
Software design knowledge and Vincenti’s
categories of engineering knowledge
Since January 1998, a concerted effort to develop a
“Guide to the Software Engineering Body of Knowledge”
(also known as the Guide to the SWEBOK) has been
ongoing. The goal of this project, managed by a team
from the University of Quebec at Montreal, is to develop
a guide to the core knowledge in the software engineer-
ing field. Corporate support for this project is provided
by the ACM, Boeing, the IEEE Computer Society, the
National Institute of Standards and Technology, the
National Research Council of Canada, Rational,
Raytheon, and SAP Labs (Canada).

To attain the intended goal, 10 major knowledge
areas (KAs) were first identified by a group of software
engineers, researchers as well as practitioners (Guide to
the SWEBOK, Strawman version). In a subsequent phase
(Stoneman version), another group of specialists then
developed detailed breakdowns and descriptions of
these KAs. These descriptions have been extensively
reviewed; for example, more than 40 individuals
reviewed an early version of the software design KA
description. The KA specialists then had to go through
the various review recommendations and make any
modifications they deemed appropriate; all decisions
(acceptance, rejection, and so on) had to be formally
documented in a public database (see http:/www.swe-
bok.org). Each knowledge area description contains a
brief definition of the KA, a breakdown and description
of the KA’s key topics, a rationale for the breakdown, a
list of recommended references, and classifications of
the KA topics based on two categories—Bloom’s taxon-
omy of cognitive knowledge and Vincenti’s categories
of engineering knowledge.1

This article focuses on Vincenti’s categorization. As
will be explained, the categorization of engineering
knowledge that Vincenti initially proposed has been
obtained mostly from an analysis of historical data, thus
its possible interest to Annals readers.

As a participant in the Guide to the SWEBOK project,
I was asked by the editorial team on two occasions—first
as the author of a jump-start document for the software

construction KA, then as the KA specialist for software
design—to classify the proposed KA topics on the basis of
Vincenti’s categories of engineering knowledge. The
motivation for attempting this categorization was to bet-
ter understand how knowledge topics from the software
engineering field could be mapped with those from more
traditional, established engineering fields.

Vincenti’s categories of engineering knowledge
W.G. Vincenti, in his book What Engineers Know and

How They Know It—Analytical Studies from Aeronautical
History (Johns Hopkins University Press, 1990), examines
how knowledge in the field of aeronautical engineering
evolved. His book presents a number of historical case
studies pertaining to various aircraft design problems for
the period from 1908 to 1953. Problems include the
design of wings, the development of control-volume
analysis theory, and a few more, including why the
design of flush-riveted joints turned out to be crucial for
modern aircrafts.

A key chapter, “The Anatomy of Engineering Design
Knowledge,” attempts to draw conclusions about engi-
neering knowledge in general by providing a tentative
categorization of such knowledge based on the case stud-
ies and the author’s own engineering experience.
Although Vincenti admits that such a generalization may
be risky since it draws mostly from the field of aeronau-
tics, nonetheless, he believes that his classification might
be universally applicable. The six categories of engineer-
ing knowledge he proposes are as follows:

• Fundamental design concepts (FC): These concepts con-
sist of the operational principles of the devices2 to be
designed in addition to their normal configurations.
Together, these two aspects define the normal tech-
nology and design approach, in contrast with radical
design in which new concepts and techniques might
be needed. Interestingly, Vincenti says that these con-
cepts “may exist only implicitly in the back of the
designer’s mind [and that they] are absorbed … in the
course of growing up, perhaps even before entering
formal engineering training.”

76 IEEE Annals of the History of Computing 1058-6180/01/$10.00 © 2001 IEEE

Anecdotes
James Tomayko, Editor

There are several new initiatives to develop the history of software.
Usually, the engineers do the work and the historians provide the
context later. I asked Guy Tremblay to describe how a group of
software engineers used a historical model to establish a context
while the actual work was being done.

• Criteria and specifications (CaS): This type of
knowledge allows an engineer to “translate
the general, qualitative goals for the device
into specific, quantitative goals couched in
concrete technical terms.” The goal is to
assign specific numerical values or limits to
some technical criteria. However, according
to Vincenti, the key knowledge here is the
selection of the appropriate set of criteria.

• Theoretical tools (TT): Such tools range from
mathematical models and theories useful for
quantitative analysis and design, as well as
intellectual concepts useful for qualitative
conceptualizing and reasoning (“concepts for
thinking about design”). Such concepts and
tools include general scientific knowledge as
well as what Vincenti calls “phenomenologi-
cal theories”—ad hoc techniques, approxi-
mations, or theories useful solely for
engineering calculation.

• Quantitative data (QD): This is empirically
obtained data about the physical properties
of the devices, typically represented in tables
or graphs. The role of such data, which can
be descriptive (how things are) as well as
prescriptive (how things should be—for

example, safety factors), is to help determine
the details of the devices to be designed.

• Practical considerations (PC): This is practical,
empirically derived knowledge learned
mostly from on-the-job experience. Such
knowledge is generally not formally codified
but often represented by rules of thumb.
According to Vincenti, when this type of
knowledge becomes formally recorded and
codified, it often becomes part of another
category of knowledge.

• Design instrumentalities (DI): These are pro-
cedures (for example, hierarchical decom-
position), ways of thinking (including visual
thinking), judgmental skills, and knowledge
of “how” to carry out tasks.

The software design knowledge area and
Vincenti’s categories

Table 1 presents a tentative classification,
based on Vincenti’s categories, of the software
design KA description (as of version 0.70; see
http://www.swebok.org for the complete and
up-to-date description of this KA and a com-
panion rationale). The whole KA has been
divided into five top-level topics, and the

January–March 2001 77

Table 1. A classification of the software design KA topics based on Vincenti’s categories.

Software Design Topic FC CaS TT QD PC DI
I. Software design basic concepts
General design concepts X
The context of software design X
The software design process X
Basic software design concepts X X
Key issues in software design X X
II. Software architecture
Architectural structures and viewpoints X X
Architectural styles and patterns (macroarchitecture) X X
Design patterns (microarchitecture) X X
Design of families of programs and frameworks X X
III. Software design quality analysis and evaluation
Quality attributes X X
Quality analysis and evaluation tools X
Metrics X X
IV. Software design notations
Structural descriptions (static view) X
Behavioral descriptions (dynamic view) X
V. Software design strategies and methods
General strategies X
Function-oriented design X
Object-oriented design X
Data-structure centered design X
Other methods X

FC: Fundamental design concepts. CaS: Criteria and specifications. TT: Theoretical tools. QD: Quantitative data.
PC: Practical considerations. DI: Design instrumentalities.

whole breakdown is three levels deep, although
only the two topmost levels are shown here.3

Mapping each software design topic into
Vincenti’s categories was no obvious task—in
fact, I made a number of revisions to the initial
categorization while preparing this article. First,
the categories are not mutually exclusive: This
is both because some of the indicated topics
contain a number of subtopics and because the
frontiers between Vincenti’s categories are
sometimes, as he himself admits, relatively
fuzzy. The following paragraphs explain, for a
number of topics, why these categories were
chosen, with additional details provided on the
topics’ content.

The “General design concepts” topic includes
notions and concepts relevant to design in gen-
eral—for example, goals, constraints, alterna-
tives, representations, and solutions. An initial
reaction might be to put this topic into the FC
category. However, Vincenti seems to emphasize
the idea that this category pertains to the “oper-
ational principles” of the devices to be designed,
whereas the aforementioned KA topic describes
concepts “about design,” that is, intellectual
concepts for thinking about design. Thus, this
explains the choice of the TT category.

The “The context of software design” topic
has been classified in the DI category. This KA
topic addresses the question of how software
design fits in the software development life
cycle (requirements and specification versus
design versus software construction). Since it
describes knowledge about “how” to perform
software development and design, it thus
seems appropriate to include it in the DI cate-
gory. This line of reasoning also applies to “The
software design process” topic that, among
other things, discusses architectural versus
detailed design—again, process knowledge.

The “Basic software design concepts” topic
is a hodgepodge of various subtopics, such as
coupling, cohesion, encapsulation, interface
versus implementation, and so on. Many of
these are fundamental software concepts. What
is less clear is whether these concepts are “oper-
ational principles” associated with “normal
configuration” (FC), or whether they are “con-
ceptual tools” that can help reasoning quanti-
tatively or qualitatively about software (TT).
Both options (FC/TT) seem valid.

This categorization contrasts with the next
topic, “Key issues in software design,” which
addresses issues such as concurrency, distribu-
tion, exceptions, partitioning, persistence, and
platform independence. Currently, knowledge
about these issues seems to fit better in the PC
category, although some of these concepts

probably belong to the TT category. The notion
of dialogue independence, for example, used in
the development of interactive systems can be
seen as a tool that helps address qualitative
concerns about such systems.

The classification of the various topics relat-
ed with design patterns, either macroarchitec-
tural patterns (sometimes known as
architectural styles), microarchitectural patterns
(for example, patterns such as factory, singleton,
adapter, proxy, and so on) or framework-level
patterns (also known as program families) again
is a hybrid. Initially, it seemed they should go in
the PC category. However, as mentioned earlier,
Vincenti views this category as knowledge
“often not written down.” This, clearly, is not
the case here, since the whole pattern move-
ment aims at exactly the opposite: making
explicit and documenting the key micro- and
macrostructures typically found in software.

So, TT seems a more appropriate category
for the above topics, but note that the DI cate-
gory has also been indicated. If we strictly inter-
pret this category as “knowledge on how to
carry out tasks,” then DI might not be appro-
priate. On the other hand, if we more loosely
interpret the DI category as “ways of thinking,”
as Vincenti does, then the pattern methodolo-
gy—that is, the more general idea of pattern
language by opposition with the use or descrip-
tion of any specific pattern—might be seen as
falling into this latter category.

The next top-level section, “Software design
quality analysis and evaluation,” is probably one
where software design and software engineering
distinguish themselves from other, more mature
fields of engineering. For instance, consider the
“Metrics” topic. Although various quantitative
metrics exist to estimate various aspects of the
design size, structure, or quality, no clear set of
rules to ensure a particular design’s correctness
and quality exists. Contrary to the more physi-
cal fields of engineering, then, pure quantitative
data are scarce in software, be they descriptive
or prescriptive. This is why “Metrics” has been
categorized as QD as well as TT.

A slightly similar situation holds for
“Quality attributes.” Although such quality
attributes could be considered part of the CaS
category, many of these attributes are still
rather informal—for example, when exactly
does the cohesion of a module becomes so low
or the coupling so high that the program
“breaks”? They are also approximate, warranti-
ng their inclusion in the PC category as well as
in TT (conceptual tools for qualitative reason-
ing). Finally, note that the “Quality analysis
and evaluation tools” topic includes, among

78 IEEE Annals of the History of Computing

Anecdotes

other things, the use of reviews to help ensure
the quality of design products as one of its
subtopics. Thus, the DI category (know-how)
could also have been indicated.

The “Software design notations” section per-
tains to the various notations and languages
that can describe and represent software design
artifacts. These include structural (static)—for
example, class and object diagrams, and
deployment diagrams—as well as behavioral
(dynamic) descriptions, such as dataflow dia-
grams, sequence diagrams, state transition dia-
grams, and pseudocode.

Because the structural and behavioral descrip-
tions did not really fit in any other category, I
categorized them as DI. For example, although
these tools may allow designers to specify vari-
ous aspects and features of a software artifact, the
tools do not help the designers decide what these
features should really be, which is what the CaS
category entails. In other words, these notations
are relatively quality- and target-neutral: We can
write bad (structured) pseudocode or draw sense-
less class diagrams. On the other hand, since
these notations and techniques can be seen as
ways of thinking about a design, making it pos-
sible to express various design facets, they have
been listed in the DI category.

The final section of the KA is “Software
Design Strategies and Methods.” This was prob-
ably the easiest to categorize. Since all such
methods are concerned with “how” to proceed
during software design, all topics have been
classified as DI.

One striking feature of the above categorization
is that, probably contrary to more established
fields of engineering, few elements of the soft-
ware design KA belong to the CaS and the QD
categories. Two reasons help explain this fact.
First, the software design KA is only one of 10
KAs described in the Guide to the SWEBOK. For
instance, we might expect the software require-
ments analysis and the software quality analy-
sis KAs to have identified more topics in these

categories. A second, and important, reason is
that software design might not yet be consid-
ered mature, often more akin to art than sci-
ence. As the field evolves and matures,
additional topics related to these two categories
of knowledge might emerge.

Mapping the different topics of the software
design KA into Vincenti’s categories of engi-
neering knowledge has been an interesting
exercise and challenge. The above categoriza-
tion might well also be open to challenge in
the initial sense of the word—that is, “dispute,”
according to my pocket dictionary—since dif-
ferent people can have slightly different inter-
pretations of Vincenti’s categories … almost as
I did every time I reread Vincenti’s book. I
therefore gladly welcome any comments or
suggestions on this classification.

Guy Tremblay
Dept. of Computer Science

University of Quebec at Montreal
Montreal, Que.

tremblay.guy@uqam.ca

References and notes
1. For an overview of the SWEBOK project and a

more detailed presentation of the various knowl-
edge areas, see IEEE Software, Nov./Dec. 1999,
vol. 16, no. 6; or http://www.swebok.org to
obtain the current version of the Guide to the
SWEBOK.

2. Vincenti’s work is grounded in traditional
engineering. Thus, the common use of the
notion of device is “Devices are single, relatively
compact entities […]”. By contrast, a system is
simply an assembly of devices. As he admits, the
frontier between the two is often tenuous.

3. In the most recent version of the Software Design
KA description (version 0.90), the topic “Key
issues in software design” has been turned into a
top-level topic. Minor modifications to some of
the topic names have also been made. The ensu-
ing discussion, based on version 0.70 of the
Guide, still remains valid for the new version.

January–March 2001 79

