
A GENERIC AND EXTENSIBLE TOOL FOR MARKING PROGRAMMING
ASSIGNMENTS

G. Tremblay, F. Guérin and A. Pons
Dépt. d’informatique, Université du Québec à Montréal

C.P. 8888, Succ. Centre-ville
Montréal, Qué. Canada

email: tremblay.guy@uqam.ca

ABSTRACT
Marking programming assignments in introductory pro-
gramming courses involves a lot of work: each program
must be tested, the source code must be read and evalu-
ated, etc. With the large classes encountered nowadays,
the feedback provided to students through marking is thus
rather limited, and often late.

Tools providing support for marking programming as-
signments do exist, ranging from support for administrative
aspects through automation of program testing or support
for source code evaluation based on metrics.

In this paper, we introduce a tool that provides sup-
port for submission and marking of assignments. It aims
at reducing the workload associated with the marking task
and, more importantly, at providingtimely feedback to the
students, including feedbackbefore the final submission.
Furthermore, the tool has been designed to begenericand
extensible, so that it can deal with programs in various lan-
guages and it can be extended with various marking com-
ponents (modules).

KEY WORDS
Educational Software and Hardware, Automated Marking,
Introductory Programming, Unit Testing

1 Introduction

Marking computer programs in introductory programming
courses is, and always has been, a lot of work, as it involves
dealing with many aspects. First and foremost, the program
must be tested to ensure that it exhibits the correct behav-
ior. In addition, the text of the program (source code) and
its accompanying documentation must be read in order to
evaluate the program structure and style and to ensure that
the appropriate standards have been adhered to.

With the large classes encountered nowadays, mark-
ing is generally done with the help of teaching assistants
(TAs). These assistants may be graduate students or even
advanced undergraduate students. The feedback they pro-
vide to students may thus be somewhat limited and, more
importantly, may come late in the students’ learning pro-
cess, as the marking process for large classes may be rather
lengthy. For instance, when a student finally receives her
graded assignment, the topic dealt by this assignment may

already be “outdated”, thus less significant. Furthermore,
if the student made a significant error, it is too late to cor-
rect it. In other words, the typical approach to marking
programming assignments requires a lot of effort from the
instructors and/or TAs, yet provide littletimelyfeedback to
the students.

Tools that provide various forms of support for mark-
ing programming assignments do exist, some of which will
be presented in more detail in Section 2. Such tools may
provide support for dealing with the administrative aspects
(submission and management of assignments) as well as
support for other tasks associated with marking program-
ming assignments, ranging from script-based execution of
test cases [14, 13] to metrics-based evaluation [10, 16].

In the present paper, we introduce a tool, called Oto,
that provides support for the submission of programming
assignments as well as for their marking. One of its key
goals is to reduce the workload associated with the mark-
ing task. In addition, it aims at providing timely feedback
to the students, including feedbackbeforethe final submis-
sion deadline. Finally, it has been designed to begeneric—
independent of any specific programming language—and
extensible—designed so that various forms of “marking”
can easily be incorporated.

Underlying pedagogical approach

The design of Oto has been influenced by a specific educa-
tional context, namely, the teaching ofintroductorycourses
in object-based programming.1 Some of the pedagogical
principles underlying such courses are the following:

• In a first programming course, the emphasis should
be on programming-in-the-small. This means stu-
dents should mostly be required to implement specific
modules (viz., classes), for which the instructor pro-
vides the appropriate specification (viz., interfaces),
not large-scale programs.

• The students should be introduced early to the key
practice of separating the presentation code from the
application logic. In other words, the emphasis should

1We say “object-based”, as opposed to “object-oriented”, because the
notions of object and class are introduced early, but inheritanceis not.

be on developing classes implementing some appro-
priate domain model, not on writing detailed I/O rou-
tines or developing GUIs.

• The important role of unit testing in developing qual-
ity software should be stressed.

Outline of paper

The paper is organized as follows. First, in Section 2, a
number of existing tools for dealing with programming as-
signments are presented. In Section 3, the key features of
JUnit, a unit test framework for Java, are presented. Sec-
tion 4 then presents the key functionalities of the Oto mark-
ing tool. How genericity and extensibility is achieved is
then described in Section 5. Finally, in Section 6, some im-
plementation aspects of Oto are briefly described, followed
by a conclusion together with future work.

2 Existing Tools for Marking Programming
Assignments

A wide variety of tools that provide support for dealing
with programming assignments have been developed over
the years. The key features of these tools can be classified
into three major categories:

1. Management of assignments: These tools support the
various administrative tasks that must be handled by
the instructors and TAs: receiving the students’ sub-
missions, keeping track of marks, sending feedback
(grade, marking report) to the students when the as-
signments have been marked, etc. [7, 14].

2. Evaluation of correctness: The usual way to assess the
correctness of programs is through testing. A key goal
is to automate as much as possible the testing process,
as it can be quite tedious given a large number of sub-
missions.

Different tools support various forms of testing. For
instance, assuming the programs use textual I/O, test-
ing can be as direct as using a strict textual comparison
(for example, using “diff -bB ” in Unix). Assessing
the correctness of a program output can also be more
subtle. For example, theexpectedoutput can be de-
scribed using a context-free grammar; the output pro-
duced by a program can then be parsed to ensure it
complies with the grammar specification [14].

3. Evaluation of quality: The “quality” of a program is
definitely an elusive notion. Program quality can be
evaluated, among other things, by examining the pro-
gram structure (e.g., using appropriate source code
complexity measures, including coupling and cohe-
sion) or the programming style (e.g., proper indenta-
tion, use of symbolic constants, choice of identifiers,
presence of internal documentation). Some of these

properties can be evaluated from the source code with
the help of static program analysis, based upon appro-
priate design metrics [10, 16].

These three categories, of course, are neither all en-
compassing, nor mutually exclusive, so a given tool can
exhibit features from many categories. For example, in the
late 80’s, the TRY system [18] allowed students to submit
their programs, and then allowed instructors to test the sub-
mitted programs, tests which evaluated the program outputs
on a purely textual basis (modulo blank spaces and lines).

The ASSYST [14, 13] system allows students to sub-
mit their assignments by email. The instructor later tests
and marks the submitted programs, and then sends back an
evaluation report to the students. Marking is done through
partially automated testing (based on a context-free gram-
mar specification of the expected output) as well as by us-
ing a number of metrics to evaluate the quality of the source
code, the efficiency of the resulting program, as well as the
effectiveness of the tests developed by the students to test
their own programs.

The BOSS system [17, 15] supports both submission
and testing of programs. Testing is based, again, essentially
on comparing textual output.

Curator [12] is a more recent offering that relies on
modern web technology. It can be used for various kinds
of assignments, not only for programs. Automatic testing
of programs is supported, though again it is based on a strict
textual comparison.

There are two major disadvantages with testing based
on textual comparison of program output. First of all, this
generally makes the testing process quitestrict. For in-
stance, the student documentation for Curator indicates that
“It is important that your output file not contains any extra
lines or omit any line” [12].

More importantly, such an approach requires putting a
lot of emphasis on producing program output through con-
sole I/O, clearly a secondary aspect for an object-based ap-
proach that attempts to separate presentation from applica-
tion logic.

The OCETJ tool [20] was developed with the goal
of avoiding reliance on text-based (console I/O) testing.
OCETJ supports both the submission of programming as-
signments (in Java) by students and the automatic testing
of the submitted programs. Testing is done using the JUnit
framework [5], a tool that supports the automatic execu-
tion of test suites and test cases, a key practice of profes-
sional software development [11] which is also becoming
prevalent in educational context [2]. OCETJ was also de-
signed with the goal of providing quick feedback to the stu-
dents, which is done through the use of public vs. private
test suites—this is explained in more detail in Section 4.
OCTEJ’s implementation, however, was far from generic,
as it provided support only for handling Java programs and
for their testing with JUnit. Furthermore, its implementa-
tion was intimately tied to the platform on which it was
developed (intra-net from Cégep du Vieux-Montréal).

In the following sections, we describe the Oto tool,
which was designed with the goal of supporting all aspects
of programming assignments marking and the goal of pro-
viding early feedback to students. Furthermore, since it
does not rely on testing through textual output but instead
relies on test unit technology, we briefly introduce the JUnit
framework in the next section.

3 The JUnit Testing Framework

Although the importance of testing has long been recog-
nized, proponents of agile methods have recently empha-
sized the beneficial role of unit testing and test automa-
tion [3]. Test automation, which allows for the automatic
execution and verification of large number of test cases, is
neither new nor specific to agile methods [8]. What is new
to agile methods is the tight integration of test automation
with a test-first approach to code development, allowing
testing to be done both early and often [4].

For such an approach to software construction to be
feasible, appropriate tools for automating the testing pro-
cess must be available. One well-known such tool is JU-
nit [5], a unit testing framework for Java.

class Account {
private Customer cstm;
private int bal;

public Account(Customer c, int initBal)
{ cstm = c; bal = initBal; }

public int balance()
{ return(bal); }

public Customer customer()
{ return(cstm); }

public void deposit(int amount)
{ bal += amount; }

public void withdraw(int amount)
{ bal += amount; }

}

Figure 1. Account class to be tested (with an error in
methodwithdraw)

Suppose the class presented in Figure 1, a simple class
defining bank account objects, is to be tested. Note that the
withdraw method contains an error (a “+” has been used
instead of a “- ”, a typical copy-paste error). A JUnit class
for testing theAccount class is presented in Figure 2. The
methods whose names start with “test ” represent specific
test cases. These test cases useassertEquals to check
whether the result returned by the method under test (sec-
ond argument ofassertEquals) is the expected one (first
argument). Other variants ofassert methods do exist, for
example,assertTrue , assertNotNull .

A key feature ofassert methods is that they gen-
erate no outputunlessthe expected condition isnot satis-

public class AccountTest extends TestCase {
public AccountTest(String name) {

super(name);
}

public void testBalance() {
Account acc = new Account(new Customer("Joe"), 100);
assertTrue(acc.balance() == 100);

}

public void testTransfer() {
Account acc = new Account(new Customer("Joe"), 100);
int initBal = acc.balance();
acc.deposit (50);
acc.withdraw(50);
assertEquals(initBal, acc.balance());

}

public static Test suite() {
return new TestSuite(AccountTest.class);

}

public static void main(String[] args) {
junit.textui.TestRunner.run(suite());

}
}

Figure 2.AccountTest class for testingAccount

fied. Whenever this occurs, anAssertionFailedError

is thrown. Within the test framework’s context, this excep-
tion is then caught and an appropriate message is written to
the test log.

A collection of test cases is called atest suite. Each
test class must define its associated test suite, as done by
methodsuite() in Figure 2. In this case, all methods
whose name start with “test ” get implicitly included in
the test suite. The resulting test suite can then be executed
as shown in methodmain , thus generating the following
output:

There was 1 failure:
1) testTransfer(AccountTest)

junit.framework.AssertionFailedError:
expected:<100> but was:<200>

at AccountTest.testTransfer(AccountTest.java:19)
at AccountTest.main(AccountTest.java:27)

FAILURES!!!
Tests run: 2, Failures: 1, Errors: 0

4 Key Functionalities of Oto

Use case 1 presents Oto’s high-level use case—what Cock-
burn would call thesummary business use case[6]. In
order to use Oto for a specific assignment, the instructor
must first define an appropriateevaluation. Such an eval-
uation generally includes two components (any of them is
optional):

• A preliminary verificationthat acts as afilter to ensure
that the students’ submissions are minimally correct
with respect to the requirements. It is this preliminary

Use case # 1
4tu Define and mark an assignment∞∞∞

Scope: University.
Level: Summary.
Actors: Instructor, Students, Teaching assistant(s).
Preconditions: The instructor teaches a course and wants
to have an assignment marked by Oto.
Main Success Scenario :

1. The instructor writes up the assignment and designs
the evaluation scripts that will be used to verify and
mark the students’ assignments.

2. The instructor defines an evaluation.

3. Oto confirms the creation of the evaluation and makes
the evaluation scripts thus defined available to the stu-
dents.

4. The students verify their solution(to obtain prelimi-
nary feedback).

5. Before the final due date, the students
submit their assignmentsand Oto saves the sub-
mitted assignments.

6. The instructor (or teaching assistant)
marks the assignmentsthat were submitted by
the students, using the appropriate evaluation script.

7. The instructor uses the report produced by Oto as one
input (along with the hard copy program listing and
documentation) to determine the final marks.

Use Case 1:Summary use case for Oto

verification that provides students with early feedback
on their solution, thus providing apublic suite of test
cases.

• A final verificationthat is used to evaluate and mark
the submitted assignments, providing aprivate suite
of tests.

Before the final submission date, students can per-
form preliminary verifications of their assignments, in or-
der to receive feedback and ensure they are “on the right
track”. Such submissions are not saved by Oto. On the
other hand, students can also submit their final solution, in
which case the submitted assignments are saved for later
marking.

Finally, once the final submission date is reached, the
instructor (or its surrogate) can perform the final marking
of the submitted assignments, as specified by the final ver-
ification component of the evaluation.

Each (component of an) evaluation is described by
various attributes, e.g., which course and assignment it per-
tains to, its starting and ending dates. More importantly,
each (component of an) evaluation is associated with an
evaluation script, as described in the following section.

5 Marking Scripts and Modules: Genericity
and Evolution

Two key design goals of Oto are to make the tool both
genericandextensible. Generic means, first and foremost,
not tying it to a specific programming language, that is,
making it possible to use Oto for marking programming as-
signments written in various languages. Extensible means
not tying it to a specific form of evaluation. Thus, although
any evaluation will most certainly include a testing compo-
nent, how this testing will be done may vary depending on
the programming tools and environment.

More importantly, it should be possible to extend the
marking tool to include additional types of evaluation. For
example, we have identified a number of aspects which
could be covered by marking tools, any of which could be
evaluated through an appropriate marking component [9]:

• Quality of the code, as determined by static measures.

• Efficiency of the program, as evaluated through dy-
namic measures.

• Correctness of the program, as evaluated through test
suites and cases.

• Quality of the tests developed by the students to test
their own program.

• Originality of the code, i.e., plagiarism detection.

The goals of genericity and extensibility are attained
usingevaluation scriptsandevaluation modules.

5.1 Evaluation scripts

An evaluation script—also called an OtoScript—is similar
(in spirit) to a makefile in that it describes the various
tasks that need to be accomplished in order to evaluate a
student’s assignment. An OtoScript contains a sequence
of declarations defining constants, file names, intermedi-
ate results, or tasks to be performed. An example script is
presented in Figure 3.

This script first introduces a symbolic constant
(maxMark) together with various symbolic names
(assignmentName , studentPgm and testClass)—the
“=?” binding operator ensures that a file with the specified
name (right hand side) does exist, otherwise an appropriate
error message is generated and the processing of the cur-
rent assignment is aborted. Two tasks are then specified:
one to compile the submitted program, the other to test the
resulting compiled program. Note that the latter task will
only be executed if compilation succeeded without any
errors—more complex preconditions can also be specified
using ensure clauses. Input arguments to a task are
specified using keyword parameters, as are the outputs
produced by a task, for example,test.nbFailures .

When a student assignment is evaluated using the
above script, anevaluation reportis produced and contains
two different types of elements:

maxMark = 100

Assignment submitted by the student.
assignmentName = Assignment1
studentPgm =? ${assignmentName}.java

Test class provided by the instructor.
testClass = Assignment1Test

compile :: javac {
sourceFile = $studentPgm

}

<<Testing of program>>
+test :: junit {

targetClass = $assignmentName
testClass = $testClass

}

<<Final mark (over $maxMark)>>
finalMark = $($maxMark - 5 * $test.nbFailures)

output { finalMark }

Figure 3. An example evaluation script

OUTPUT
Final mark (over 100) = 80

EXECUTION REPORT
Testing of program:

Number of tests run: 20
Number of failures: 4
Number of errors: 0

Figure 4. An example evaluation report for the script of
Figure 3

• The explicit output to be produced by the script
(output clause at the bottom of the script).

• A trace of the script’s execution, more precisely, of the
variables and tasks which have been annotated aspub-
lic (i.e., explicitly annotated with a “+” prefix). For
such items, the immediately preceding text, delimited
between “«” and “»”, is also included in the output.

An identifier can also be associated with an expres-
sion, indicated by “$(...) ”, to be dynamically evalu-
ated. Because OtoScripts are evaluated using an underlying
Ruby interpreter [19], such an expression can contain any
valid Ruby expression. An example report for the script of
Figure 3 is presented in Figure 4.

5.2 Evaluation modules

Scripts can be used to create evaluations for specific assign-
ments. However, scripts cannot be used to introduce new

mechanisms by which submitted assignments can be eval-
uated. Such mechanisms are introduced by defining new
evaluation modules.

Contrary to evaluation scripts, which can readily be
developed by instructors using the OtoScript notation, eval-
uation modules will be developed by the Oto tool designers
and developers. An evaluation module is a self-contained
component that provides a well defined interface, with a
number of input arguments and a number of output results.

Currently, all evaluation modules are developed us-
ing the Ruby scripting language [19] and must satisfy three
conditions. First, the class name must obey an appropri-
ate naming convention. Second, it must implement arun

method which takes three parameters: a list of arguments
generated by the script, a list of environment variables de-
scribing where to locate the student’s and instructor’s files,
and finally a list of the intermediate results computed by
the script before calling the component. Third, on exit, the
run method must return a list of named results, to be used
by the subsequent part of the script.

5.3 Predefined scripts and modules

In order to use Oto and define their own evaluations, in-
structors will have to learn to write OtoScripts. To alle-
viate this task, a number of basic skeleton scripts will be
provided, which should make it relatively straightforward
for instructors to develop their own scripts. Of course, a
number of evaluation modules will also be provided, for
instance:

• A module that, usingjavac , compiles Java programs
and whose interface consists of the following items:

– Inputs: sourceFile , together with op-
tional inputs (e.g.,classpath , targetDir ,
compilingOptions).

– Outputs:targetClass .

• A module that, using the JUnit framework, tests the re-
sulting compiled Java programs, and whose interface
consists of the following items:

– Inputs: targetClass , testClass .

– Outputs: nbTestCases , nbFailures , nbEr-

rors .

6 Implementation of Oto

The Oto system is being implemented as aUnix command
line utility with a single entry point but many subcom-
mands. However, appropriatefaçadeshave been defined
for each category of users, e.g., a plug-in allows students to
submit their assignments directly from the BlueJ environ-
ment [1]. Every instructor has a dedicated directory man-
aged by Oto and located in his home directory on the Oto
server. This space is used to store the final assignments
submitted by the students as well as the scripts created by

the instructor. To ensure security and privacy, the utility is
run as aSGID (Set Group Id) Oto program. Therefore only
Oto and the instructor itself may access the files.

Execution of the scripts occurs locally in the student’s
or instructor’s directory. For instance, when a student uses
an instructor’s script to evaluate his own assignment, the
script is run using the student’s identity and rights in the di-
rectory where the command was launched, so that the pos-
sible side effect remains under his responsibility. Similarly,
when the instructor marks the collection of submitted as-
signments, execution is performed within his own account.

When the instructor publishes an evaluation script, the
script is first checked for syntax errors. Then, an interme-
diate code representation is created and stored for subse-
quent use. Whenever a student or an instructor invokes an
evaluation script, the intermediate code is loaded and inter-
pretation starts. During this process, whenever the script
calls for a specific task to be performed, the appropriate
evaluation module is located. This module can be one of
the predefined modules, or a local one, so the instructor can
provide his own modules to be used with his scripts. When-
ever an error occurs during script interpretation, the error is
caught and reported. Of course, the goal is to be able to
verify a group of assignments without aborting the whole
job because of a bad assignment. Note that the handling
of such group of assignments, for the final marking, is im-
plicit, thus not part of the scriptper se. As mentioned ear-
lier, Oto is implemented in the Ruby script language [19],
which makes it simple to locate and load code dynamically,
especially components.

7 Conclusion and Future Work

Providing timely feedback to students and reducing the
workload associated with testing and marking large num-
ber of programming assignments have been the initial mo-
tivations behind the development of the Oto tool. Two key
pedagogical concerns are also addressed by the use of an
appropriate testing unit framework, namely, the need to
emphasize, early in the curriculum, the importance of sepa-
rating the application logic from the details of the presenta-
tion (avoiding the typical emphasis on textual I/O) and the
key role of unit tests for correct program development.

We are currently preparing to start using Oto in a first
year Java course (fall term 2005). More precisely, Oto will
first be used for marking (mandatory) laboratory assign-
ments, done in class.

For future work, we would like to implement Oto as a
web service, allowing it to be used in a more general con-
text than its current one. We also plan to extend it by defin-
ing additional evaluation modules. For instance, we plan
to develop a module that will perform and compute vari-
ousquality analysis and metrics, with the aim of providing
further input to help the instructor (or teaching assistant)
determine the final students’ grade. Again, the goal will
not be to fully automate the evaluation and marking pro-
cess, but instead to provide support that will help reduce the

marking workload. Finally, we also have plan for a mod-
ule that would detect potential plagiarism, a plague with
which, sadly, most universities are now confronted.

References

[1] D.J. Barnes and M. Kolling.Objects First With Java : A
Practical Introduction Using Bluej. Prentice Hall, 2003.

[2] E.G. Barricanal, M.-A.S. Urbán, I.A. Cuevas, and P.D.
Pérez. An experience in integrating automated unit testing
practice in an introductory programming course.SIGCSE
Bulletin, 34(4):125–128, 2002.

[3] K. Beck. Extreme Programming Explained — Embrace
Change. Addison-Wesley, Reading, MA, 2000.

[4] K. Beck. Test-Driven Development — By Example.
Addison-Wesley, 2003.

[5] K. Beck and E. Gamma. Test infected: Programmers love
writing tests.Java Report, 3(7):37–50, 1998.

[6] A. Cockburn. Writing Effective Use Cases. Addison-
Wesley, 2001.

[7] K.M. Dawson-Howe. Automatic submission and admin-
istration of programming assignments.SIGCSE Bulletin,
28(2):40–42, 1996.

[8] M. Fewster. Software Test Automation. Addison-Wesley,
1999.

[9] F. Guérin. Correction automatique de programmes. Note
interne de recherche, Mai 2003.

[10] S.-L. Hung, L.-F. Kwok, and R. Chan. Automatic program-
ming assessment.Computers & Education, 20(2):183–190,
1993.

[11] A. Hunt and D. Thomas.The Pragmatic Programmer—
From journeyman to master. Addison-Wesley, 2000.

[12] Virginia Polytechnic Institute and State University. Cu-
rator: an electronic submission management environment.
http://ei.cs.vt.edu/~eags/Curator.html .

[13] D. Jackson. A semi-automated approach to online assess-
ment.SIGCSE Bulletin, 32(3):164–167, 2000.

[14] D. Jackson and M. Usher. Grading student programs using
ASSYST.SIGCSE Bulletin, 29(1):335–339, 1997.

[15] M. Joy, P.-S. Chan, and M. Luck. Networked submission
and assessment. In1st Annual Conference of the LTSN Cen-
tre for Information and Computer Science, pages 335–339,
Newtonwabbey, OK, August 2000.

[16] R.J. Leach. Using metrics to evaluate student programs.
SIGCSE Bulletin, 27(2):41–48, 1995.

[17] M. Luck and M. Joy. A secure on-line submission system.
Software — Practice and Experience, 29(8):721–740, 1999.

[18] K.A. Reek. The TRY system — or — how to avoid testing
student programs.SIGCSE Bulletin, 21(1):112–116, 1989.

[19] D. Thomas and A. Hunt.Programming Ruby: The Prag-
matic Programmer’s Guide. Addison-Wesley, 2001.

[20] G. Tremblay and É. Labonté. Semi-automatic marking of
Java programs using JUnit. InInternational Conference
on Education and Information Systems: Technologies and
Applications (EISTA ’03), pages 42–47, Orlando, FL, July
2003. International Institute of Informatics and Systemics.

