("tremblay.guy@uqam.ca", "S", "C") }.
to raise_error(Net::SMTPAuthenticationError)

end
end

it "transmet un courriel lorsque tout ok" do
expect{ envoyer("tremblay.guy@uqam.ca", "S", "C") }.

to_not raise_error
Et je devrais recevoir un vrai courriel!?

end
end

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Tests unitaires de
ServiceCourrielGmail.envoyer_courriel• Ce qu’il est intéressant de regarder, c’est l’intérêt que cette

approche a sur la forme des tests.
• Voici donc, dans un premier temps, les tests unitaires, exprimés en
RSpec, pour ServiceCourrielGmail, donc pour le «vrai»
service : on vérifie différents cas d’erreur et on vérifie «de façon non
automatique» pour ce cas particulier, que l’envoi de courriel
s’effectue correctement.

Emprunt#rappeler

Emprunt#rappeler

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)

•

Mise en oeuvre de Emprunt#rappeler
Fichier lib/biblio/emprunt.rb

class Emprunt
attr_reader :nom, :courriel, :titre, :auteurs
...

def rappeler
fail ErreurAucuneAdresseCourriel, ... if courriel == "@"

ServicesExternes.courriel.envoyer_courriel(
courriel,
"Retour d’un livre",
message_courriel(titre))

end
...

end

Mise en oeuvre de Emprunt#rappeler
Fichier lib/biblio/emprunt.rb

class Emprunt
attr_reader :nom, :courriel, :titre, :auteurs
...

def rappeler
fail ErreurAucuneAdresseCourriel, ... if courriel == "@"

ServicesExternes.courriel.envoyer_courriel(
courriel,
"Retour d’un livre",
message_courriel(titre))

end
...

end20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de Emprunt#rappeler

•

Mise en oeuvre de Emprunt#rappeler (suite)
Fichier lib/biblio/emprunt.rb

def message_courriel(titre)
return <<-FIN_MESSAGE

Bonjour.

Il y a quelque temps, je t’ai prete le livre suivant:
\t’#{titre}’

S.V.P. Pourrais-tu me le rapporter?

Si je ne suis pas a mon bureau,
tu peux le laisser au secretariat du departement
(le glisser dans la boite de courrier si le secretariat est ferme).

Merci.

Guy T.
FIN_MESSAGE

end

Mise en oeuvre de Emprunt#rappeler (suite)
Fichier lib/biblio/emprunt.rb

def message_courriel(titre)
return <<-FIN_MESSAGE

Bonjour.

Il y a quelque temps, je t’ai prete le livre suivant:
\t’#{titre}’

S.V.P. Pourrais-tu me le rapporter?

Si je ne suis pas a mon bureau,
tu peux le laisser au secretariat du departement
(le glisser dans la boite de courrier si le secretariat est ferme).

Merci.

Guy T.
FIN_MESSAGE

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de Emprunt#rappeler
(suite)•

Mise en oeuvre de Emprunt#rappeler et injection
de dépendances par un registre de services

Dans le fichier bin/biblio :
Biblio::ServicesExternes.courriel = ServiceCourrielGmail

Dans le fichier lib/biblio/emprunt.rb :
class Emprunt

attr_reader :nom, :courriel, :titre, :auteurs
...

def rappeler
...
ServicesExternes.courriel.envoyer_courriel(

courriel,
"Retour d’un livre",
message_courriel(titre))

end
...

end

Mise en oeuvre de Emprunt#rappeler et injection
de dépendances par un registre de services

Dans le fichier bin/biblio :
Biblio::ServicesExternes.courriel = ServiceCourrielGmail

Dans le fichier lib/biblio/emprunt.rb :
class Emprunt

attr_reader :nom, :courriel, :titre, :auteurs
...

def rappeler
...
ServicesExternes.courriel.envoyer_courriel(

courriel,
"Retour d’un livre",
message_courriel(titre))

end
...

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de Emprunt#rappeler et
injection de dépendances par un registre de
services

• Dans le programme principal (bin/biblio), on définit une variable
globale qui identifie quel service d’envoi de courriel doit être utilisé.
• Dans la méthode rappeler, on réfère à cette variable pour obtenir
le nom du service à utiliser, objet/module sur lequel appelle alors la
méthode envoyer_courriel.

Mise en oeuvre de Emprunt#rappeler et injection
de dépendances par un registre de services

Dans le fichier bin/biblio :
Biblio::ServicesExternes.courriel = ServiceCourrielGmail

Dans le fichier lib/biblio/emprunt.rb :
class Emprunt

attr_reader :nom, :courriel, :titre, :auteurs
...

def rappeler
...
ServicesExternes.courriel.envoyer_courriel(

courriel,
"Retour d’un livre",
message_courriel(titre))

end
...

end ⇒ Respecte le DIP ,
Mise en oeuvre de Emprunt#rappeler et injection
de dépendances par un registre de services

Dans le fichier bin/biblio :
Biblio::ServicesExternes.courriel = ServiceCourrielGmail

Dans le fichier lib/biblio/emprunt.rb :
class Emprunt

attr_reader :nom, :courriel, :titre, :auteurs
...

def rappeler
...
ServicesExternes.courriel.envoyer_courriel(

courriel,
"Retour d’un livre",
message_courriel(titre))

end
...

end ⇒ Respecte le DIP ,

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de Emprunt#rappeler et
injection de dépendances par un registre de
services

• C’est une forme «d’injection de dépendances» : style setter
injection.
• Cela peut aussi être vu comme une forme de service locator =
«This pattern uses a central registry known as the “service locator”,
which on request returns the information necessary to perform a
certain task» : http:
//en.wikipedia.org/wiki/Service_locator_pattern

• Autre nom : La variable globale joue le rôle d’un registre des
services (service registry).

http://en.wikipedia.org/wiki/Service_locator_pattern
http://en.wikipedia.org/wiki/Service_locator_pattern

Tests unitaires de Emprunt#rappeler
Fichier spec/biblio/emprunt_spec.rb

describe "#rappeler" do
it "transmet un courriel lorsque courriel specifie" do
ServicesExternes.courriel = double("service_courriel")

courriel = "tremblay.guy@uqam.ca"
titre = "UnTitreDeLivre"
emp = Emprunt.new("_", courriel, titre, "_")

expect(ServicesExternes.courriel).
to receive(:envoyer_courriel).once.
with(courriel, "Retour d’un livre", /#{titre}/)

emp.rappeler
end

end

Tests unitaires de Emprunt#rappeler
Fichier spec/biblio/emprunt_spec.rb

describe "#rappeler" do
it "transmet un courriel lorsque courriel specifie" do

ServicesExternes.courriel = double("service_courriel")

courriel = "tremblay.guy@uqam.ca"
titre = "UnTitreDeLivre"
emp = Emprunt.new("_", courriel, titre, "_")

expect(ServicesExternes.courriel).
to receive(:envoyer_courriel).once.
with(courriel, "Retour d’un livre", /#{titre}/)

emp.rappeler
end

end20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Tests unitaires de Emprunt#rappeler

• Voici maintenant les tests pour la méthode rappeler de la classe
Emprunt, qui utilise le service d’envoi de courriel.
On n’a pas besoin de tester à nouveau l’envoi effectif de courriel, car
cela a déjà été fait dans les tests pour ServiceCourrielGmail.
Et ici, dans ce test, on ne veut pas non plus dépendre spécifiquement
du service de gmail, car rien nous dit que c’est ce service qui est
utilisé, i.e., un tout autre service pourrait très bien être utilisé à la
place. Ce n’est pas à rappeler à savoir cela.
Ici, on a simplement besoin de s’assurer que le service, quel qu’il
soit, reçoive la demande appropriée. C’est ce qu’on fait à l’aide d’un
«test double» et à l’aide d’attentes explicites (expectations) sur le
comportement observé.

def rappeler
...
ServicesExternes.courriel::envoyer_courriel(

courriel,
"Retour d’un livre",
message_courriel(titre))

end

def rappeler
...
ServicesExternes.courriel::envoyer_courriel(

courriel,
"Retour d’un livre",
message_courriel(titre))

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)

• Ici, on voit ce qui est affiché/indiqué si l’expectation est satisfaite —
en format documentation.

EmpruntsTxt#charger

EmpruntsTxt#charger

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)

•

Architecture de biblio

Architecture de biblio

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Architecture de biblio

• Voici donc ce que ça donne dans le contexte de mon application
biblio pour la gestion de prêts de livres.

Mise en oeuvre de EmpruntsTxt#charger
Fichier lib/biblio/emprunts-txt.rb

class EmpruntsTxt
SEP = "%"

def self.charger(fichier)
les_emprunts = {}
IO.readlines(fichier).each do |l|
l.chomp!
nom, courriel, titre, auteurs = *l.split(SEP)
e = Emprunt.new(nom, courriel, titre, auteurs)
les_emprunts[e.titre] = e

end

les_emprunts
end

end

Mise en oeuvre de EmpruntsTxt#charger
Fichier lib/biblio/emprunts-txt.rb

class EmpruntsTxt
SEP = "%"

def self.charger(fichier)
les_emprunts = {}
IO.readlines(fichier).each do |l|

l.chomp!
nom, courriel, titre, auteurs = *l.split(SEP)
e = Emprunt.new(nom, courriel, titre, auteurs)
les_emprunts[e.titre] = e

end

les_emprunts
end

end20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de EmpruntsTxt#charger

• Voici un autre exemple, cette fois pour le service externe qui charge
en mémoire le contenu de la base de données, lorsque celle-ci est en
format textuelle.

Mise en oeuvre de EmpruntsTxt#charger
Fichier lib/biblio/emprunts-txt.rb

class EmpruntsTxt
SEP = "%"

def self.charger(fichier)
les_emprunts = {}
IO.readlines(fichier).each do |l|
l.chomp!
nom, courriel, titre, auteurs = *l.split(SEP)
e = Emprunt.new(nom, courriel, titre, auteurs)
les_emprunts[e.titre] = e

end

les_emprunts
end

end

Mise en oeuvre de EmpruntsTxt#charger
Fichier lib/biblio/emprunts-txt.rb

class EmpruntsTxt
SEP = "%"

def self.charger(fichier)
les_emprunts = {}
IO.readlines(fichier).each do |l|

l.chomp!
nom, courriel, titre, auteurs = *l.split(SEP)
e = Emprunt.new(nom, courriel, titre, auteurs)
les_emprunts[e.titre] = e

end

les_emprunts
end

end20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Mise en oeuvre de EmpruntsTxt#charger

• Les détails ne sont pas importants. L’aspect important sur lequel
j’insiste est que la méthode IO.readlines est utilisée pour lire le
contenu du fichier contenant cette base de données, méthode qui
doit donc faire un accès externe à un fichier.
• Or, en autant que c’est possible, notamment pour des raisons de
performance, il est préférable de limiter les accès à des fichiers
externes dans les tests.

Tests unitaires de EmpruntsTxt#charger
Fichier spec/biblio/emprunts-txt_spec.rb

let (:fichier) { "/tmp/foo#{$$}.txt" }

def emprunteur(emps, titre); emps[titre].nom; end

it "retourne les emprunts du fichier qui existe" do
expect(IO).

to receive(:readlines).
once.
with(fichier).
and_return(["n1%@%t1%a1\n", "n2%@%tt22%a2\n"])

emps = EmpruntsTxt.charger(fichier)

emps.keys.size.should == 2
emprunteur(emps, "t1").should == "n1"
emprunteur(emps, "tt22").should == "n2"

end

Tests unitaires de EmpruntsTxt#charger
Fichier spec/biblio/emprunts-txt_spec.rb

let (:fichier) { "/tmp/foo#{$$}.txt" }

def emprunteur(emps, titre); emps[titre].nom; end

it "retourne les emprunts du fichier qui existe" do
expect(IO).

to receive(:readlines).
once.
with(fichier).
and_return(["n1%@%t1%a1\n", "n2%@%tt22%a2\n"])

emps = EmpruntsTxt.charger(fichier)

emps.keys.size.should == 2
emprunteur(emps, "t1").should == "n1"
emprunteur(emps, "tt22").should == "n2"

end

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Tests unitaires de EmpruntsTxt#charger

• Voici donc une façon de définir un test pour charger qui fait en
sorte de ne pas avoir d’accès à un fichier externe, et ce en utilisant
un «partial double », ce qu’on appelle aussi «a tests-specific
extension» = «an extension of a real object in a system that is
instrumented with test-double like behaviour in the context of a test» :
https://github.com/rspec/rspec-mocks.
• Donc, on dit à l’objet IO que temporairement, le temps du test, il
doit modifier son comportement pour la méthode readlines de
façon à ce qu’elle retourne le tableau indiqué si elle reçoit les
argument indiqués. Sinon, une erreur doit être signalée si cette
méthode n’est pas appelée avec ces arguments.

https://github.com/rspec/rspec-mocks

Tests unitaires de EmpruntsTxt#charger
Fichier spec/biblio/emprunts-txt_spec.rb

let (:fichier) { "/tmp/foo#{$$}.txt" }

def emprunteur(emps, titre); emps[titre].nom; end

it "retourne les emprunts du fichier qui existe" do
expect(IO).

to receive(:readlines).
once.
with(fichier).
and_return(["n1%@%t1%a1\n", "n2%@%tt22%a2\n"])

emps = EmpruntsTxt.charger(fichier)

emps.keys.size.should == 2
emprunteur(emps, "t1").should == "n1"
emprunteur(emps, "tt22").should == "n2"

end

= Test-Specific Extension (Partial Double)
Tests unitaires de EmpruntsTxt#charger
Fichier spec/biblio/emprunts-txt_spec.rb

let (:fichier) { "/tmp/foo#{$$}.txt" }

def emprunteur(emps, titre); emps[titre].nom; end

it "retourne les emprunts du fichier qui existe" do
expect(IO).

to receive(:readlines).
once.
with(fichier).
and_return(["n1%@%t1%a1\n", "n2%@%tt22%a2\n"])

emps = EmpruntsTxt.charger(fichier)

emps.keys.size.should == 2
emprunteur(emps, "t1").should == "n1"
emprunteur(emps, "tt22").should == "n2"

end

= Test-Specific Extension (Partial Double)

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Un exemple plus détaillé avec cucumber :
biblio

Tests des services externes (avec RSpec)
Tests unitaires de EmpruntsTxt#charger

• Une telle extension, temporaire et spécifique au test, de
IO.readlines est beaucoup plus simple à définir. . . que si on avait
dû créer un fichier externe foo.txt et y mettre comme contenu les
lignes désirées.
• En fait, noobstant l’aspect performance, cela permet aussi une
meilleure localité des informations pour ce test — pour que le
contenu soit clairement local au test, il aurait fallu créer ce fichier au
moment du test (ouverture en création/écriture), à partir du contenu
désiré, et ensuite lire son contenu (ouverture, implicite, en lecture
avec readlines).

7. Conclusion

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Conclusion

•

Les tests d’acceptation servent aussi de tests
d’intégration

Cucumber scenarios test entire paths through the app
and thus can be acceptance tests or integration tests.

Source: «Engineering Software as as Service—An Agile Approach Using Cloud Computing», Fox

& Patterson

Les tests d’acceptation servent aussi de tests
d’intégration

Cucumber scenarios test entire paths through the app
and thus can be acceptance tests or integration tests.

Source: «Engineering Software as as Service—An Agile Approach Using Cloud Computing», Fox

& Patterson

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Conclusion

Les tests d’acceptation servent aussi de
tests d’intégration

•

Ce sont les méthodes approches agiles ont introduit et
popularisé les approches TDD et BDD

Ce sont les méthodes approches agiles ont introduit et
popularisé les approches TDD et BDD

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Conclusion

Ce sont les méthodes approches agiles ont
introduit et popularisé les approches TDD et
BDD•

On peut automatiser les tests unitaires, les tests
d’acceptation, etc.

On peut automatiser les tests unitaires, les tests
d’acceptation, etc.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Conclusion

On peut automatiser les tests unitaires, les
tests d’acceptation, etc.

•

Références

D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, B. Helmkamp, and D. North.
The RSpec Book : Behaviour Driven Development with RSpec, Cucumber, and Friends.
The Pragmatic Bookshelf, 2010.

D.B. Copeland.
Build Awesome Command-Line Applications in Ruby : Control Your Computer, Simplify Your Life.
The Pragmatic Bookshelf, 2012.

E. Evans.
Domain-Driven Design—Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004.

A. Fox and D. Patterson.
Engineering Software as as Service—An Agile Approach Using Cloud Computing.
Strawberry Canyon LLC, 2013.

R. Mugridge and W. Cunningham.
Fit for Developing Software—Framework for Integrated Tests.
Prentice-Hall, 2005.

J.F. Smart.
BDD In Action.
Manning, 2015.

M. Wynne and A. Hellesoy.
The Cucumber Book : Behaviour-Driven Development for Testers and Developers.
The Pragmatic Bookshelf, 2012.

Références

D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, B. Helmkamp, and D. North.
The RSpec Book : Behaviour Driven Development with RSpec, Cucumber, and Friends.
The Pragmatic Bookshelf, 2010.

D.B. Copeland.
Build Awesome Command-Line Applications in Ruby : Control Your Computer, Simplify Your Life.
The Pragmatic Bookshelf, 2012.

E. Evans.
Domain-Driven Design—Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004.

A. Fox and D. Patterson.
Engineering Software as as Service—An Agile Approach Using Cloud Computing.
Strawberry Canyon LLC, 2013.

R. Mugridge and W. Cunningham.
Fit for Developing Software—Framework for Integrated Tests.
Prentice-Hall, 2005.

J.F. Smart.
BDD In Action.
Manning, 2015.

M. Wynne and A. Hellesoy.
The Cucumber Book : Behaviour-Driven Development for Testers and Developers.
The Pragmatic Bookshelf, 2012.

20
16

-1
0-

14

Tests d’acceptation et BDD(Behavior Driven
Development)

Conclusion

Références

