MGL7460 — Automne 2016

Tests d’acceptation et BDD
(Behavior Driven Development)

Guy Tremblay
Professeur

Département d'informatique

http://www.labunix.ugam.ca/~tremblay

13-20 octobre 2016

<+ Tests d'acceptation et BDD(Behavior Driven
T Development)

2016-10

L-MGL7460 — Automne 2016

http://www.labunix.uqam.ca/~tremblay
http://www.labunix.uqam.ca/~tremblay

Contenu

2016-10-14

H

Introduction : Tests unitaires de style TDD vs. BDD

]

Que sont les tests d’acceptation ?

a

Les tests d’acceptation et I'approche BDD

[~

Des outils pour le BDD

o]

D’autres outils pour les tests d’acceptation

Un exemple plus détaillé avec cucumber : biblio

Conclusion

]

Tests d’acceptation et BDD(Behavior Driven
Development)

L_Contenu

Suggestion de D. North (2003)

Le nom d’'une méthode de test devrait étre une
phrase qui nous éclaire sur le comportement de
la méthode testée, y compris en cas de
traitement d’erreur ou d’exception

Tests d’acceptation et BDD(Behavior Driven
Development)
L Introduction : Tests unitaires de style TDD vs.
BDD
LSuggestion de D. North (2003)

2016-10-14

o Pour bien nommer les cas de test, il faut tenir compte que pour une
méthode du code a tester, par exemple, retirer, on aura plusieurs
cas de tests a écrire — plusieurs méthodes de tests — et ce pour
tester différents aspects, différentes situations : retirer une partie,
retirer tout, retirer plus que le solde, etc. On ne pourra pas
simplement appeler ces méthodes tester_retirer, carce ne
serait pas assez spécifique.

e De plus, il faut aussi avoir des cas de test les plus indépendants
possibles, pour bien cerner/identifier les erreurs problemes possibles
quand quelque chose ne fonctionne pas.

e Mais ceci a amené une autre question, a savoir : quel est un nom
approprié, significatif, pour un cas de test (une méthode de test) ?
Parce que les regles pour le nommage des méthodes habituelles ne
s’appliquent pas, style, prédicat pour les observateur, verbe pour les
actions | Le nom de la méthode de test doit plutét nous renseigner sur
I'aspect du module/classe/méthode aui est testé.

Le nom d’'une méthode de test devrait étre une phrase

qui décrit le comportement attendu :

public void testRetirer() {
c.retirer(c.solde());

assertEquals(0, c.solde());

}

<+ Tests d'acceptation et BDD(Behavior Driven conte g
= Development)

o

s L Introduction : Tests unitaires de style TDD vs.
S BDD

N

LLe nom d'une méthode de test devrait étre

Le nom d’'une méthode de test devrait étre une phrase

qui décrit le comportement attendu :

@Test
public void retirer() {
c.retirer(c.solde());

assertEquals(0, c.solde());

}

<+ Tests d'acceptation et BDD(Behavior Driven Conte sania
% Development)

s L Introduction : Tests unitaires de style TDD vs.

é BDD

LLe nom d'une méthode de test devrait étre

Le nom d’'une méthode de test devrait étre une phrase

qui décrit le comportement attendu :

Convention suggérée pour les noms des méthodes de test :

NomDeMéthode_EtatTesté RésultatAttendu

<+ Tests d'acceptation et BDD(Behavior Driven)) sugpeson
% Development) S
& L-Introduction : Tests unitaires de style TDD vs.

s BDD

LLe nom d'une méthode de test devrait étre
* Motivations de cette convention :
e Le nom du test devrait exprimer une exigence spécifique

e Le nom du test devrait inclure les données ou I'état, tant en
entrée qu’en sortie

e Le nom du test devrait inclure le nom de la méthode ou classe
testée

e Autre motivation :

e Le nom du test devrait nous aider a comprendre le
comportement attendu y compris (surtout!) lorsque le test
«échoue».

Le nom d’'une méthode de test devrait étre une phrase

qui décrit le comportement attendu :

@Test
public void Retirer_LeSoldeComplet_RetourneSoldeNul () {
c.retirer(c.solde());

assertEquals(0, c.solde());
}

<+ Tests d'acceptation et BDD(Behavior Driven el
% Development) Eo

s L Introduction : Tests unitaires de style TDD vs.

é BDD

LLe nom d'une méthode de test devrait étre

e Donc, en Java avec Junit, ¢a peut donner un nom de méthode qui
aurait I'allure suivante, donc pas nécessairement facile a lire, et
encore moins a écrire ®

Le nom d’'une méthode de test devrait étre une phrase

qui décrit le comportement attendu :

[Ruby (Test::Unit)]

def test_retirer_le_solde_complet_retourne_solde_nul
@c.retirer(Qc.solde

assert_equal 0, Qc.solde

end
<+ Tests d'acceptation et BDD(Behavior Driven e
% Development) R
s L Introduction : Tests unitaires de style TDD vs.
S BDD
N

LLe nom d'une méthode de test devrait étre

e En Ruby, avec Test : : Unit, ¢a donnerait cela — sauf pour les
noms de classe, on utilise pas le CamelCase en Ruby. La non plus,
ce n'est pas l'idéal.

Le nom d’'une méthode de test devrait étre une phrase

qui décrit le comportement attendu :

Ruby (ala RSpec)

test "retirer le solde complet retourne solde nul" do
@c.retirer(Qc.solde)

assert_equal 0, Qc.solde

end
<+ Tests d'acceptation et BDD(Behavior Driven e
% Development)
s L Introduction : Tests unitaires de style TDD vs.
S BDD
N

LLe nom d'une méthode de test devrait étre
o Par contre, en Ruby, il y a plein de «trucs» qu’on peut faire, difficile
ou impossible a faire en Java.
o Par exemple, cette fagon d’écrire le nom du test ne serait-elle pas
plus simple a écrire et a lire ?

Suggestion de D. North (2003)

Débuter le nom d’'une méthode de test par
should aide a ce que le test soit mieux ciblé

Exemple :
Retirer

m devrait retourner un solde nul lorsqu’on retire tout
m devrait échouer lorsqu’on retire plus que le solde courant
u...

Et aussi : quand le test échoue, un nom de test expressif aide a
mieux comprendre ou est le probléme

Tests d’acceptation et BDD(Behavior Driven
Development)
L Introduction : Tests unitaires de style TDD vs.
BDD
LSuggestion de D. North (2003)

2016-10-14

(North, 2003)

m Extension de JUnit which removed any reference to testing
and replaced it with a vocabulary built around verifying
behaviour

m Létape de vérification s’exprime. .. sans «assertion»

assert_equal resultat_attendu, resultat_obtenu

resultat_obtenu.should == resultat_attendu

Notation Ruby/RSpec

Johave

Tests d’acceptation et BDD(Behavior Driven
Development)
L Introduction : Tests unitaires de style TDD vs.
BDD
L_JBehave (North, 2003)

2016-10-14

e Donc, North, en 2003, a développé JBehave, un outil permettant de
spécifier des cas de tests en Java en s’inspirant de ces constatations
et suggestions.

o Dans ce qui suit, je vais toutefois l'illustrer en Ruby, avec Rspec,
avec lequel je suis plus familier. .. et qui a eu plus de succés que
JBehave.

(North, 2003)

| found the shift from thinking in tests to thinking in
behaviour so profound that | started to refer to TDD as
BDD, or behaviour-driven developement

Source: Dan North,
http://dannorth.net/introducing-bdd/

Johave

Tests d’acceptation et BDD(Behavior Driven
Development)
L Introduction : Tests unitaires de style TDD vs.
BDD
L_JBehave (North, 2003)

10-14

2016

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

RSpec (Chelimsky, North et al., 2007)

The RSpec Book

Behaviour-Driven Deve]opment

Cadre de tests Ruby
inspiré de JBehave

Tests d’acceptation et BDD(Behavior Driven
Development)
L Introduction : Tests unitaires de style TDD vs.
BDD
L_RSpec (Chelimsky, North et al., 2007)

10-14

The RSpec Book.

2016

Cadle de tests Ruby
& de JBehave

Exemple RSpec

de Compte

class Compte
attr_reader :solde, :client

def initialize(client, solde_init)
@client, @solde = client, solde_init
end

def deposer(montant)
@solde += montant
end

def retirer(montant)
fail "Solde insuffisant" if montant > solde

@solde -= montant
end
end

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)

o

s L Introduction : Tests unitaires de style TDD vs.
S BDD

o L_Exemple RSpec

e Donc, soit & nouveau notre classe pour un Compte bancaire simple.

Exemple RSpec

de compte (1)... «devrait»

describe Compte do
before (:each) { @c = Compte.new("Guy T.", 100) }

describe ".new" do
it "devrait creer un compte avec le solde initial indique" do
@c.solde. should == 100
end
end

describe "#deposer" do
it "devrait ajouter le montant indique au solde du compte" do
solde_initial = @c.solde

@c.deposer(100)
@c.solde. should == solde_initial + 100

end
end
<+ Tests d'acceptation et BDD(Behavior Driven o
% Development) %
& L Introduction : Tests unitaires de style TDD vs. i
S BDD .
& L_Exemple RSpec e

« Voici des tests équivalents a ceux vus précédemment, avec en plus
des tests pour retirer.
e Eléments de «convention» pour décrire les tests :

e Le premier niveau de describe indique pour quelle classe on
est en train de spécifier le comportement.

e Chaque niveau interne de describe indique alors la méthode
décrite/spécifiée — avec le préfixe «.» pour les méthodes de
classe et avec le préfixe «#» pour les méthodes d’instance.

e Un it représente un cas de test.

o Les assertions utilisées sont exprimées d’une fagon différente.
Dans les premiéres versions de RSpec, on utilisait des should :

assert_equal solde_initial+100, Q@c.solde

Qc.solde.should == solde_initial + 100

Exemple RSpec

2016-10-14

de Compte (1)... «devrait»

describe Compte do
before(:each) { @c = Compte.new("Guy T.", 100) }

describe ".new" do
it "cree un compte avec le solde initial indique" do
@c.solde. should == 100
end
end

describe "#deposer" do
it "ajoute le montant indique au solde du compte" do
solde_initial = @c.solde

@c.deposer(100)
@c.solde. should == solde_initial + 100

end
end
Tests d’acceptation et BDD(Behavior Driven o
Development) =
LIntroduction : Tests unitaires de style TDD vs. i
BDD -
L_Exemple RSpec T s

o Certains suggéraient, les premiers temps, que les tests débutent
avec «should». Mais maintenant, c’est considéré comme une
mauvaise pratique : pourquoi dire «devrait faire X» quand on peut
dire tout aussi clairement et simplement «fait X».

Exemple RSpec

de compte (2)... «devrait»

describe "#retirer" do
it "deduit le montant lorsque ne depasse pas le solde" do
solde_initial = @c.solde
@c.retirer(50)
@c.solde. should == solde_initial - 50
end

it "vide le compte lorsque le montant egale le solde" do
Qc.retirer(Qc.solde)
@c.solde. should == 0

end

it "signale une erreur lorsque le montant depasse le solde" do

solde_initial = @c.solde
lambda{ @c.retirer(2050) }. should raise_error
end
end
end

<+ Tests d'acceptation et BDD(Behavior Driven -
% Development)
s L Introduction : Tests unitaires de style TDD vs. .
e BDD
o L_Exemple RSpec

o Cet exemple pour retirer illustre qu'il peut y avoir , et c’est
généralement le cas, plusieurs cas de tests (plusieurs it) pour une
méthode a tester.

o Dans les versions plus récentes de RSpec, on n’utilise méme plus
des should dans les assertions, on utilise plutét des expect —
parce que les should créaient parfois des problémes dans certains
programmes — mise en oeuvre avec «Monkey patching».

o Les avis sont assez partagés quant a cette nouvelle forme.
Personnellement, je préfére nettement I'ancienne forme, c’est cela
qui m’a attiré vers RSpec. Lautre forme ressemble plus aux
anciennes assertions, méme si c’est quand méme différent.

Exemple RSpec

Résultats d’exécution : (défaut)

$ rspec -I.

Finished in 0.00361 seconds (files took 0.08863 seconds to load)
5 examples, 0 failures

Tests d’acceptation et BDD(Behavior Driven o
Development) s
L Introduction : Tests unitaires de style TDD vs.
BDD
L_Exemple RSpec

2016-10-14

e Format progress = format par défaut = sortie style JUnit standard
e On remarque qu’on ne parle plus de tests mais d’exemples.

Exemple RSpec

Résultats d’exécution :

$ rspec -I. . ——format documentation
Compte
.new
cree un compte avec le solde initial indique
#deposer
ajoute le montant indique au solde du compte
#retirer
deduit le montant lorsque ne depasse pas le solde
vide le compte lorsque le montant egale le solde
signale une erreur lorsque le montant depasse le solde

Finished in 0.00371 seconds (files took 0.08794 seconds to load)
5 examples, 0 failures

Tests d’acceptation et BDD(Behavior Driven
Development) :
L Introduction : Tests unitaires de style TDD vs.
BDD
L_Exemple RSpec

2016-10-14

e Format documentation = donne les différents tests exécutés
avec les describes et les its!

e Si les phrases de describe et des it sont bien formulées, cela
peut parfois/souvent ressembler a une spécification informelle !

e Donc, les résulats attendus de I'exécution des tests deviennent une
spécification du comportement de I'entité.

Différents niveaux de tests

Tests
d’acceptatio

Tests
systémes

Tests d’intégration

Tests unitaires

Tests d’acceptation et BDD(Behavior Driven
Development)
LQue sont les tests d’acceptation ?

2016-10-14

L_Différents niveaux de tests

Différents niveaux de tests

Tests unitaires

Vérification du fonctionnement d’'un composant (procédure,
fonction, méthode, classe, module) de fagon indépendante des
autres composants.

Tests de systeme

Vérification du fonctionnement du systéme dans son ensemble.

Tests d’acceptation

Vérification, par le «client», du fonctionnement du systeme
dans son ensemble — tests fonctionnels = user facing.

Tests d’acceptation et BDD(Behavior Driven
Development)
LQue sont les tests d’acceptation ?

2016-10-14

L_Différents niveaux de tests

o Tests de type alpha : Tests d’acceptation faits dans un
environnement de développement

o Tests de type béta : Tests d’acceptation faits dans un
environnement de production, donc une fois le systeme déployé. ..
pour un nombre limité d’usagers.

Les tests d’acceptation selon RUP

Acceptance Test

The complete application (or system) is tested by end users (or
representatives) for the purpose of determining readiness for
deployment.

Source: «The Rational Unified Process—An Introducion (Second Edition)», Kruchten

m Readiness for deployment

= Préalable pour l'intégration continue
(qu’on verra dans quelques semaines)

Tests d’acceptation et BDD(Behavior Driven
Development)
LQue sont les tests d’acceptation ?

2016-10-14

LLes tests d’acceptation selon RUP

e On verra, bientdt, le lien avec I'assemblage et le déploiement de
logiciels = Intégration continue !

Les tests d’acceptation selon XP

<

Y
o

2016-1

Acceptance tests are created from user stories.

During an iteration the user stories selected during the iteration
planning meeting will be translated into acceptance tests.

The customer specifies scenarios to test when a user story
has been correctly implemented.

A story can have one or many acceptance tests, whatever it
takes to ensure the functionality works.

Source: http://www.extremeprogramming.org/rules/functionaltests.html

Tests d’acceptation et BDD(Behavior Driven
Development)
LQue sont les tests d’acceptation ?

L Les tests d’acceptation selon XP

http://www.extremeprogramming.org/rules/functionaltests.html
http://www.extremeprogramming.org/rules/functionaltests.html

Les tests d’acceptation selon XP (suite)

<

o
o

2016-1

Acceptance tests are black box system tests. Each
acceptance test represents some expected result from the
system.

The name acceptance tests was changed from functional tests.
This better reflects the intent, which is to guarantee that a customer’s
requirements have been met and the system is acceptable.

Source: http://www. ext remeprogramming. org/rules/functionaltests.html

Tests d’acceptation et BDD(Behavior Driven
Development) LI,
LQue sont les tests d’acceptation ?

LLes tests d’acceptation selon XP (suite)

http://www.extremeprogramming.org/rules/functionaltests.html
http://www.extremeprogramming.org/rules/functionaltests.html

Une autre définition des tests d’acceptation

Acceptance tests are tests that define the business value each
story must deliver. They may verify functional requirements or
nonfunctional requirements such as performance or reliability.
Although they are used to help guide development, it is at a
higher level than the unit-level tests used for code design in
test-driven development. Acceptance test is a broad term that
may include both business-facing and technology-facing tests.

Source: «Agile Testing—A Practical Guide for Testers and Agile Teams », Crispin & Gregory

Tests d’acceptation et BDD(Behavior Driven
Development)
LQue sont les tests d’acceptation ?

2016-10-14

L_Une autre définition des tests d’acceptation *

Agile Testing Quadrants

Automated & Manual

Business Facing

Functional Tests
Examples
Story Tests
€ Prototypes
@ Simulations. O
@
= =
@ Z
£ Qz H
@
£ -1} 2
£ 3
2 g
o 2
=1
w
Unit Tests
ComponentTests

—

Technology Facing

Source: http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

Tests d’acceptation et BDD(Behavior Driven
Development)
LQue sont les tests d’acceptation ?

2016-10-14

http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/
http://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

Constatation de North et Matts (2004) : Lapproche

BDD peut aussi s’appliquer. .. aux exigences

Toward the end of 2004, while | was describing my
new found, behaviour-based vocabulary to Matts, he
said, “But that’s just like analysis.” There was a long
pause while we processed this, and then we decided
to apply all of this behaviour-driven thinking to defining
requirements.

Source: Dan North,
http://dannorth.net/introducing-bdd/

Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

LConstatation de North et Matts (2004) :

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

Constatation de North et Matts (2004) : Lapproche

BDD peut aussi s’appliquer. .. aux exigences

= Le comportement attendu d’un logiciel représente le critere
d’acceptation de ce logiciel :

«If the system fulfills all the acceptance criteria,
it's behaving correctly ; if it doesn't, it isn'’t.»
(D. North)

— On peut aussi utiliser une approche «a la
TDD» pour les exigences et les tests
d’acceptation :

m On décrit les exigences a I'aide de scénarios
compréhensibles par les divers intervenants

m Les scénarios sont testés de fagcon automatique
Tests d’acceptation et BDD(Behavior Driven

Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

LConstatation de North et Matts (2004) :
o Donc, dans un premier temps, BDD est une fagon de spécifier des
tests unitaires en utilisant un style différent de spécification —
spécification par des exemples.

e Donc on devrait pouvoir faire du TDD aussi a I'étape d’analyse

o Avec des scénarios qui soient exécutables, comme des tests

e Qu’on pourra tester lors des tests systemes et d’acceptation

Qu’est-ce que le BDD ?

Twitter feed de D. North, oct. 2016 (https://twitter.com/tastapod)

\ N gt
<+ Tests d'acceptation et BDD(Behavior Driven
% Development)

L Les tests d’acceptation et 'approche BDD

2016-1

LQurest-ce que le BDD ?

https://twitter.com/tastapod
https://twitter.com/tastapod

Qu’est-ce que le BDD ?

2016-10-14

«[Le] BDD consiste a étendre le TDD en écrivant non
plus du code compréhensible uniquement par des
développeurs, mais sous forme de scénario
compréhensible par toutes les personnes impliquées
dans le projet.

Autrement dit, il s'agit d’écrire des tests qui décrivent
le comportement attendu du systeme et que tout le
monde peut comprendre. »

Source: http://arnauld.github.io/incubation/
Getting-Started-with-JBehave.html

Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

LQurest-ce que le BDD ?

o «[G]énéralement, ces scénarios sont écrits et définis avant que
'implémentation ne commence. lIs servent a la fois a définir le besoin
mais vont guider le développement en le focalisant sur la
fonctionnalité décrite. Dans I'absolu, on continue a faire du TDD mais
on ajoute en plus I'expression du besoin en langage naturel. Alors
que le TDD garantit d'une certaine fagon la qualité technique d’'une
implémentation, il ne garantit pas la qualité fonctionnelle. Plusieurs
éléments peuvent ainsi étre techniquement valides mais une fois mis
ensemble ne répondent pas du tout au besoin réellement exprimé par
le client. De maniére un peu caricatural, le BDD va guider le
développement d’une fonctionalité, tandis que le TDD guidera son
implementation.

http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html
http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html
http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html
http://arnauld.github.io/incubation/Getting-Started-with-JBehave.html

TDD vs. BDD : TDD et BDD

”

Write a Make
Failing the Test
Unit Test Pass
Refactor
Write a Failing Write a Make
Acceptance Failing the Test
Tact IInit Tact Dace
<+ Tests d'acceptation et BDD(Behavior Driven
% Development) Ty et
‘;-i L Les tests d’acceptation et I'approche BDD e /"
= v
N

L_TDD vs. BDD : TDD et BDD sl

Wites,
Filng theest

http://msdn.microsoft.com/en-us/magazine/gg490346.aspx
http://msdn.microsoft.com/en-us/magazine/gg490346.aspx

North et Matts ont di développer un langage pour la

spécification des exigences, les critéres d’acceptation

If we could develop a consistent vocabulary for
analysts, testers, developers, and the business, then
we would be well on the way to eliminating some of
the ambiguity and miscommunication that occur when
technical people talk to business people.

Source: Dan North, http://dannorth.net/introducing-bdd/

<+ Tests d'acceptation et BDD(Behavior Driven
% Development)

L Les tests d’acceptation et 'approche BDD

2016-1

L_North et Matts ont dGi développer un langage

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

Donc, North et Matts ont développé un

pour 'analyse

Ubiquitous Language = A design approach described in Eric
Evans’ “Domain Driven Design” (2003), which consists notably
of striving to use the vocabulary of a given business domain,
not only in discussions about the requirements for a software
product, but in discussions of design as well and all the way
into “the product’s source code itself”.

Source: http://guide.agilealliance.org/guide/ubiquitous.html

bauious

<+ Tests d'acceptation et BDD(Behavior Driven -
% Development)
LLes tests d’acceptation et I'approche BDD

2016-1

L_Donc, North et Matts ont développé un

http://guide.agilealliance.org/guide/ubiquitous.html
http://guide.agilealliance.org/guide/ubiquitous.html

Récit utilisateur vs. Scénario utilisateur

A user story is a brief statement that identifies the user and her
need.

User scenario

A user scenario expands upon your user stories by including
details about how a system might be interpreted, experienced,
and used. [...] Your scenarios should anticipate the user’s
goal, specify any assumed knowledge, and speculate on the
details of the user’s interaction experience.

Source: https://www.newfangled.com/how-to-tell-the-users-story/

Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

L_Récit utilisateur vs. Scénario utilisateur

https://www.newfangled.com/how-to-tell-the-users-story/
https://www.newfangled.com/how-to-tell-the-users-story/

Caractéristiques des récits utilisateurs

The general guidelines for the user stories themselves
is that they must be testable, be small enough to
implement in one iteration, and have business value.

Source: «Engineering Software as a Service», Fox & Patterson

<+ Tests d'acceptation et BDD(Behavior Driven
% Development)

L Les tests d’acceptation et 'approche BDD

2016-1

LCaractéristiques des récits utilisateurs

Les scénarios utilisateur décrivent les conditions

d’acceptation pour un récit utilisateur

This, then, is the role of a Story. It has to be a
description of a requirement and its business benefit,
and a set of criteria by which we all agree that it is
“done’.

[The acceptance criteria] are presented as Scenarios.

Source: http://dannorth.net/whats-in-a-story/

Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

L_Les scénarios utilisateur décrivent les

http://dannorth.net/whats-in-a-story/
http://dannorth.net/whats-in-a-story/

En BDD, les récits utilisateur et les scénarios
utilisateur sont organisés par feature

User Story

Scenario 1

Scenario n

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)

L Les tests d’acceptation et 'approche BDD

L_En BDD, les récits utilisateur et les scénarios

n BDD, les recits utilisateur et les scenarios
utilisateur sont organisés par feature

http://itsadeliverything.com/

™
User |
Story |
Name

[Feature |
Name

Conditions of

[scenario | [
Satisfaction

Name

Feature
Priarity

— Agile Requirements Snail
Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

L_En BDD, les récits utilisateur et les scénarios

http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario
http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario
http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario
http://itsadeliverything.com/agile-requirements-snail-feature-to-user-story-to-scenario

: Un gabarit «standard»

(style connextra)

User stories are short, simple descriptions of a feature
told from the perspective of the person who desires
the new capability, usually a user or customer of the
system.

They typically follow a simple template :
As a <type of user>,
I want <some goal>
so that <some reason>.

Source: https://www.mountaingoatsoftware.com/agile/user-stories

Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

LRécits utilisateurs : Un gabarit «standard» -

https://www.mountaingoatsoftware.com/agile/user-stories
https://www.mountaingoatsoftware.com/agile/user-stories

: Le gabarit de North & Matts

Scenario: name of the scenario
Given some initial context
When an event occurs

Then ensure some outcomes

North et Matts, avec JBehave, ont congu une fagon d’exécuter
des scénarios exprimés dans ce langage

Scénarios uisatours

Tests d’acceptation et BDD(Behavior Driven
Development)
L Les tests d’acceptation et 'approche BDD

2016-10-14

L_Scénarios utilisateurs : Le gabarit de North & =

2016-10-14

4.1 cucumber

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD

Lcucumber

4.1 cucunber

(Hellesoy, 2008)

#matic
S imers

The
Cucumber
Book =3 =

Behaviour-Driven- «
Development for
Testers and
Developers

B N Pour la spécification et
A Asl Teliesoy "~ I'exécution des tests
Tm——" d’acceptation !

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
= cucumber
L_Cucumber (Hellesoy, 2008)

2016-10-14

o Cette idée de scénario exécutable a alors été reprise, en Ruby, par

Hellesoy, dans un outil appelé cucumber, que je vais vous présenter.
o C’est cet outil que je présente en premier, car c’est celui avec lequel
je suis plus familier.

<+ Tests d'acceptation et BDD(Behavior Driven

: Principe général de fonctionnement

Feature

1=

Scenario

1% | {ordered}

Step

iy

Given ‘ When ‘

Then

= Development)

2016-10

LDes outils pour le BDD
Lcucumber

L Cucumber : Principe général de

Given

Les features de cucumber vs. les user stories

User Stories are a planning tool. They exist until
they’re implemented, and then they disappear,
absorbed into the code.

Cucumber features are a communication tool. They
describe how the system behaves today, so that if you
need to check how it works, you don’t need to read
code or go punching buttons on the live system.

[We] use Cucumber to document [a user story’s]
acceptance criteria as scenarios that we can use to
drive out the behaviour we need to get this story done.

Source: http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
= cucumber i
L Les features de cucumber vs. les user .

2016-10-14

e Aussi : «User Stories are a great way to plan your work. You can
take a big hairy requirement and break it down into chunks that are
small enough to work on without anyone freaking out. When you've
crumbled up your big hairy requirement into little user story chunks,
you can pick and choose which chunk to build first, and even drop
some chunks altogether when you realise they're not that important.
Great stuff.»

http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/
http://blog.mattwynne.net/2010/10/22/features-user-stories/comment-page-1/

Les trois sortes de steps qui composent un

scenario Cucumber

Identifie I'état courant/initial, dans lequel le scénario va
s’appliquer.

Identifie I'action ou I'événement qui déclenche le scénario

Identifie les conséquences du traitement de I'action.

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
Lcucumber
L_Les trois sortes de steps qui composent un

2016-10

Les trois sortes de steps qui composent un

scenario Cucumber

The purpose of Givens is to put the system in a known
state before the user (or external system) starts
interacting with the system (in the When steps).

The purpose of \When steps is to describe the key
action the user performs [...].

The purpose of Then steps is to observe outcomes.
The observations should be related to the business
value/benefit in your feature description. The
observations should also be on some kind of output —
that is something that comes out of the system (report,
user interface, message)|.. .].

Source: https://github.com/cucumber/cucumber/wiki/Given-When-Then

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
Lcucumber
L_Les trois sortes de steps qui composent un

2016-10

https://github.com/cucumber/cucumber/wiki/Given-When-Then
https://github.com/cucumber/cucumber/wiki/Given-When-Then

Les trois sortes de steps qui composent un

scenario Cucumber

Given-When-Then is a style of representing tests — or
as its advocates would say — specifying a system’s
behavior using SpecificationByExample.

The given part describes the state of the world before
you begin the behavior you're specifying in this
scenario. You can think of it as the pre-conditions to
the test.

The when section is that behavior that you're
specifying.

Finally the then section describes the changes you
expect due to the specified behavior.

Source: http://martinfowler.com/bliki/GivenWhenThen.html

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
Lcucumber
L_Les trois sortes de steps qui composent un

2016-10

http://martinfowler.com/bliki/GivenWhenThen.html
http://martinfowler.com/bliki/GivenWhenThen.html

: Principe général de fonctionnement

Scenario | ——» | Gucumber
specification

Exécute

: les scénarios
L<<uses >

Step
definitions

o<<use>>

Application

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)

2016-10

LDes outils pour le BDD
Lcucumber
L Cucumber : Principe général de

Résultats
— d’exécution

des scénarios

Exemple Ruby avec cucumber et gherkin :

Classe a tester

class Compte
attr_reader :solde, :client

def initialize(client, solde_initial)
Qclient, @solde = client, solde_initial
end

def deposer (montant)
@solde += montant
end

def retirer(montant)
fail "Solde insuffisant" if montant > solde

@solde -= montant
end
end

<+ Tests d'acceptation et BDD(Behavior Driven
% Development)
s LDes outils pour le BDD
é L—cucumber
LExemple Ruby avec cucumber et

Exemple Ruby avec cucumber et gherkin :

Scénarios d’utilisation d’'un compte bancaire

On veut écrire des scénarios pour les comptes bancaires
(simples) vus précédemment

$ tree Compte
Compte

|-— compte.rb

| —— compte_spec.rb
|-- courriel.rb

[== | EeaituEes

| |-— | compte_steps.rb

| ‘—— |retirer.feature
|-— Rakefile
‘-— spec-helper.rb

1 directory, 7 files

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD

Lcucumber

2016-10

Exemple Ruby avec cucumber et gherkin :

(1)

Feature: Retrait d’un montant d’un compte
En tant que responsable d’un compte
Je veux pouvoir retirer un montant de mon compte
Afin d’avoir de 1’argent comptant sous la main

Scenario: J’ai assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 50 dollars

Then je recois 50 dollars
And le solde de mon compte est de 150 dollars

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
L*cucumber
LExemple Ruby avec cucumber et gherkin :

2016-10-14

o Voici un exemple pour la version simplifiée de la banque.

e cucumber = l'outil d’exécution des scénarios

e gherkin = le langage de description/spécification des scénarios

o La description de la «feature», au tout début, avant les scénarios,
est arbitraire (texte non analysé par l'outil). Toutefois, la
suggestion/convention est d'utiliser gabarit dit Connextra format pour
la description des récits utilisateurs (user stories).

Exemple Ruby avec cucumber et gherkin :

()

Scenario: J’ai assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

n je retire 200 dollars

Then je recois 200 dollars
And le solde de mon compte est de 0 dollars

Scenario: Je n’ai pas assez d’argent dans mon compte
Given mon compte a un solde de 200 dollars

When je retire 500 dollars

Then je recois un message d’erreur
And le solde de mon compte est de 200 dollars

Tests d’acceptation et BDD(Behavior Driven
Development) e
LDes outils pour le BDD
L*cucumber
LExemple Ruby avec cucumber et gherkin :

2016-10-14

Exécution initiale. .. avec des étapes pending (suite)

<<~/SeminaireTBDDD/Compte@MacBook>> $ cucumber
Feature: Retrait d'un montant d'un compte
En tant que responsable d'un compte

Je veux pouvoir retirer un montant de mon compte You can im
Afin d'avoir de l'argent comptant sous la main
Given(/"mo
Scenario: J'ai assez d'argent dans mon compte # features/retirer.feature:6 pending
Given mon compte a un solde de 200 dollars # features/retirer. end
When je retire 50 dollars # features/retirer.
Then je recois 50 dollars # features/retirer.
And le solde de mon compte est de 150 dollars # features/retirer When(/~je
pending
Scenario: J'ai assez d'argent dans mon compte # features/retirer. 5 end
Given mon compte a un solde de 200 dollars # features/retirer. 6
When je retire 200 dollars # features/retirer. 8
Then je recois 200 dollars # features/retirer 0 Then(/~je
And le solde de mon compte est de @ dollars # features/retirer.feature:21 pending
Scenario: Je n'ai pas assez d'argent dans mon compte # features/retirer.feature:24 end
Given mon compte a un solde de 200 dollars # features/retirer.feature:25 "
when je retire 500 dollars # features/retirer,feature:27 ~ 1hen(/"le
Then je recois un message d'erreur # features/retirer.feature:29 pending
And e solde de mon compte est de 200 dollars # features/retirer.feature:30 end
3 scenarios (3 undefined) .
12 steps (12 undefined) Then(/~je
0mo. 0065 pending
end

You can implement step definitions for undefined steps with these snippets:

Tests d’acceptation et BDD(Behavior Driven

<

% Development)

s LDes outils pour le BDD
é L—cucumber

L_Exécution initiale. . . avec des étapes

o Lexécution initiale de ces scénarios, sans mises en oeuvre des
diverses étapes, donnerait alors un résultat comme celui-ci.

e On remarque que cela dit «3 scenarios» et « 12 steps». Chaque
étape correspond a un Given, When ou Then.

o Dans I'état initial, ces étapes ne sont pas encore mises en oeuvre,
et cucumber nous donne des suggestions quant a ce qu'il faut faire
pour démarrer leur mise en oeuvre.

Mise en oeuvré avec RSpec (trés simplifiée) :

NB = Transform /~\d+$/ do |nb| nb.to_i end

Given(/"mon compte a un solde de (#{NB}) dollarss/) do |montant|
@c = Compte.new("MOI", montant)
end

n(/~je retire (#{NB}) dollars$/) do |montant]
@montant_recu = nil
begin
@c.retirer montant
@montant_recu = montant
rescue Exception => e
@erreur = e
end
end

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
L*cucumber
L_Mise en oeuvre avec RSpec (trés

2016-10-14

o Voici maintenant une mise en oeuvre tres simplifiée des diverses
étapes, qui permet d’exécuter les divers scénarios de tests avec
succes.

e Dans un premier temps, voici les Given et les \When, donc les
pré-conditions.

e Qu’est-ce que je vais faire pour satisfaire cet antécédent... je vais
créer un compte avec un certain solde — donc c’est comme le setup
d’un test unitaire.

Mise en oeuvré avec RSpec (trés simplifiée) :

(suite)

Then(/~le solde de mon compte est de (#{NB}) dollars$/
do |montant |
expect (@c.solde).to eqg montant
end

Then (/”je recois (#{NB}) dollars$/) do |montant]
expect (@montant_recu).to eqg montant
end

Then (/~je recois un message d’erreur$/) do
expect (@erreur).not_to be_nil
end

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
L*cucumber
L_Mise en oeuvré avec RSpec (trés simplifiée) :

2016-10-14

o Voici ensuite les Then, donc les post-conditions.

Mise en oeuvré avec RSpec (trés simplifiée) :

2016-10-14

(suite)

Then(/~le solde de mon compte est de (#{NB}) dollars$/
do |montant |
expect (@c.solde).to eqg montant
end

Then (/" je recois (#{NB}) dollars$/) do |montant]
expect (@montant_recu).to eq montant
end

Then (/~je recois un message d’erreur$/) do
expect (Qerreur).not_to be_nil
end

Tests d’acceptation et BDD(Behavior Driven
Development) :
LDes outils pour le BDD e
L*cucumber =

LMise en oeuvré avec RSpec (trés simplifiée) :

e Je vous signale que les attentes sont exprimées dans le nouveau
style aussi suggéré par RSpec, donc avec des expect plutét qu'avec
des should.

Exécution. .. aprés avoir finalisé les «étapes»

<<~/SeminaireTBDDD/Compte@acBook>> $ cucumber
Feature: Retrait d'un montant d'un compte
En tant que responsable d'un compte
Je veux pouvoir retirer un montant de mon compte
Afin d'avoir de l'argent comptant sous la main

Scenario: J'ai assez d'argent dans mon compte # features/retirer.feature:6
Given mon compte a un solde de 208 dollars # features/compte_steps.rb:29
When je retire 50 dollars # features/compte_steps.rb:19
Then je recois 50 dollars # features/compte_steps.rb:42
And le solde de mon compte est de 150 dollars # features/compte_steps.rb:38

Scenario: J'ai assez d'argent dans mon compte
Given mon compte a un solde de 200 dollars
When je retire 200 dollars
Then je recois 200 dollars
And le solde de mon compte est de @ dollars

features/retirer.feature:15
features/compte_steps. rb:29
features/compte_steps.rb:19
features/compte_steps. rb:42
features/compte_steps. rb:38

oW W

Scenario: Je n'ai pas assez d'argent dans mon compte # features/retirer.feature:24

Given mon compte a un solde de 200 dollars # features/compte_steps.rb:29
When je retire 500 dollars # features/compte_steps.rb:19
Then je recois un message d'erreur # features/compte_steps.rb:46
And le solde de mon compte est de 200 dollars # features/compte_steps.rbi38

3 scenarios (3 passed)

12 steps (12 passed)

0m0.0817s
<<~/SeminaireTBDDD/Comote@MacBook>> ¢ Il

Tests d’acceptation et BDD(Behavior Driven

<

% Development)

s LDes outils pour le BDD
é L—cucumber

LExécution. . . apres avoir finalisé les

o Voici donc les résultats d’exécution une fois qu’on a défini ces
étapes.

Le DSL de cucumber, gherkin, supporte de

nombreux langages,

Scénario: J’ai assez d’argent dans mon compte
Soit mon compte a un solde de 200 dollars

je retire 200 dollars

Alors je recois 200 dollars
Et le solde de mon compte est de 0 dollars

Scénario: Je n’ai pas assez d’argent dans mon compte
Soit mon compte a un solde de 200 dollars

Quand je retire 500 dollars

Alors je recois un message d’erreur
Et le solde de mon compte est de 200 dollars

Tests d’acceptation et BDD(Behavior Driven ol aniss
Development) e
LDes outils pour le BDD
L*cucumber
L Le DSL de cucumber, gherkin, supporte

2016-10-14

e Le langage gherkin supporte une trés grande quantité de
langues : 37 en date de Nov. 2013!

Le DSL de cucumber, gherkin, permet de définir

Scenario Outline: J’ai assez d’argent dans mon compte
Given mon compte a un solde de <solde_initial> dollars

When je retire <montant> dollars

Then je recois <montant> dollars
And le solde de mon compte est de <solde_final> dollars

Scenarios:
| solde_initial | montant | solde_final |
200 | 50 150

| 200 | 200 |0 |
<+ Tests d'acceptation et BDD(Behavior Driven s s do cas g s
% Development) S
s LDes outils pour le BDD o
é L cucumber

L Le DSL de cucumber, gherkin, permet de

2016-10-14

<<~/SeminaireTBDDD/Compte@acBook>> $ cucumber
Feature: Retrait d'un montant d'un compte
En tant que responsable d'un compte
Je veux pouvoir retirer un montant de mon compte
Afin d'avoir de l'argent comptant sous la main

Scenario Outline: J'ai assez d'argent dans mon compte # features/retirer.feature:6
Given mon compte a un solde de <solde_initial> dollars # features/compte_steps.rb:29
When je retire <montant> dollars # features/compte_steps.rb:19
Then je recois <montant> dollars # features/compte_steps.rb:42

And le solde de mon compte est de <solde_final> dollars # features/compte_steps.rb:38

Scenarios:

| solde_initial | montant | solde_final

| 200 | 50 | 150 |

| 200 | 200 | o |

Scenario: Je n'ai pas assez d'argent dans mon compte # features/retirer.feature:20

Given mon compte a un solde de 200 dollars # features/compte_steps.rb:29
When je retire 500 dollars # features/compte_steps.rb:19
Then je recois un message d'erreur # features/compte_steps.rb:46
And le solde de mon compte est de 200 dollars # features/compte_steps.rb:38

3 scenarios (3 passed)

12 steps (12 passed)

0mo. 018s
<<~/SeminaireTBDDD/Compte@MacBook>> $ [

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD e

Lcucumber

2016-10-14

4.2 JRehave

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
= JBehave

4.2 JBehave

Quelques caractéristigues de JBehave

m Open source
= Mise en oeuvre entierement Java

m Utilise des annotations pour associer une méthode Java a
une étape

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
LJBehave
LQuelques caractéristiques de JBehave

2016-10-14

Quelques caractéristigues de JBehave

JBehave peut étre exécuté de différentes fagons

4. Run Stories

.4 .
’ et "
SHPAGHE RHT»
JUi

g' IntellijIDEA Maven

Source: http://jbehave.org/

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
LJBehave
LQuelques caractéristiques de JBehave

2016-10

http://jbehave.org/
http://jbehave.org/

La description des scénarios ~ comme cucumber

Tiré de http entric.de/en/2011/03/
automate E sing-jbehave/

Narrative:

In order to develop an application that requires
a stack efficiently

As a development team

I would like to use an interface
and implementation in Java directly

Scenario: Basic functionality of a Stack

Given an empty stack

When the string Java is added

And the string C++ is added

And the last element is removed again
Then the resulting element should be Java

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
L*JBehave
LLa description des scénarios ~ comme

2016-10-14

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

La description des scénarios ~ comme cucumber

Tiré de http entric.de/en/2011/03/
automated-acceptance-testing-using- jbehave/

Scenario: Stack search

Given an empty stack

When the string Java is added

And the string C++ is added

And the string PHP is added

And the element Java is searched for
Then the position returned should be 3

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
LJBehave
LLa description des scénarios ~ comme

2016-10-14

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

a mise en oeuvre des etapes =

annotations

Tiré de https://blog.codecentric.de/en/2011/03/

public class StackStories extends Embedder {

private Stack<String> testStack;
private String searchElement;

@Given ("an empty stack")
public void anEmptyStack() {
testStack new Stack<String>();

@When ("the string $element$element is added")
public void anElementIsAdded(String elementelement) {
testStack.push (element) ;

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
L*JBehave
L_La mise en oeuvre des étapes = Java avec

2016-10

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

a mise en oeuvre des etapes =

annotations

Tiré de https://blog.codecentric.de/en/2011/03/

@When ("the last element is removed again")

public void removelLastElement () {
testStack.pop () ;

}

@When ("the element Selement is searched for")
public void searchForElement (String element) {
searchElement = element;

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
LJBehave
L_La mise en oeuvre des étapes = Java avec

2016-10

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

a mise en oeuvre des etapes =

annotations

Tiré de https://blog.codecentric.de/en/2011/03/

@Then ("the resulting element should be $result")

public void theResultingElementShouldBe (String result)
Assert.assertEquals (testStack.pop (), result);

}

@Then ("the position returned should be $pos")
public void thePositionReturnedShouldBe (int pos) {
Assert.assertEquals (testStack.search (searchElement),
pos) ;

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
LJBehave
L_La mise en oeuvre des étapes = Java avec

2016-10

https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/
https://blog.codecentric.de/en/2011/03/automated-acceptance-testing-using-jbehave/

43Fit

<+ Tests d'acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD

Lrit

43rit

2016-10-1

Fit : Framework for Integrated Tests

W. Cunningham = Inventeur/concepteur du premier wiki

+4 for Developin
F l t Software -

Framewaork for Integrated Tests

Rick Mugridge
Ward Cunningham

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
LDes outils pour le BDD
Lrit
L_Fit : Framework for Integrated Tests

2016-10

Fit : Framework for Integrated Tests

Framework for Integrated Test, or “Fit”, is an
open-source tool for automated customer tests. It
integrates the work of customers, analysts, testers,
and developers.

Source: https://en.wikipedia.org/wiki/Framework_for_integrated_test

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit -
L_Fit : Framework for Integrated Tests

2016-10-14

https://en.wikipedia.org/wiki/Framework_for_integrated_test
https://en.wikipedia.org/wiki/Framework_for_integrated_test

Fit : Framework for Integrated Tests

Customers provide examples of how their software
should work. Those examples are then connected to
the software with programmer-written test fixtures and
automatically checked for correctness.

The customers’ examples are formatted in tables and
saved as HTML using ordinary business tools such as
Microsoft Excel. When Fit checks the document, it
creates a copy and colors the tables green, red, and

according to whether the software behaved as
expected.

Source: https://en.wikipedia.org/wiki/Framework_for_integrated_test

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit :
L_Fit : Framework for Integrated Tests -

2016-10-14

https://en.wikipedia.org/wiki/Framework_for_integrated_test
https://en.wikipedia.org/wiki/Framework_for_integrated_test

Les concepts de base de Fit

Fit table

A Fit table is a way of expressing the business logic using a
simple HTML table. These examples help developers better
understand the requirements and are used as acceptance test
cases. Analysts create Fit tables using a tool like MS Word, MS
Excel, or even a text editor (assumes familiarity with HTML
tags).

Source: http://www. javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
L Les concepts de base de Fit

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Le

2016-10-14

s concepts de base de Fit

Fixture

A fixture is an interface between the test instrumentation (in our
case, the Fit framework), test cases (Fit tables), and the system
under test (SUT). Fixtures are Java classes usually written by
developers.

Donc : Semblables aux step definitions de Cucumber.

Trois sortes de fixture

m Column fixture for testing calculations
m Action fixture for testing the user interfaces or workflow
m Row fixture for validating a collection of domain objects

Source: http://www. javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
L Les concepts de base de Fit -

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Les concepts de base de Fit

Test runner

Fit provides a main driver class, fit. FileRunner, that can be
used to execute tests. FileRunner takes two parameters : the
name of an input HTML file that has one or more test cases
expressed as Fit tables and the name of an output file where Fit
records test results.

Source: http://www. javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
L Les concepts de base de Fit

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Les concepts de base de Fit

FIT Tahle

Fixture Systemn Under Test

Figure 1. Relationship between Fit table, fixture, and 5UT

Source: http://www. javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
L Les concepts de base de Fit =

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d'utilisation de Fit

On identifie les récits utilisateurs

A uger can yeardv for wp N football teames bae

o rarng: Test 1 Verify The rating & colculated: properly
Mot TesT 2! Seawchv fov Top 2 Teawms wiing the joreens
validere yeardy resudly.

rating = ({10000*(won3+drawnd)/ (3 "played))1
rornd the regudud

Note: The: time takew o yeardv should be lew
thar 2 sec

Figure 2. Front side of the user story card: Requiremen: _ . .
Figure 3, Back side of the user story card: Acceptance tests

Source: http://www. javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Tests d’acceptation et BDD(Behavior Driven

<

% Development)

s LDes outils pour le BDD

g Lrit -

L_Processus d'utilisation de Fit

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d'utilisation de Fit

On crée les tables d’exemples, par exemple, dans un fichier Excel

E Help
i !g i fial - B |
s hd A 20

B c el E [F G =
4 |Team Name|Played| Won |Drawn| Lost | Rating |
5 |Arsenal 35]l 2 8 83
B |Aston Villa 38 20 2 16 54
7 [Chelsea 38 35 1 2 93
W 4 v w)\Fit Jhide / | Bl
Read:

Figure 4. Excel file with sample data

Source: http://www.javaworld.com/article/2071778/testing-debugging/
fit-for-analysts-and-developers.html
Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
LProcessus d'utilisation de Fit

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d'utilisation de Fit

Des fichiers HTML sont générés a partir des tables des fichiers Excel

sample.VerifyRating

team name played won drawn lost rating)
Arsenal 38 31 2 5 83
Aston Villa 38 20 2 16 54
Chelsea 38 35 1 2 93
Dummy 38 35 1 2 100
Wigan 38 26 7 5 75

Source: http://www. javaworld.com/article/2071778/testing-debugging/

fit-for-analysts-and-developers.html

Tests d’acceptation et BDD(Behavior Driven
Development) =
L Des outils pour le BDD -
Lrit =
LProcessus d'utilisation de Fit -

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d'utilisation de Fit

On écrit le code Java qui fait le lien avec les exemples

package sample;
import fit.ColumnFixture;

public class VerifyRating extends ColumnFixture {
public String teamName;
public int played;
public int won;
public int drawn;
public int lost;
Team team = null;

public long rating() {
team = new Team(teamName,played,won,drawn,lost);
return team.rating;

}

Source: http://www. javaworld.com/article/2071778/testing-debugging/

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
LProcessus d'utilisation de Fit

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d'utilisation de Fit

On écrit le code Java qui met en oeuvre le modéle d’affaire

public class Team {
public String name;
public int played, won, drawn, lost, rating;

public Team(String name, int played, int won, int drawn, i
super () ;
this.name = name; this.played = played;
this.won = won; this.drawn = drawn;
this.lost = lost; calculateRating();

private void calculateRating() {
float value = ((10000f* (won*3+drawn))/ (3*played))/100;
rating = Math.round(value);

}

Source: http://www. javaworld.com/article/2071778/testing-debugging/

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
Lrit
LProcessus d'utilisation de Fit

2016-10-14

http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html
http://www.javaworld.com/article/2071778/testing-debugging/fit-for-analysts-and-developers.html

Processus d'utilisation de Fit

On lance le test runner pour vérifier que tous les exemples sont satisfaits

8] result.htm - Microsoft Word =<
Fle Edt Vew [sert Format Iw\sl%lﬂ\nduw DoaumentsToGo Help X
IEES &Ry 4 ® @m0 7 - 7 kemne?
O o Y o o Y e S

[Basis Employee Compensation

M

For each week, hourly employees are paid a standard wage per hous for the first 40 houss
worked, 1.5 times their wage for sach hout after the first 40 hours, and 2 times their wage
for each hour worked on Sundays and holidays.

Here are some typical examples of this:

srell Fistures, Weekly G

= age Pay0 |
3300
5 $950 -
3
>
5109 ot S
=ra |
Page 1 Sec 1 Y1 At ln1 Col1 REC TRK EXT OWR E

Source: http://fit.c2.com/wiki.cgi?IntroductionToFit

Tests d’acceptation et BDD(Behavior Driven

<

% Development)

s LDes outils pour le BDD
g Lrit

L_Processus d'utilisation de Fit

o Pas le méme exemple que les précédents. lllustre seulement les
cellules vertes et rouges.

http://fit.c2.com/wiki.cgi?IntroductionToFit
http://fit.c2.com/wiki.cgi?IntroductionToFit

2016-10-14

4.4 D’autres outils pour le BDD

Tests d’acceptation et BDD(Behavior Driven
Development)
LDes outils pour le BDD
L-D’autres outils pour le BDD

4.4 D'autres outils pour le BDD

De nombreux autres outils sont disponibles pour

I'approche BDD

Cucumber-JVM

Cucumber-JVM is a Cucumber implementation for the most popular JVM languages.
This document is the reference for features that are specific to Cucumber-JVM

Please see the general reference for features that are commeon to all Cucumber implementations.

Languages

Cucumber-JVM supports the following JVM languages

® Java

* Groovy

e Scala

® Clojure

« Jython

* JRuby

 Rhino JavaScript
® Gosu

Tests d’acceptation et BDD(Behavior Driven

<

% Development) Cuumber
> L-Des outils pour le BDD f—

g L D'autres outils pour le BDD g

L_De nombreux autres outils sont disponibles

De nombreux autres outils sont disponibles pour

I'approche BDD

specflow

Cucumber for .NET

<+ Tests d'acceptation et BDD(Behavior Driven

% Development) [V__)
2 .

» —Des outils pour le BDD specﬂcw
g L D'autres outils pour le BDD Cocambertor NEF

L_De nombreux autres outils sont disponibles

De nombreux autres outils sont disponibles pour

I'approche BDD

[Qbehat

A php framework for
autotesting your business
expectations.

<+ Tests d'acceptation et BDD(Behavior Driven
% Development)
s LDes outils pour le BDD
g L-D’autres outils pour le BDD
L_De nombreux autres outils sont disponibles

De nombreux autres outils sont disponibles pour

I'approche BDD

@ Serenity

Home Documentatior

A produce
Executable

Report on Automate
Test Resuits the Tests

K Execute /

the Tests

<+ Tests d'acceptation et BDD(Behavior Driven
% Development)
s LDes outils pour le BDD
§ L-D’autres outils pour le BDD
L_De nombreux autres outils sont disponibles

<

Fait : Linterface
personne—machine de

nombreux systemes repose
sur l'utilisation de pages
Web et de fureteurs

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation

Comment peut-on interagir,
dans un programme de
tests, avec des sites Web ?

<+ Tests d'acceptation et BDD(Behavior Driven

% Development) Comment peu
S X . . dans un

» —Drautres outils pour les tests d'acceptation tests, aveo des sites
=

N

peut-on interagir,
programme de
d

Web ?

2016-10-14

A-t-on besoin d’un fureteur
(browser) pour interagir

avec des sites Web ?

Tests d’acceptation et BDD(Behavior Driven

Development) A-t-on besoin dun fureteur
L r . , X (browser) pour intera
D’autres outils pour les tests d’acceptation avec des sites Web ?

2016-10-14

5.1 Controleurs de fureteurs vs.
fureteurs «sans téte»

Tests d’acceptation et BDD(Behavior Driven
Development) 5.1 Contrdleurs de fureteurs vs
L D’autres outils pour les tests d’acceptation fureteurs woans e
LContréleurs de fureteurs vs. fureteurs «sans
téte»

Certains outils permettent de contréler I'exécution d'un

«vrai» fureteur = Browser drivers

http://www.seleniumhqg.org/selenium-rc.png

Windows, Linux, or Mac (as appropriate)...

@ o
Intermet Explorer Firefox Safari
[selenium Core | Selenium Core [selenium Core]

Remote
Control Server

-~ Maching

Java, Ruby,
Python, Perl,
- | PHP or .Net

Tests d’acceptation et BDD(Behavior Driven

< [re—
% Development) . - @‘Q @
> L_Drautres outils pour les tests d’acceptation Sll==ll=
é LControleurs de fureteurs vs. fureteurs «sans =
téte» -

http://www.seleniumhq.org/selenium-rc.png
http://www.seleniumhq.org/selenium-rc.png

Exemple : Tests unitaires de I'application Web d’Oto

Vidéo illustrant une partie de I'exécution des tests unitaires de
I'application Web d’Oto avec Firefox :
http://www.labunix.ugam.ca/~tremblay/MGL7460/
Materiel/video-tests-oto.mov

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
L D’autres outils pour les tests d’acceptation
LControleurs de fureteurs vs. fureteurs «sans
téte»
=

2016-10

http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov
http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov
http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov
http://www.labunix.uqam.ca/~tremblay/MGL7460/Materiel/video-tests-oto.mov

D’autres outils mettent en oeuvre des fureteurs. ..
sans GUI ! = Headless browser

http://techyworks.blogspot .ca/2014/08/headless-browser—testing-using-selenium.html

<+ Tests d'acceptation et BDD(Behavior Driven

% Development)

s L D’autres outils pour les tests d’acceptation

§ L_Contréleurs de fureteurs vs. fureteurs «sans
téte»
[N

http://techyworks.blogspot.ca/2014/08/headless-browser-testing-using-selenium.html
http://techyworks.blogspot.ca/2014/08/headless-browser-testing-using-selenium.html

Headless browser

What is a headless browser ?

Headless browser is a term used to define browser
simulation programs which do not have a GUI. These
programs behave just like a browser but don’t show
any GUI.

Source:

http://toolsqga.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L_Contréleurs de fureteurs vs. fureteurs «sans
téte»
[

2016-10-14

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/
http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

Headless browser

What is the use of Headless browsers ?

El You have a central build tool which does not have any
browser installed on it.

You want [...] a program that goes through different pages
and collects data, [and] you really don't care about opening
a browser. All you need is to access the webpages.

You would like to simulate multiple browser versions on the
same machine.

Source:

http://toolsqga.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L_Contréleurs de fureteurs vs. fureteurs «sans
téte» -
[" '

2016-10-14

http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/
http://toolsqa.com/selenium-webdriver/headless-browser-testing-selenium-webdriver/

2016-10-14

5.2 Langages de description
d’interactions avec des sites Web

Tests d’acceptation et BDD(Behavior Driven
Development) 5.2 Langages de description
L D’autres outils pour les tests d’acceptation meractons auep des stes Web
LLangages de description d'interactions avec des
sites Web

Question : Comment peut-on interagir, dans un

programme de tests, avec des sites Web ?

Réponse = En utilisant un langage qui permet
de décrire les interactions avec les sites Web

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10

Capybara

<+ Tests d'acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
sites Web

Capybara

2016-10-1

Capybara est un outil Ruby pour interagir avec des

sites Web,

Capybara

Capybara is an integration testing tool for rack based web
applications. It simulates how a user would interact with a

website.
<+ Tests d'acceptation et BDD(Behavior Driven avecou ars rr
T Development) m:_

L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10

Capybara est un outil Ruby pour interagir avec des

sites Web,

Capybara

Capybara is a tool that Ruby on Rails developers mostly use for
testing their web applications. This tool, however, can be also
used to automate boring/repeating/long running tasks on the
web or scraping information from web sites that were not kind
enough to provide API.

<+ Tests d'acceptation et BDD(Behavior Driven e o sans s
= Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘iteAs We_b

2016-10

Capybara définit un DSL pour décrire des

interactions avec des sites Web

visit (' /projects’)
visit ("http://oto.ugam.ca’)

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10

Capybara définit un DSL pour décrire des

interactions avec des sites Web

click_link (’id-of-1ink’)
click_link (’Link Text’)

click_button (' Save’)

click_on(’Link Text’)
click_on(’Button Value’)

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10-14

Capybara définit un DSL pour décrire des

interactions avec des sites Web

Formulaires

fill_in('First Name’, :with => "John’)
fill_in(’Password’, :with => ’Seekrit’)
fill_in(’Description’, :with => ’'Really Long Text...’)

choose (A Radio Button’)

check (A Checkbox’)
uncheck (' A Checkbox’)

attach_file ('’ Image’, ’/path/to/image.jpg’)

select ('Option’, :from => ’Select Box’)

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10-14

Capybara définit un DSL pour décrire des

interactions avec des sites Web

page.has_selector? ('table tr’)
page.has_selector? (:xpath, ’//table/tr’)

page.has_xpath? (' //table/tr’)
page.has_css? (’'table tr.foo’)

page.has_content? (' foo’)

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10-14

Capybara définit un DSL pour décrire des

interactions avec des sites Web

find_field(’First Name’) .value
find_link (’Hello’, :visible => :all) .visible?
find_button (’ Send’) .click

find(:xpath, ’//table/tr’).click
find (' #overlay’) .find(’hl’) .click

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘ites Web

2016-10-14

Divers drivers peuvent étre utilisés, avec un «vrai»

fureteur ou avec un fureteur «sans téte»

= Driver par défaut de Capybara
m Interagit avec un serveur sans GUI (Headless browser)
= Ne peut pas exécuter de JavaScript

Driver Selenium

m Peut contréler un vrai fureteur : Voir la vidéo plus loin
m Ne peut pas exécuter de JavaScript

Les tests unitaires de I'application Web pour I'outil de correction
Oto sont décrits avec le DSL de capybara, et exécutés avec le
driver Selenium pour Firefox.

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘itef.Web »

2016-10-14

Autre exemple d'utilisation de Capybara : Une

application pour gérer des préts de livres

Voir plus loin!

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘itef; Web

Voir pus oin |

2016-10

Selenium WebDriver

<+ Tests d'acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
sites Web

Selenium WebDriver

2016-10-1

Des DSL semblables sont disponibles pour d'autres
outils et d’autres langages

Exemple : WwebDriver de Selenium pour Java

WebDriver driver
= new FirefoxDriver () ;

driver.get ("http://localhost.8080/#/welcome");

driver.findElement (By.name ("email"))
.sendKeys (" jane.smith@acme.com") ;

driver.findElement (By.name ("password"))
.sendKeys ("s3cr3t");

driver.findElement (By.id("signin"))
.click();

WebElement welcomeMsg
= driver.findElement (By.id("welcome-message")) ;

assertThat (welcomeMsg.text ()) .isEqualTo ("Welcome Jane");

Source: «BDD in action», Smart

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
LLangages de description d'interactions avec des
s‘itef Webm

2016-10-14

2016-10-14

5.3 Outils de capture et de
réexécution

Tests d’acceptation et BDD(Behavior Driven
Development) 5.3 Outls de caplure et de
L D’autres outils pour les tests d’acceptation reeeton
L—Qutils de capture et de réexécution

Question : Comment peut-on interagir, dans un

programme de tests, avec des sites Web ?

Réponse = En «enregistrant» des interactions
faites de fagon manuelle, puis en «rejouant» les
actions enregistrées

<+ Tests d'acceptation et BDD(Behavior Driven

= Development)

L D’autres outils pour les tests d’acceptation
LOLutiIs de capture et de réexécution

2016-10

Certains outils permettent de capturer les interactions
avec un fureteur, puis de les reproduire

Create
project

Chromium
Browser
Automation

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils de capture et de réexécution
L_Certains outils permettent de capturer les

2016-10-14

Selenium

<+ Tests d'acceptation et BDD(Behavior Driven

Development)

L D’autres outils pour les tests d’acceptation
L—Qutils de capture et de réexécution

Selenium

2016-10-1

Which part of Selenium is appropriate for me?

Selenium WebDriver Selenium IDE
If you want to If you want to
+ create robust, browser-based regression « create quick bug reproduction
automation suites and tests scripts
« scale and distribute scripts across many « create scripts to aid in
environments automation-aided exploratory
testing

Source: http://www.seleniumhg.org/

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils de capture et de réexécution

2016-10-14

http://www.seleniumhq.org/
http://www.seleniumhq.org/

Selenium est un outil pour interagir avec des sites

Web, dans divers langages et environnements

m [lt] provides a record/playback tool for authoring tests
without learning a test scripting language (Selenium IDE).

m [It] provides a test domain-specific language (Selenese) to
write tests in a number of popular programming languages,
including Java, C#, Groovy, Perl, PHP, Python and Ruby.

m The tests can then be run against most modern web
browsers.

m [It] deploys on Windows, Linux, and Macintosh platforms.

Source: https://en.wikipedia.org/wiki/Selenium_(software)

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils de capture et de réexécution
LSelenium est un outil pour interagir avec des ..

2016-10-14

e It is open-source software, released under the Apache 2.0 license,
and can be downloaded and used without charge.

https://en.wikipedia.org/wiki/Selenium_(software)
https://en.wikipedia.org/wiki/Selenium_(software)

2016-10-14

5.4 Ouitils en ligne de
commandes

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Outils en ligne de commandes

5.4 Outils en ligne de
commandes

Question : Comment peut-on interagir, dans un

programme de tests, avec des sites Web ?

Réponse = En exécutant, via un script, des
commandes au niveau de la «ligne de
commandes»

Tests d’acceptation et BDD(Behavior Driven

Development)

L D’autres outils pour les tests d’acceptation
LOLutiIs en ligne de commandes

2016-10-14

curl

<+ Tests d'acceptation et BDD(Behavior Driven

Development)

L D’autres outils pour les tests d’acceptation
L—Outils en ligne de commandes

2016-10-1

curl://

command line tool and library
for transferring data with URLs

Source: https://curl.haxx.se/

Tests d’acceptation et BDD(Behavior Driven

Development) Cur\lg/ /

L D’autres outils pour les tests d’acceptation
L—Outils en ligne de commandes

2016-10-14

https://curl.haxx.se/
https://curl.haxx.se/

curl permet de faire des acces Web en mode «ligne

de commandes»

curl is a tool to transfer data from or to a server, using
one of the supported protocols (DICT, FILE, FTP,
FTPS, GOPHER, HTTF, HTTPS, IMAR, IMAPS, LDAF,
LDAPS, POP3, POP3S, RTMF, RTSP, SCF, SFTP,
SMTP, SMTPS, TELNET and TFTP).

The command is designed to work without user
interaction.

Source: man curl

= Parfait pour utilisation dans des scripts de tests

<+ Tests d'acceptation et BDD(Behavior Driven
= Development)
L D’autres outils pour les tests d’acceptation
L—Qutils en ligne de commandes
Lcur1 permet de faire des acces Web en e s

2016-10

Lopération par défaut de curl est GET

2016-10-14

Opération GE

$ curl http://www.labunix.ugam.ca/~tremblay/MGL7460/

<HTML>

<HEAD>

<TITLE>Réalisation et maintenance de logiciels</TITLE>
</HEAD>

<FRAMESET ROWS="10%, »">
<FRAME NAME="Banniere" src="haut.html">

<FRAMESET COLS="20%, ">

<FRAME NAME="Menu" src="menu.html" TARGET="Principal">
<FRAME NAME="Principal" src="accueil.html">
</FRAMESET>

</FRAMESET>
</HTML>

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils en ligne de commandes
LI.’opération par défaut de curl est GET

Mais toute autre opération HTTP peut aussi étre

exécutée

Opération POST pour un formulaire avec champs a remplir

$ curl --cookie\
-F "champl=..."\
-F "champ2=..."\
—F "submit=..."\

http://www.labunix.ugam.ca/...

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils en ligne de commandes
LMais toute autre opération HTTP peut aussi

2016-10-14

Quand un tel outil peut-il
étre utile ?

<+ Tests d'acceptation et BDD(Behavior Driven

& Development) Quand un tel outil peut-i
% —Drautres outils pour les tests d'acceptation S vtle?

é L—Outils en ligne de commandes

Exemple : Utilisation de curl pour I'application Web

d’Oto — tests de stress et de concurrence

Script de haut niveau

Pendant plusieurs rondes, on lance plusieurs utilisateurs (10)
qui vont accéder I'application «en méme temps»

(concurrence) :

Extraits du script run-tests-curl

for ((i=1; i<=$NB_RONDES; i++)); do
for ((j=0; Jj<$NB_TESTEURS; j++)); do

verifier-puis-rendre-tp testeur$j ... &

done
wait

done

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils en ligne de commandes
LExemple : Utilisation de curl pour

2016-10-14

o Raisons de ces tests : Lapplication Web semblait bien fonctionner,
sauf parfois lors de la remise des laboratoires, donc lorsqu’il y avait
une période de deux heures allouées pour faire un travail et que les
remises se faisaient alors «presque toutes en méme temps» a la fin
de la période de remise.

e Je soupconnais évidemment une «situation de compétition» (race
condition), mais je n’arrivais pas a voir ou et, surtout, je n’arrivais pas,
avec des tests manuels ou avec des tests Capybara, a reproduire le
probléme. Par contre, I'utilisation de ces scripts curl m’a permis de
réussir a reproduire le bogue, ce qui m’a permis ensuite de mieux
cerner ou était le probléme puis de le régler — ajout de 3 lignes de
code, en utilisant un verrou pour protéger un acces a une ressource
partagée.

Exemple : Utilisation de curl pour I'application Web
d’Oto — tests de stress et de concurrence

Les appels curl dans verifier-puis-rendre-tp

Extraits du script verifier-puis-rendre-tp
SERVEUR="https://oto.labunix.ugam.ca/application-web"

On se connecte

curl --cookie-jar $COOKIE\
——data "utilisateur=$ETUDIANT"\
--data-urlencode "motdepasse=$MOT_DE_PASSE"\
—--data "groupe=etudiant"\
—--data "submit=Connexion"\
$SERVEUR/connexion

On verifie le TP.
curl --cookie $COOKIE\
~-F "evaluation=$EVALUATION"\
-F "enseignant=$ENSEIGNANT"\
—-F "submit=Vérifier"\
-F "fichierverification=@$PROGRAMME"\
$SERVEUR/etudiant/verifier-tp

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils en ligne de commandes
LExemple : Utilisation de curl pour

2016-10-14

Exemple : Utilisation de curl pour I'application Web
d’Oto — tests de stress et de concurrence

Les appels curl dans verifier-puis-rendre-tp

Extraits du script verifier-puis-rendre-tp (suite)
On rend le TP
curl --cookie $COOKIE\
—F "boite=$BOITE"\
-F "enseignant=$ENSEIGNANT"\
—F "submit=Rendre"\
-F "equipe=S$EQUIPE"\
-F "fichier1=@$PROGRAMME"\
$SERVEUR/etudiant/rendre-tp

On se deconnecte
curl --cookie $COOKIE\
$SERVEUR/deconnexion

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L—Qutils en ligne de commandes
LExemple : Utilisation de curl pour

2016-10-14

2016-10-14

5.5 How much web testing do
you really need ?

Tests d’acceptation et BDD(Behavior Driven
Development) 5.5 How much web testing do
L D’autres outils pour les tests d’acceptation youtealynecd?
L How much web testing do you really need ?

Extraits de «BDD in Action»

Web tests clearly have their uses. But you rarely need
to test every aspect of a system using web tests, and
doing so is generally not a good idea. In fact, in a
typical BDD project, a significant proportion of
automated acceptance tests will be implemented as
non-web tests.

[..]

Many automated acceptance criteria, particularly
those related to business rules or calculations, are
more effectively done using the application code
rather than via the user-interface, as non-web tests
can test specific business rules more quickly and more
precisely then an end-to-end web test.

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L How much web testing do you really need ?
LExtraits de «BDD in Action»

2016-10-14

Extraits de «BDD in Action» (suite)

You only need a web test for two things :
m lllustrating the user’s journey through the system

m lllustrating how a business rule is represented in
the user interface

Web tests [...] don’t need to show every possible path
through the system—just the more significant ones.
More exhaustive testing can be left to faster-running
unit tests.
[.]
A good rule of thumb is to ask yourself whether you're
illustrating how the user interacts with the application
or underlying business logic that's independent of the
user interface.

Tests d’acceptation et BDD(Behavior Driven
Development)
L D’autres outils pour les tests d’acceptation
L How much web testing do you really need ?
LExtraits de «BDD in Action» (suite)

2016-10-14

Le logiciel biblio : Premiére version C (=~ 1998)

biblio
= Petit logiciel pour prendre en note les livres prétés et
rapportés, rappeler un livre, etc.

m Premiere version développée en C (= fin des années 90)
(projet d’étudiants du certificat en informatique)

m Utilisation en mode «ligne de commandes»

® Programme monolithique
® Pas DRY (plein de code dupliqué)
® Aucun test

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LLe logiciel biblio : Premiére version C (~

2016-10-14

Le logiciel biblio : Deuxieme version C (=~ 2005)

biblio
= Petit logiciel pour prendre en note les livres prétés et
rapportés, rappeler un livre, etc.

m Deuxiéme version développée en C
m Utilisation en mode «ligne de commandes»

© Programme modulaire
© DRY (code propre et bien structuré)
© Nombreux tests unitaires

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LLe logiciel biblio : Deuxiéme version C (=

2016-10-14

Le logiciel biblio : Version Ruby (2014)

biblio
= Nouvelle version développée en Ruby
= Avec tests

m Tests unitaires (rspec)
m Tests d’acceptation (cucumber)

= Deux modes d'utilisation

® Mode ligne de commande (g11i)
m Mode Web (Ruby on Rails)

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LLe logiciel biblio : Version Ruby (2014)

2016-10-14

2016-10-14

binfbiblio: GLI::Ap Biblio EmpruntsTxt
o—i{]
Emprunts EmpruntsYAM
o |
Emprunt

ServiceCourriel
K - ol
o—

Tests d’acceptation et BDD(Behavior Driven

Development) = =
L_Un exemple plus détaillé avec cucumber : = =
biblio) = —

L_Architecture de biblio

o Voici donc ce que ga donne dans le contexte de mon application
biblio pour la gestion de préts de livres.

2016-10-14

Biblio

Rails.application

ServiceCourriel
S Gmail
o—1

Tests d’acceptation et BDD(Behavior Driven

Development)

L-un exemple plus détaillé avec cucumber :

biblio
L_Architecture de bibli

Emprunts

Emprunt

o

EmpruntsTxt

EmpruntsYAM
o

Archiocture do 16110

e Quand on veut changer d'interface personne-machine pour une
application Web, il suffit essentiellement de définir un nouveau
composant, qui va utiliser les autres composants déja définis.

2016-10-14

6.1 Spécification de biblio

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LSpécification de biblio

6.1 Spécification de biblio

2016-10-14

$ biblio emprunter "Guy T." tremblay.guyQugam.ca\
"The RSpec Book" "Chelimsky et al."

$ biblio emprunteur "The RSpec Book"
Guy T.

$ biblio rappeler_livre "The RSpec Book"
Un courriel a ete transmis a tremblay.guy@ugam.ca.

$ biblio rapporter "The RSpec Book"

$ biblio emprunteur "The RSpec Book"
error: Aucun livre emprunte avec le titre
"The RSpec Book’.

e

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LSpécification de biblio
[e—— . -

o Un exemple qui illustre ces notions, plus particuliérement dans le
contexte TDD/BDD

o Pourquoi ligne de commandes ? Parce que c’est ma fagon
habituelle de travailler. Parce que c’est plus simple a mettre en
oeuvre et a expliquer dans un exemple. Parce que c’est donc la
premiére mise en oeuvre que j'ai développée.

o Parce que j'ai aussi déja une version fonctionnelle en C, développée
il y a quelques années par un groupe d’étudiants et qui a ensuite été
utilisé comme «corpus de maintenance» dans le cours INF3135.

e Ce qui m'intéresse aujourd’hui, c’est de présenter I'allure générale
de la solution, des scénarios et de certains tests, plus spécifiquement
pour rappeler_livre.

2016-10-14

@ BiblioWeb - Mozilla Firefox [=J=)(x]

Fle Edit View History Bookmarks Tools Help

(3]

[Most Visitedv EJMAISON [MGmail EJAgenda [JEMétéo [F]AccesD

Identification d'un emprunt

@ 0 [@wocanost scoopivioer v &) [~ roy2@l 4 @ @~

Titre: | | Auteurs: | |
Nom: | | Courriel: |]
) BiblioWeb - Mo ox [EEB)

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
LSpécification de biblio
[e—— .

1
I version Webs

Identification d'un emprunt

e Mais, plus récemment, j’ai aussi mis en oeuvre une version, simple,

avec une interface Web réalisée avec Ruby on Rails.

Spécification cucumber : emprunter.feature

(modes ligne de commandes et Web)

Fonctionnalité: Emprunt de livres
En tant qu’usager
Je veux pouvoir indiquer 1’emprunt de livres
Afin de savoir a qui je les ai prétés

Scénario: J’emprunte plusieurs livres
Soit "./.biblio.txt" existe et est vide

"noml" ["Q@"] emprunte "titrel" ["auteursl"
"nom2" ["@"] emprunte "titre2" ["auteurs2"]

Alors il y a 2 emprunts
Et 1’emprunteur de "titrel" est "noml"
Et 1l’emprunteur de "titre2" est "nom2"

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L?pécification debiblio

2016-10-14

Spécification cucumber : rapporter.feature

(modes ligne de commandes et Web)

Fonctionnalité: Retour de livres
En tant qu’usager
Je veux pouvoir indiquer les livres qui me sont rapportés

Scénario: J'emprunte plusieurs livres et j’en rapporte un
Soit "./.biblio.txt" existe et est vide

"noml" ["Q@"] emprunte "titrel" ["auteursl"]
"nom2" ["Q@"] emprunte "titre2" ["auteurs2"]
Quand on rapporte "titre2"

't on demande l’emprunteur de "titre2"

Alors le livre n’est pas emprunté
Et il y a maintenant 1 emprunts
Et 1’emprunteur de "titrel" est "noml"

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L?pécification debiblio

2016-10-14

Spécification cucumber : rappeler.feature

(mode ligne de commandes seulement)

Fonctionnalité: Rappel d’un livre prété
En tant qu’usager
Je veux pouvoir facilement contacter les personnes
qui ont emprunté certains de mes livres
Afin que ces personnes me les rapportent

Scénario: Je demande le rappel d’un livre spécifique
Soit ".biblio.txt" existe et est vide
Et "Tremblay" ["tremblay.guy.phd@gmail.com"]
emprunte "Titrel" ["Auteursl"]

ind on rappelle "Titrel"

Alors the output should contain:

wun

Un courriel a ete transmis a tremblay.guy.phd@gmail.com

ww

Et the exit status should be 0

<+ Tests d'acceptation et BDD(Behavior Driven

= Development)

L-un exemple plus détaillé avec cucumber
biblio
L‘Spécification debiblio

2016-10

2016-10-14

binfbiblio: GLI::Ap Biblio EmpruntsTxt
o—i{]
Emprunts EmpruntsYAM
o |
Emprunt

ServiceCourriel
K - ol
o—

Tests d’acceptation et BDD(Behavior Driven

Development) = =
L_Un exemple plus détaillé avec cucumber : = =
biblio) = —

LSpécification de biblio
| A . P

o Voici donc ce que ga donne dans le contexte de mon application
biblio pour la gestion de préts de livres.

2016-10-14

Biblio

Rails.application

ServiceCourriel
S Gmail
o—1

Tests d’acceptation et BDD(Behavior Driven

Development)

L-un exemple plus détaillé avec cucumber :

biblio
LSpécification de biblio
| .- . ' e

Emprunts

Emprunt

EmpruntsTxt

EmpruntsYAM
o

Archiocture do 16110

e Quand on veut changer d'interface personne-machine pour une
application Web, il suffit essentiellement de définir un nouveau
composant, qui va utiliser les autres composants déja définis.

Exécution des scénarios avec Cucumber :

emprunter.feature: & Résultats
Fichier gherkin I ueumber =3 dexéeution
des scénarios

<<use>>

biblio_steps:
Fichier aruba/cucumber|

i

binibibilo: GLI::App [ebio | 6 [EmpruntsTt |

—C

<<use>>

EmpruntsYAWL

2

<+ Tests d'acceptation et BDD(Behavior Driven Varsin g do commang

% Development) — =]~

b L_Un exemple plus détaillé avec cucumber : -

T Dbiblio T e
N

LSpécification de biblio
I - - ' ’ .

Exécution des scénarios avec Cucumber :

emprunter.feature: Résultats
Fichier gherkin I —> gexéention
des scénarios
<cusesn
biblio_steps:
Fichier cucumber/rails
Rals.application [ewio | G [EmpruntsTt |
—C
o
%J
<+ Tests d'acceptation et BDD(Behavior Driven rsn e
% Development) — =]~
> L_Un exemple plus détaillé avec cucumber :
S biblio I PR S g
L gpécification de biblio ==
I - - . . . ~ .

2016-10-14

Soit (/""" (.%)" existe et est vide$/) do |fich|
step %{I successfully run
‘bin/biblio —-depot=#{fich} init --detruire‘}

end

nand (/A" (.%2)" \["(.*?)"\] emprunte " (.x2)" \["(.x?2)"\]$/)
do |nom, courriel, titre, auteurs|

step %${I run ‘bin/biblio emprunter\
#{nom} #{courriel} #{titre} #{auteurs}‘'}

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L‘Spécification debiblio

e Le gem aruba définit un ensemble d'étape gherkin prédéfinies
qui permettent de définir des conditions, événements, résultats au
niveau de I'exécution de commandes au niveau du shell.

2016-10-14

Soit (/""" (.%)" existe et est vide$/) do |fich|
visit "/biblio/vider"

end

Quand (/" (.*2)" \["(.*?)"\] emprunte " (.*2)" \["(.

do |nom, courriel, titre, auteurs|
visit "/biblio/emprunter"
fill_in "Titre", :with => titre
fill_in "Auteurs", :with => auteurs
fill_in "Nom", :with => nom
fill_in "Courriel", :with => courriel
click_button "Emprunter"

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L‘Spécification debiblio

*2)"\1$/)

o Mais ces étapes, si elles sont définies a un niveau d’abstractions
dans les scénarios, peuvent aussi étre mises en oeuvre a l'aide

d’opérations sur un fureteur Web.

e Donc, la mise en oeuvre des étapes est spécifique a mon interface

personne—machine.

Alors (/”1’emprunteur de " (.x?)" est "(.%x?)"$/) do |titre, nom|
step %${I successfully run ‘bin/biblio emprunteur #{titre}‘}

step %{the stdout should contain "#{nom}"}

<+ Tests d'acceptation et BDD(Behavior Driven
% Development)
L-un exemple plus détaillé avec cucumber
biblio
Lgpécification debiblio

2016-1

Alors (/”1’emprunteur de " (.x?)" est "(.%?)"$/) do |titre, nom|
visit "/biblio/emprunteur"
fill_in "Titre recherché", :with => titre
click_button "Trouver emprunteur"
expect (page) .to have_content (nom)
end

1, vrsion Web
- (suie)

<+ Tests d'acceptation et BDD(Behavior Driven

= Development)

L-un exemple plus détaillé avec cucumber
biblio
L‘Spécification debiblio

2016-10

e Donc :
e On a des scénarios qui sont abstraits

e On a des étapes qui sont spécifiques/particuliéres a chacune
des interfaces personne—machine.

e On va voir que ces étapes, liées a chaque IPM, sont mises en
oeuvre par des contréleurs qui vont utiliser la méme couche de
modeéle.

2016-10-14

6.2 Mises en oeuvre de biblio

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
Mises en oeuvre de biblio

6.2 Mises en oeuvre de b

Architecture en couches :

three tier architecture

2016-10-14

Client(s}

== =
Deskiop Laptop fomputel Workstation

Application
Server

/ Sarver

Dalabase @
Data Store{s)

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LMlses en oeuvre de biblio

AT Y

o Tout le monde connait cette architecture en couche, souvent
présentée pour illustrer une bonne architecture d’un systéme
fonctionnant avec diverses interfaces persone-machine.

Architecture en couches :

four tier architecture

Source: http://www.infoq.com/fr/minibooks/domain-driven-design-quickly

" \‘ﬁ
C— S

Application Domaine Infrastructure

I

Interface
utilisateur

Tests d’acceptation et BDD(Behavior Driven _

<

% Development) [.

S At ailld .

s Un exemple plus détaillé avec cucumber : [

S biblio N

o LMlses en oeuvre de biblio [s e
A ealitiambion ~m mmeemamn -

e Une autre variante d’'une architecture multi-couche est celle-ci, avec
4 couches, dont une dédiée a la représentation du domaine.

http://www.infoq.com/fr/minibooks/domain-driven-design-quickly
http://www.infoq.com/fr/minibooks/domain-driven-design-quickly

Architecture en couches :

hexagonal (ports and adapters) architecture

Source: Cockburn, http://alistair.cockburn.us/Hexagonal+architecture

Introduite par A. Cockburn, popularisée par «DDD»

Avantage = Tester le modele (I'application) indépendamment
des «services» externes.

HoCK

{in-memory)
database

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LMlses en oeuvre de biblio

AT 1 T N S

o C’est une forme d’architecture, plus générale que I'approche a
quatre couches, qu’on retrouve dans les références plus récentes qui
traitent de DDD, par exemple, le bouquin de Vernon, «/mplementing
Domain Driven Design».

o Patron introduit par Alistair Cockburn, circa 2004, initialement sous
le nom de «Hexagonal architecture», puis sous le nom de «Ports and
adapters architecture».

o Dixit Cockburn : «Create your application to work without either a Ul
or a database so you can run automated regression-tests against the
application, work when the database becomes unavailable, and link
applications together without any user involvement.»
http://alistair.cockburn.us/Hexagonal+architecture

o «Advantages of this architecture : The core logic can be tested
independent of outside services. It is easy to replace services by
other ones that are more fit in view of changing requirements.»
http://www.dossier—andreas.net/software_

2016-10-14

http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
http://alistair.cockburn.us/Hexagonal+architecture
http://www.dossier-andreas.net/software_architecture/ports_and_adapters.html
http://www.dossier-andreas.net/software_architecture/ports_and_adapters.html

Architecture en couches :

hexagonal (ports and adapters) architecture (bis)

yellow: core logic
light red: primary parts
light blue: primary adapters
dark red: secondary ports
dark blue: secondary adapters

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
LMlses en oeuvre de biblio

AT 1 T N S

2016-10-14

2016-10-14

binfbiblio: GLI::Ap Biblio EmpruntsTxt
o—i{]
Emprunts EmpruntsYAM
o |
Emprunt

ServiceCourriel
S Gmail
o—1

Tests d’acceptation et BDD(Behavior Driven

Development) = =
L-Un exemple plus détaillé avec cucumber = =
biblio) = —

LI\‘/Iises en oeuvre de biblio

IR [Y | R

o Voici donc ce que ga donne dans le contexte de mon application
biblio pour la gestion de préts de livres.

2016-10-14

Rails.application Biblio EmpruntsTxt
o—i{]
Emprunts EmpruntsYAM
o |
Emprunt

ServiceCourriel
S Gmail
o—1

Archiocture do 16110

Tests d’acceptation et BDD(Behavior Driven

Development) — = =
L-Un exemple plus détaillé avec cucumber = =
biblio - = e
Ll\‘/Iises en oeuvre de biblio
Aeabtimmberen dm i1 s

e Quand on veut changer d'interface personne-machine pour une
application Web, il suffit essentiellement de définir un nouveau
composant, qui va utiliser les autres composants déja définis.

m Utilise 511 = Gem Ruby (DSL) pour
spécifier des «suites de commandes»

m gli = git like interface command line Build Awesome
parser Command-Line
Applications
in Ruby

Control Your Computer,
Simpllly Your Lile

<+ Tests d'acceptation et BDD(Behavior Driven

= Development)

L-un exemple plus détaillé avec cucumber
biblio
LMises en oeuvre de biblio

N

2016-10

2016-10-14

#!/usr/bin/env ruby

include GLI: :App

program_desc ‘Programme pour la gestion de prets de livres’

Option globale

desc 'Fichier contenant le depot’
arg_name "depot"

default_value ’./.biblio.txt’
flag [:depot]

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
LMises en oeuvre de biblio

N S A

o Présentation descendante

o Le programme principal, la racine de I'exécutable, est bin/biblio
o Cet exécutable est un script Ruby, analysé et exécuté par
l'interpréteur Ruby grace au shebang = «# !»

o En termes d’architecture hexagonale, le fichier bin/biblio
représente le «primary driver», associé aux interactions avec l'usager

2016-10-14

desc "Indique 1l’emprunt d’un livre (ou [..] stdin)"
arg_name "nom courriel titre auteurs"
command :emprunter do |c|
c.action do |global_options,options,args|
verifier_nb_args args, 4

avec_biblio(global_options[:depot]) do |bib|
bib.emprunter (xargs)
end
end
end

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
LMises en oeuvre de biblio

e Chaque commande de la suite est définie par un appel @ command,
suivi du nom de la commande a définir, suivi d’'un bloc qui spécifie les
détails de la commande — notamment, le plus important, I'action a
exécuter

o Ces différentes commandes représentant, dans la terminologie
MVC, les différents controleurs, qui font appel aux opérations du
modeéle = du domaine.

2016-10-14

desc "Indique le retour d’un livre"
arg_name ’'titre’
command :rapporter do |c|
c.action do |global_options,options,args|
verifier_nb_args args, 1
titre = args([0]

avec_biblio(global_options[:depot]) do |bib]|
bib.rapporter(titre)
end
end
end

exit run (ARGV)

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
LMises en oeuvre de biblio

e Une fois les commandes spécifiées, il suffit ensuite simplement
d’appeler la méthode run, définie dans GLI: : App.

<<~/ExemplesCucumber/Biblio@MacBook>> $ biblio help
NAME
biblio - Programme pour la gestion de prets de livres

SYNOPSIS
biblio [global options] command [command options] [arguments...]

VERSION
0.4.0

GLOBAL OPTIONS
--depot=depot - Fichier contenant le depot (default: ./.biblio.txt)

—-help ~ Show this message
--version - Display the program version
COMMANDS
emprunter - Indique l'emprunt d'un livre (ou de plusieurs via stdin)
emprunteur - Determine l'emprunteur d'un livre
emprunts - Retourne les livres empruntes par quelqu'un
help - Shows a list of commands or help for one command
indiquer_perte - Indiquer la perte d'un livre
init - Cree une nouvelle base de donnees pour gerer des livres empruntes (dan

*./.biblio.txt' si —-depot n'est pas specifie)

lister - Liste l'ensemble des livres empruntes

rappeler_livre - Transmet un courriel a l'emprunteur d'un livre pour lui demander de le
rapporter

rappeler_tous_les_livres - Transmet des courriels a tous les emprunteurs pour leur demander de les
rapporter

rapporter - Indique le retour d'un livre

trouver - Retourne le titre complet d'un livre (ou tous les titres qui contienner
la chaine)

<+ Tests d'acceptation et BDD(Behavior Driven -
Development) Ear
L-un exemple plus détaillé avec cucumber : - EimmiTe
biblio =
LMises en oeuvre de biblio

2016-10-1

o Par défaut, une commande help est automatiquement générée,
produisant la documentation illustrée dans la figure ci-haut.

m Utilise rails = Framework Ruby pour =

développer des applications Web
A%levelo ent

lth

= Rails utilise une approche de «convention
plutét que configuration»

Miso en oouvre do 55110 - verson Wb

Tests d’acceptation et BDD(Behavior Driven

<
% Development)
s L-un exemple plus détaillé avec cucumber :
S biblio
N LMlses en oeuvre de biblio
MAian mm mmeim Amt 4 e ememiae WAL

o Toutefois, faute de temps — ce pourrait étre un séminaire complet a
lui seul — je ne vous présenterai pas du tout de détails de la mise en
oeuvre avec Rails.

Structure du code pour la version Rails (1)

| |-- assets

| | |-— images

| | |-- javascripts

| | ‘-- stylesheets

| |-- controllers

| | |-— application_controller.rb
| | |-- biblio_controller.rb

| | ‘-— concerns

| |-— helpers

| |-— mailers
| | -— models
| | ‘-- concerns

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
LI\‘/Iises en oeuvre de biblio

o 2

2016-10-14

Structure du code pour la version Rails (2)

-— views

|-- biblio

| |-— emprunter.html.erb
| |-— emprunteur.html.erb
| |-— fermer.html.erb
| |-— index.html.erb
| |-— 1_emprunt.html.erb
| |--— le_titre_a_rapporter.html.erb
| |-— le_titre.html.erb
| |-— lister.html.erb
| |-— rapporter.html.erb
| ‘—— vider.html.erb

‘-- layouts
‘-- application.html.erb

== Toili

Tests d’acceptation et BDD(Behavior Driven

<

% Development)

s L-un exemple plus détaillé avec cucumber
S biblio

N

LMlses en oeuvre de biblio

| WO | g (P O PR = o | P/

Structure du code pour la version Rails (3)

|-- config

| | -— environments

| | | -— development.rb
| | | -— production.rb
| | V== EEEE.ED

| |-- routes.rb

| ‘—- secrets.yml

|-— features

| |-— emprunter.feature

| | -— rapporter.feature

| |-— step_definitions

| | ‘-— biblio_steps.rb

|-- 1lib
54 directories, 114 files

Tests d’acceptation et BDD(Behavior Driven

<

% Development)

s L-un exemple plus détaillé avec cucumber
S biblio

N

LI\‘/Iises en oeuvre de biblio

o 2

2016-10-14

6.3 Tests des services externes
(avec RSpec)

Tests d’acceptation et BDD(Behavior Driven
Development) 6.3 Tests des services extemes
L_Un exemple plus détaillé avec cucumber : fovee pee)
biblio
LTests des services externes (avec RSpec)

2016-10-14

ServiceCourrielGmail.
envoyer_courriel

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
L Tests des services externes (avec RSpec)

2016-10-14

binfbiblio: GLI::Ap Biblio EmpruntsTxt
o—i{]
Emprunts EmpruntsYAM
o |
Emprunt

ServiceCourriel
S Gmail
o—1

Tests d’acceptation et BDD(Behavior Driven

Development) = =
L_Un exemple plus détaillé avec cucumber : = =
biblio) = —

L Tests des services externes (avec RSpec)
| e . PR

o Voici donc ce que ga donne dans le contexte de mon application
biblio pour la gestion de préts de livres.

Mise en oeuvre de

ServiceCourrielGmail.envoyer_ courriel
Fichier 1ib/services/service-courriel-gmail.rb

module ServiceCourrielGmail

def self.envoyer_courriel (destinataire, sujet, contenu)

source: http://thinkingeek.com/2012/07/29/sending-emails-google-mail-ruby/

Net::SMTP.enable_tls (OpenSSL: :SSL: : VERIFY_NONE)

Net::SMTP.start('smtp.gmail.com’ ...) do |smtp]|
smtp.send_message(...)
end
end

end

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber

biblio

L Tests des services externes (avec RSpec)
¢ On va maintenant s’attarder aux interactions avec les entités
externes, parce que c’est 1a que cela devient intéressant au niveau
des tests.
o Voici la méthode qui permet de transmettre un courriel, en utilisant
le compte gmail du préteur de livres. C’est donc cette méthode qui
connait les détails, tres techniques, de mise en oeuvre de I'envoi de
courriel.
o Et c’est cette méthode qui doit étre appelée, directement ou
indirectement, par la méthode rappeler, qui permet d’envoyer un
courriel de rappel @ un emprunteur

2016-10-14

Tests unitaires de

ServiceCourrielGmail.envoyer_ courriel
Fichier spec/services/service-courriel_spec.rb

describe ServiceCourrielGmail do
describe "#envoyer_courriel" do
def envoyer(*args)
ServiceCourrielGmail.envoyer_courriel (xargs)

end
it "ne transmet pas de courriel lorsque usager pas ok"
modifier_temporairement ("USAGER_GMAIL", "DSE!S!!")
expect{ envoyer("tremblay.guy@ugam.ca", "s", "C")
to raise_error (Net::SMTPAuthenticationError)
end
end

it "transmet un courriel lorsque tout ok" do
expect{ envoyer("tremblay.guy@ugam.ca", "s", "C")
to_not raise_error
Et Jje devrais recevoir un vrai courriel!?

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

2016-10-14

e Ce qu'il est intéressant de regarder, c’est l'intérét que cette
approche a sur la forme des tests.

 Voici donc, dans un premier temps, les tests unitaires, exprimés en
RSpec, pour serviceCourrielGmail, donc pour le «vrai»
service : on vérifie différents cas d’erreur et on vérifie «de fagon non
automatique» pour ce cas particulier, que I'envoi de courriel
s’effectue correctement.

do
do
}.

Jo

Emprunt #rappeler

<+ Tests d'acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
L Tests des services externes (avec RSpec)

Emprunt frappeler

2016-10-1

Mise en oeuvre de Emprunt #rappeler

Fichier 1ib/biblio/emprunt.rb

class Emprunt
attr_reader :nom, :courriel, :titre, :auteurs

def rappeler
fail ErreurAucuneAdresseCourriel, ... if courriel == "@"

ServicesExternes.courriel.envoyer_courriel (
courriel,
"Retour d’un livre",
message_courriel (titre))

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L'I"es,ts des services externes (avec RSpec)

2016-10-14

Mise en oeuvre de Emprunt #rappeler (suite)

Fichier 1ib/biblio/emprunt.rb

def message_courriel(titre)
return <<-FIN_MESSAGE
Bonjour.

Il y a quelque temps, je t’ai prete le livre suivant:
\t’#{titre}’

S.V.P. Pourrais-tu me le rapporter?

Si je ne suis pas a mon bureau,
tu peux le laisser au secretariat du departement
(le glisser dans la boite de courrier si le secretariat est

Merci.

Guy T.
FIN_MESSAGE
end

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

2016-10-14

Mise en oeuvre de Emprunt #rappeler et injection

de

2016-10-14

dépendances

Dans le fichier bin/biblio :

Biblio::ServicesExternes.courriel = ServiceCourrielGmail

Dans le fichier 1ib/biblio/emprunt.rb :

class Emprunt
attr_reader :nom, :courriel, :titre, :auteurs

def rappeler

ServicesExternes.courriel.envoyer_courriel (
courriel,
"Retour d’un livre",
message_courriel (titre))
end

end

Tests d’acceptation et BDD(Behavior Driven o gt g i
Development) =
L-un exemple plus détaillé avec cucumber
biblio
L'I"ests des services externes (avec RSpec)
o Dans le programme principal (bin/biblio), on définit une variable
globale qui identifie quel service d’envoi de courriel doit étre utilisé.
e Dans la méthode rappeler, on référe a cette variable pour obtenir
le nom du service a utiliser, objet/module sur lequel appelle alors la
méthode envoyer_courriel.

Mise en oeuvre de Emprunt #rappeler et injection

de dépendances

2016-10-14

Dans le fichier bin/biblio :

Biblio::ServicesExternes.courriel = ServiceCourrielGmail

Dans le fichier 1ib/biblio/emprunt.rb :

class Emprunt
attr_reader :nom, :courriel, :titre, :auteurs

def rappeler

ServicesExternes.courriel.envoyer_courriel (
courriel,
"Retour d’un livre",
message_courriel (titre))

end

end

= Respecte le DIP @

Tests d’acceptation et BDD(Behavior Driven o s s
Development) _—
L-un exemple plus détaillé avec cucumber
biblio
L'I"ests des services externes (avec RSpec)

e C’est une forme «d'injection de dépendances» : style setter
injection.

o Cela peut aussi étre vu comme une forme de service locator =
«This pattern uses a central registry known as the “service locator”,
which on request returns the information necessary to perform a
certain task» : http:
//en.wikipedia.org/wiki/Service_locator_pattern

e Autre nom : La variable globale joue le réle d’un registre des
services (service registry).

http://en.wikipedia.org/wiki/Service_locator_pattern
http://en.wikipedia.org/wiki/Service_locator_pattern

Tests unitaires de Emprunt #rappeler

Fichier spec blio/emprunt_spec.rb

describe "#rappeler" do
it "transmet un courriel lorsque courriel specifie" do

ServicesExternes.courriel = double("service_courriel")
courriel = "tremblay.guy@ugam.ca"

titre = "UnTitreDeLivre"

emp = Emprunt.new("_", courriel, titre, "_")

expect (ServicesExternes.courriel) .
to receive (:envoyer_courriel) .once.
with(courriel, "Retour d’un livre", /#{titre}/)

emp.rappeler
end
end

Tests d’acceptation et BDD(Behavior Driven
Development) 3 n
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

2016-10-14

« Voici maintenant les tests pour la méthode rappeler de la classe
Emprunt, qui utilise le service d’envoi de courriel.

On n’'a pas besoin de tester a nouveau I'envoi effectif de courriel, car
cela a déja été fait dans les tests pour ServiceCourrielGmail.
Et ici, dans ce test, on ne veut pas non plus dépendre spécifiquement
du service de gmail, car rien nous dit que c’est ce service qui est
utilisé, i.e., un tout autre service pourrait trés bien étre utilisé a la
place. Ce n'est pas a rappeler a savoir cela.

Ici, on a simplement besoin de s’assurer que le service, quel qu'il
soit, regoive la demande appropriée. C’est ce qu’on fait a I'aide d’'un
«test double» et a I'aide d’attentes explicites (expectations) sur le
comportement observé.

2016-10-14

def rappeler
ServicesExternes.courriel::envoyer_courriel (
courriel,
"Retour d’un livre",
message_courriel (titre))
end

{Biblio@linux} rspec spec/biblio/emprunt spec.rb --format documentation

Biblio::Emprunt
#rappeler

ne transmet pas de

demande a transmet

el et genere une erreur lorsque 1'adresse n'est pas specifiee

iel lorsque 1'adresse est specifiee

Finished in 08.00725 seconds (files took ©.22055 seconds to load
2 examples, @ Tailures

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

e Ici, on voit ce qui est affiché/indiqué si I'expectation est satisfaite —
en format documentation.

2016-10-14

EmpruntsTxt#charger

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber :
biblio
L Tests des services externes (avec RSpec)

EmpruntsTxt#charger

2016-10-14

binfbiblio: GLI::Ap Biblio EmpruntsTxt
o—i{]
Emprunts EmpruntsYAM
o |
Emprunt

ServiceCourriel
S Gmail
o—1

Tests d’acceptation et BDD(Behavior Driven

Development) = =
L_Un exemple plus détaillé avec cucumber : = =
biblio) = —

L Tests des services externes (avec RSpec)
| e . PR

o Voici donc ce que ga donne dans le contexte de mon application
biblio pour la gestion de préts de livres.

Mise en oeuvre de EmpruntsTxt#charger

Fichier 1ib/biblio/emprunts—-txt.rb

class EmpruntsTxt
SEP = "&"

def self.charger(fichier

les_emprunts = {}
IO.readlines (fichier).each do [1]
1.chomp!

nom, courriel, titre, auteurs = xl.split (SEP)
e = Emprunt.new(nom, courriel, titre, auteurs)
les_emprunts[e.titre] = e

end

les_emprunts
end
end

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

2016-10-14

o Voici un autre exemple, cette fois pour le service externe qui charge
en mémoire le contenu de la base de données, lorsque celle-ci est en
format textuelle.

Mise en oeuvre de EmpruntsTxt#charger

Fichier 11 iblio/emprunts-txt.rb

class EmpruntsTxt
SEP = "&"

def self.charger(fichier

les_emprunts = {}
IO.readlines (fichier).each do |1]
1.chomp!

nom, courriel, titre, auteurs = xl.split (SEP)
e = Emprunt.new(nom, courriel, titre, auteurs)
les_emprunts[e.titre] = e

end

les_emprunts
end
end

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

o Les détails ne sont pas importants. Laspect important sur lequel
jinsiste est que la méthode 10.readlines est utilisée pour lire le
contenu du fichier contenant cette base de données, méthode qui
doit donc faire un acces externe a un fichier.

e Or, en autant que c’est possible, notamment pour des raisons de
performance, il est préférable de limiter les accés a des fichiers
externes dans les tests.

2016-10-14

Tests unitaires de EmpruntsTxt#charger

Fichier spec blio/emprunts-txt_spec.rb

2016-10-14

let (:fichier) { "/tmp/foo#{S}.txt" }
def emprunteur(emps, titre); emps[titre].nom; end

it "retourne les emprunts du fichier qui existe" do

expect (I0).
to receive(:readlines).
once.
with(fichier).
and_return(["nl%@%tl1%al\n", "n2%@%tt22%a2\n"])

emps = EmpruntsTxt.charger(fichier)

emps.keys.size.should ==

emprunteur (emps, "tl").should == "nl1"
emprunteur (emps, "tt22").should == "n2"
end

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber

biblio

L'I"ests des services externes (avec RSpec)
o Voici donc une fagon de définir un test pour charger qui fait en
sorte de ne pas avoir d’accés a un fichier externe, et ce en utilisant
un «partial double », ce qu’on appelle aussi «a tests-specific
extension» = «an extension of a real object in a system that is
instrumented with test-double like behaviour in the context of a test» :
https://github.com/rspec/rspec-mocks.
e Donc, on dit & I'objet 10 que temporairement, le temps du test, il
doit modifier son comportement pour la méthode readlines de
facon a ce qu’elle retourne le tableau indiqué si elle recoit les
argument indiqués. Sinon, une erreur doit étre signalée si cette
méthode n’est pas appelée avec ces arguments.

https://github.com/rspec/rspec-mocks

Tests unitaires de EmpruntsTxt#charger

Fichier spec blio/emprunts-txt_spec.rb

let (:fichier) { "/tmp/foo#{S}.txt" }
def emprunteur(emps, titre); emps[titre].nom; end

it "retourne les emprunts du fichier qui existe" do

expect (I0).
to receive(:readlines).
once.
with(fichier).
and_return(["nl%@%tl1%al\n", "n2%@%tt22%a2\n"])

emps = EmpruntsTxt.charger(fichier)

emps.keys.size.should ==

emprunteur (emps, "tl").should == "nl1"
emprunteur (emps, "tt22").should == "n2"
end

= Test-Specific Extension (Partial Double)

Tests d’acceptation et BDD(Behavior Driven
Development)
L-un exemple plus détaillé avec cucumber
biblio
L Tests des services externes (avec RSpec)

o Une telle extension, temporaire et spécifique au test, de
I0.readlines est beaucoup plus simple a définir... que si on avait
da créer un fichier externe foo. txt et y mettre comme contenu les
lignes désirées.

e En fait, noobstant I'aspect performance, cela permet aussi une
meilleure localité des informations pour ce test — pour que le
contenu soit clairement local au test, il aurait fallu créer ce fichier au
moment du test (ouverture en création/écriture), a partir du contenu
désiré, et ensuite lire son contenu (ouverture, implicite, en lecture
avec readlines).

2016-10-14

IETESTING!ISITHE PROCESS'TO
REMOVE BUGS

IS PROGRAMMING/THE PROGESS'TO
PUT/IN[BUGS?

smemegoneriionno

< Tests d’acceptation et BDD(Behavior Driven e taues
= Development)
L_Conclusion

1S PROGRAMMING THE PROCESS 10!
PUTINBUGSI S |

Les tests d’acceptation servent aussi de tests

d’'intégration

Cucumber scenarios test entire paths through the app
and thus can be accepiance tests or integration tests.

Source: «Engineering Software as as Service—An Agile Approach Using Cloud Computing», Fox

& Patterson

Tests d’acceptation et BDD(Behavior Driven
Development)
L_Conclusion

2016-10-14

LLes tests d’acceptation servent aussi de

Ce sont les méthodes approches agiles ont introduit et
popularisé les approches TDD et BDD

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

I™ GLAD
IT HAG A WAS YOUR
NAME, TRAINING.

wvew. dilbert.com _ scotiadameBacl com
3427 ©:3001 Soolt Adama, Inc./Dist. by UFS, inc.

® Scott Adams, Inc./Dist. by UFS, Inc.

Tests d’acceptation et BDD(Behavior Driven
Development)
L_Conclusion

2016-10-14

L_Ce sont les méthodes approches agiles ont

On peut automatiser les tests unitaires, les tests

d’acceptation, etc.
Nothing can stop automation

Tests d’acceptation et BDD(Behavior Driven
Development)
L_Conclusion

2016-10-14

L_0On peut automatiser les tests unitaires, les

Références

2016-10

@ D. Chelimsky, D. Astels, Z. Dennis, A. Hellesoy, B. Helmkamp, and D. North.
The RSpec Book : Behaviour Driven Development with RSpec, Cucumber, and Friends.
The Pragmatic Bookshelf, 2010
@ D.B. Copeland.
Bulld Awesome Command- Llne Appllcallons in Ruby : Control Your Computer, Simplify Your Life.
Th el

atic Book

E. Evans.
Domain-Driven Design—Tacking Complexty in the Heart o Software.

Addison-We:

A. Fox and D. Patterson.

Engineering Software as as Service—An Agile Approach Using Cloud Computing.

Strawberry Canyon LLC, 2013

R. Mugridge and W. Cunningham.

Fit for Developing Software—Framework for Integrated Tests.
Prentice-Hall, 2005

J.F. Smart.

BDD In Action.

Manning, 2015

B B B O

M. Wynne and A. Hellesoy.
The Cucumber Book Behavlaur Driven Development for Testers and Developers.

The Pragmatic Boo

<+ Tests d'acceptation et BDD(Behavior Driven
Development)
LConclu5|on

L_Références

