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RÉSUMÉLe déploiement d’un service réseau est sujet à plusieurs dépendances sémantiques
et séquentielles. Cependant, un des principaux problèmes des approches de gestion des
configurations est l’absence d’un modèle transactionnel qui permettrait aux informations
de configuration de conserver leur intégrité durant le processus de configuration. Dans cet
article, nous introduisons la notion de dépendance séquentielle et proposons un modèle
mathématique basé sur les techniques du model checking permettant de structurer les
opérations de configuration. Ce modèle mène au concept « d’état-borne » (milestone state).
Nous suggérons par la suite une manière de bonifier le protocole Netconf avec une
composante transactionnelle basée sur ces concepts.

ABSTRACT. The deployment of a network service is subject to a number of semantical and
sequential dependencies. However, one of the main issues with the existing configuration
management approaches is the absence of a transactional model, which should allow the
network configuration data to retain their integrity during the configuration process. In this
paper, we introduce the notion of sequential dependency, propose a mathematical
framework based on model checking that allows the structuring of configuration operations
leading to the concept of milestone state, and suggest how the Netconf protocol can be
enhanced with a transactional component.

MOTS-CLÉS: gestion des configurations, Netconf, dépendances sémantiques, dépendances
séquentielles, model checking, LTL

KEYWORDS: configuration management, Netconf, semantical dependencies, sequential
dependencies, model checking, LTL



2   GRES, 09 - 12 Mai 2006, Bordeaux.  

1. Introduction

The deployment and configuration of network services is a complexand error-
prone task that is subject to constraints at different levels. For instance,semantical
dependencies between parameters dispersed among multiple configuration
operations appear in even the simplest management tasks (Halléet al., 2004a).
Although these dependencies are not currently captured by managementprotocols
such as Netconf (Enns, 2005), it has been shown how tree logics can help in
automating their formalising and checking on a given configuration snapshot
(Hallé et al., 2004b).

However, even if semantical dependencies can be automatically verified, an
important part of the complexity of deploying a service still remains. In general, the
configuration operations must be performed in a specific order thatis determined
by the connected nature of the network, or even by some requirements of the
devices' operating system. Therefore, in addition to semantical dependencies, there
are sequentialdependencies that need to be formalised and checked in a smiliar
fashion. The importance of checking these sequential dependenciesis heightened
by the fact that an increasing number of services, such as Virtual LANs and Virtual
Private Networks, involve configuration changes on multiple devices at the same
time.

While the semantical dependences in network device configurations have been
widely debated in the network management literature (Daminaouet al., 2001;
Warmeret al., 1999; Crubézy, 2002; Jacksonet al., 2000; Halléet al., 2004b), the
sequential dependences have not yet been extensively covered. Among the works on
the subject, (Couchet al., 2003) examine a convergent approach to automated
configuration and provide an algebraic model of configuration management.
According to this model, the managed processes can be decomposed into regions or
intents of non-conflicting, stateless actions. Each of these non-commutative regions
can then be processed separately. Using this model, procedural processes, which are
composed of non-commutative operations, can be redesigned as declarative
processes, which are composed of commutative operations. The authors illustrate
their approach with examples from file editing.

The transactional aspect of the device configuration process is taken into
account by the Netconf configuration protocol (Enns, 2005), which isa new
protocol designed for manipulating network device configurations.However, this
protocol provides transactional operations at device level, but does not currently
have similar operations for the network level.

The purpose of this paper is twofold. First, we raise the question of sequential
constraints in network configuration operations and show by a couple of examples
that their presence is as common as semantical ones; using concepts borrowed from
the field of model checking, we also demonstrate how these constraints can be
accurately formalised in Kripke structures by temporal logic formulas. Second, we
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define the notion ofmilestonestates in a Kripke structure in terms of these
mathematical grounds and claim that these states make good candidates for
validation, synchronization and rollback points during the deployment of a service,
and illustrate how the Netconf protocol could be enhanced by theaddition of a
likewise transactional component.

The paper is structured as follows. In section 2, we briefly overview the
concepts of configuration tree and semantical dependencies and introduce by the
means of concrete examples the concept of sequential dependency. We also
describe the mathematical framework of model checking and showhow sequential
dependencies can be modelled by temporal logic. In section 3, we introduce the
concept of milestone and apply it to the Netconf protocol. Finally, section 4 shows
some experimental results and section 5 concludes with future paths of work.

2. The Sequential Aspect of Network Management

The deployment of a service over a network basically consists in altering the
configuration of one or many equipments to implement the desired functionalities.
We can presuppose without loss of generality that all properties of a given
configuration are described by attribute-value pairs hierarchically organised in a
tree structure (Halléet al., 2004a; Villemaireet al., 2005) like the one shown in
Figure 1.

Figure 1. A sample configuration tree. Nodes labelled α, α', β and β' are not
present initially, but are added in the process of deploying the network services
given later as examples.

Possible alterations to the configuration typically include deleting or adding
new parameters to the configuration of a device, or changing the value of existing
parameters. In most cases, the parameters involved in such modifications are both
syntactically and semantically interdependent. For instance, the value of some
parameter might be required to depend in a precise way on the value of another
parameter; the simplest example of such dependency is the fact that anIP address
must match the subnet mask that comes with it. More complex dependencies might
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constrain the existence of a parameter to the existence of another. Recent works
have shown how such dependencies can be automatically checked by logical tools
on a given configuration snapshot (Hallé et al., 2004b).

2.1. Sequential Dependencies at the Service Level

However, the situation becomes more complex when one wants to actually
deploy a service from scratch. In addition to constraints on the valuesof
parameters, the dependencies may also impose that the modifications be performed
in a specific order. When done in an uncoordinated way, changing, adding or
removing components or data that implement network services can bring the
network in an inconsistent or undefined state. This fact becomes acutely true in the
case where operations must be distributed on multiple network elements, as they
cannot be modified all at once. Moreover, while a single inconsistent device can
ultimately be restarted when all else fails, there is no such “restart” option when an
entire network configuration becomes inconsistent.

We illustrate the concept of sequential dependencies by the means oftwo
examples taken from the deployment of network services. For each of these
examples, a sequential dependency is extracted and formalised.

2.1.1. Example 1: Virtual LANs

A Virtual LAN (VLAN) is a group of devices spanning multiple LAN segments
that are configured to communicate as if they were connected to the same wire.
Each VLAN works as a completely separate entity that can only be joined by a
router. Since VLANs are logically (rather than physically) structured, they are
extremely flexible. Among the several protocols designed to thispurpose, IEEE
802.1Q (IEEE, 1998) has become the standard.

When configuring a router on a VLAN, the subinterface that is connected to a
VLAN trunk must be set to support the 802.1Q protocol; since each subinterface is
attached to a specific VLAN, the number of this VLAN must also be specified
when configuring the trunk. Therefore, configuring a VLAN trunk will have for
effect of adding nodes� and

�
in the configuration tree of Figure 1.

However, 802.1Q frames are designed in a way that they must contain the
VLAN number; therefore, encapsulation and VLAN number must be configured
toghether. From this simple example, one can deduce this first sequential rule:

Sequential Constraint 1In a router, the VLAN number must be set at the same
time the encapsulation protocol is enabled.

In the case of Figure 1, this means that nodesα andβ must be added to the tree
in the same step.



Sequential Dependencies in Configuration Operations   5

2.1.2. Example 2: Virtual Private Networks

A VPN is a private network constructed within a public network suchas a
service provider's network (Rosenet al., 1999). A customer might have several
sites, which are contiguous parts of the network, dispersed throughoutthe Internet
and would like to link them together by a protected communication.The VPN
ensures the connectivity and privacy of the customer's communications between
sites.

Such a service consists of multiple configuration operations; in the case of
Layer 3 VPNs, it involves setting the routing tables and the VPN forwarding tables,
setting the MPLS, BGP and IGP connectivity on multiple equipmentshaving
various roles, such as the customer edge (CE), provider edge (PE) and provider
core (PC) routers. An average of 10 paramters must be added or changed in each
device involved in the deployment of the VPN.

As an example, for a Layer 3 VPN using MPLS, Figure 1 shows two leaf nodes
that must be added, each in its own position, to the configuration tree of a PE
router. Node� ' corresponds to the creation of the Virtual Routing and Forwarding
Tables (VRF) necessary for the proper functioning of the VPN; node

�
' associates

this VRF to a specific interface on the router. Semantically, it is clear that one
cannot associate a VRF to an interface before the VRF is created in memory.
Therefore, trying to add node

�
' to the configuration before node� ' is created is

nonsensical and generates an error. From this situation, we can elicit a second
sequential rule:

Sequential Constraint 2To add nodeip-vrf-forwarding to a configuration
tree, the node route-distinguisher must already be present.

Special emphasis must be made on the fact that the noderoute-
distinguisher has to be present in the treebeforenodeip-vrf-forwarding
is added, which rules out the possibility that both nodes be added in a single
operation.

2.2. Formalising Sequences of Configuration Operations

To formalise the sequences of operations, we first need to introduce some basic
concepts taken from the theory of model checking (Clarkeet al., 2000). LetS be a
set ofstatesrepresenting a unit situation at a given time. In the context of network
configuration, states are labelled trees, as described previously.

We call transition from a states1 to a states2 the structural modifications that
transforms1 into s2 . Formally, transitions can be defined as a subset of tuples
T � S� S ; there exists a transition froms1 to s2 if and only if � s1 , s2 � � T . The

tuple � S , T� forms a directed graphG that we call aKripke structure. Figure 2
shows an example of a Kripke structure.
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Figure 2. A Kripke structure with multiple paths from a start state to a target state.
Each state represents a labelled tree.

In the case of the labelled trees we use for modelling device configurations,
structural modifications are limited to addition of a labelled node to a leaf, deletion
of a leaf node and change in a node's value. These modifications intuitively refer to
addition, deletion or modification of a parameter in the configuration of a device.

A path is a finite sequence of states� s1 ,... ,sn � such that, for anysi ,si � 1 , there
exists at � T such thatt � � si , si � 1 � .

The deployment of a service is a path in such a structure that starts from a given
configuration,ss , and ends at a target configurationst . For example, in the case of
Figure 1, a possible start state could be the tree without any of� , � ' , � , � ' , and a
possible target state could be the same tree with all these nodes.A valid deployment
sequence could be a sequence of addition of the nodes that respects, among other
things, Sequential Rules 1 and 2.

2.3. Formalising Sequential Dependencies

The state space generated by spanning all possible transitions between a start
and target state is fairly large. For the 4 nodes of Figure 1, there are 24 possible
unconstrained paths, and in general, forn possible operations, there aren! possible
paths. We must now restrict our study to acceptable paths	 that is, paths that
respect the elicited sequential constraints. For this purpose, weuse the Linear
Temporal Logic (LTL) commonly used in model checking (Clarke et al., 2000).

LTL is a logic aimed at describing sequential properties along pathsin a given
Kripke structure. Its syntax is based on classical propositional logic, to which
modal path operators have been added.
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The first such modal operator isG, which means “globally”. Formally, the
formula G � is true on a given pathπ when, for all states along this path, the
formula � is true. The second modal operator commonly used isX (“next”). The
formula X � is true on a given pathπ of the Kripke structure when the next state
alongπ satisfies� . Finally, a formula of the formF � (“eventually”) is true on a
path when at least one state of the path satisfies� . Other modal operators exist,
but go beyond the scope of this paper.

A LTL formula is a well-formed combination of the classical∧ (disjunction),∨
(conjunction),¬ (negation),→ (implication) and↔ (equivalence) operators with
modal operators. Theatomsof LTL are the base-level Boolean expressions over
which the formulas are built. In the present case, since states are labelled trees, we
take the atoms to be formulas themselves, based on a tree logic such as CL
(Villemaire et al., 2005).

Equipped with it, it is now possible to formalize sequential constraints into
logical formulas. Without delving into further details, suppose that� n is a CL
formula that is true if and only if noden is present in a given configuration tree.
Then, the Sequential Constraint 1 presented in the previous section can be
translated into the following formula:

Sequential Formula 1

G � � ↔ � �

This formula means that in all states of all paths where either� or � exists, the
other node must also exist. All temporal rules described earlier can therefore be
translated into LTL formulas of that kind. For example, Sequential Rule 2
becomes:

Sequential Formula 2

G ( � � � '  → X ( � � '  → � � � ' ))

telling that the presence of node� ' implies that node� ' is present, and that is must
also have been present at least in the previous step in the deployment.

3. Transactional Aspects of the Netconf Protocol

We now show how transactional aspects presented in the previous section can
be applied to the Netconf protocol by enhancing it with a transactional component.

3.1. Overview of the Netconf Protocol

To send configuration commands to a router, Netconf provides a set of “remote
procedure calls” (RPC) and RPC-replies. In a simplified way, an RPC is a block of
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XML data whose opening tag contains an identifier that either asks the router to
return a portion of its configuration file, or tells it to replace apart of its
configuration with a snippet provided by the user and carried in the body of the
RPC. Netconf offers other built-in operations, such as commandsallowing to lock a
part of the router's configuration so that only the current user canmodify it, and
subsequently unlock it. The RPC-reply is the XML block that is returned to the
user.

The Netconf protocol defines a simple mechanism for device management.
However, its transactional model, which includes a validation capability, is device-
centered, and does not provide a mechanism to ensure the consistency of the
sequence of operations with respect to the rules elicited in section 2.

In order to bestow transactional semantics on the update operations of multiple
configurations, it is important to determine the optimal points ofvalidation,
commitment and roll-back during the update process of the network device
configurations.

3.2. Components and Milestones

We propose to determine these points by analysing special properties of the
Kripke structure induced by the sequential dependencies. To this purpose, we
introduce the notion ofmilestone state. A milestone state is a statem by which all
valid paths must eventually pass. Formally, let� be some LTL temporal rule, and
�

m be a CL formula that is true only on statem. Then, in a Kripke structureG, m is
such that for every path beginning at the start state and that satisfies � , the
formula F � m  is true.

Milestones can be thought of as unavoidable steps in the path from start to
solution, since all acceptable paths must eventually pass by thosepoints, in the
order they appear. In the case of Figure 2, we see two milestones, labelled M and
M'.

We argue that milestones are good candidates to divide the modelled process
into natural macro-steps of which they are the boundaries; complementary to
milestone states arecomponents, i.e. sets of states and transitions comprised
between two milestone states. The word “natural” is used here,since these
milestones emerge from the set of temporal constraints imposedon the lattice.
Different temporal constraints generally lead to different milestones.

3.3 Towards a Transactional Model

The main advantage of the analysis of the lattice that arises from temporal
constraints is that it induces a way of synthesising a protocol for the
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implementation of a service. By placing validation checkpoints at milestones, we
ensure such checkpoints are placed in semantically sound locations throughout the
deployment process. Since these checkpoints reflect the structureimposed by the
temporal constraints, they also make good points to roll back in case a failure
occurs.

These points are important since they represent optimal places ofvalidation in
the flow of operations. Thus, a validation in one of these points can check all or
most of the dependences that apply on the multiple flow streams that converge
towards the validation point. Moreover, these convergence points are unavoidable
during the configuration and, since they concentrate the flow paths, a validation
performed at such points provides a maximum extent of coverage for those flows.

Intuitively, we suggest that a validation point be used to validate the operations
that are situated along the flow path connecting it to a previous upstream
milestone, in which a validation has been already done. If the validation has been
successful, the update information generated by the operations is committed.
Otherwise, if the validation or the commitment fails, the updateinformation
generated by the operations is discarded and the configurations are rolled back to
the latest points of successful validation.

Netconf provides two phases of a successful configuration transaction during a
service configuration procedure: preparation and commitment. During preparation,
the configurations are retrieved from the network devices. When all the
configurations have been retrieved, the edition starts at service level. The validation
at this stage ensures that the network configuration is consistent before the
proposed modifications required by the service. To ensure the integrity of the
configuration edition, the device configurations are locked, editedand subsequently
unlocked. When the service edition has been successfully accomplished, the
commitment starts. The validation at this stage ensures that the network
configuration remains consistent after the respective modifications of the network
configurations.

Since the network service update affects multiple device configurations, a two-
phase commit is required. The first phase stores the update information on
temporary storage and validates it before entering the second phase. If the
validation is successful, the update information is transferred onto the real
configurations, otherwise this information is discarded. In case of erroneous
transfers during the second phase, the configurations are rolledback and the second
phase can be resumed.

This semantics can be used with the Netconf configuration protocol to ensure
the transactional properties of the service updates on multiple devices. As already
mentioned, the Netconf protocol defines transactional operations for device level
but does not provide similar operations for network level, i.e. for the multiple
device configurations supporting a network service.
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Obviously, the higher-level validations may involve multiple devices. For
instance, the routing table and the protocol information in a device depend on the
network addresses and the protocol information from other devices. Similarly,
parameters such as protocol neighbors' IP addresses, autonomous system numbers,
protocols' process number and IP addresses must accurately correspond on more
than one device, in order for the network service that is deployedover that network
to be consistent.

In this case, defining an operation that can validate multiple parameters situated
on several devices might be highly recommendable. This multi-device validation
operation would replace multiple single-device validation operations and would
allow performing complex validation queries directly within the given
configuration protocol.

   
                a)               b)

Figure 3. a) Validation time of a deployment sequence in terms of number of nodes
to alter and constraints per node.  b) Generation time of a valid deployment
sequence in terms of number of nodes to alter and constraints per node.

4. Experimental Results

Since the structures generated by sevice deployments are Kripke structures and
that the sequential formulas can be formalised in LTL, it is possible to submit the
problem directly to a model checker like NuSMV (Cimattiet al., 2002). Using this
tool, we generated sample deployment sequences and checked that these
deployments respected a set of constraints similar to SequentialRules 1 and 2. For
each test, we varied the number of nodes in the sequence and the number of
sequential constraints imposed on each nodes. The validation times for these
experiments are summarised in Figure 3a. All times given in this section have been
calculated on an AMD Athlon XP-M 2200+ running NuSMV 2.1.2 under Cygwin.

One can see that validation times for large sequences of operations (up to 150
nodes) remain under the reasonable bound of 10 seconds, and that augmenting the
number of constraints is not the principal factor that makes the computation longer.
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Additionally, it is possible to benefit from the counter-example generation
mechanism of NuSMV to find a deployment sequence that does not violate any
constraint. As a matter of fact, when a LTL property of the formG p is false,
NuSMV provides the user with an execution trace on the Kripke structure for
which p is false. If p is the LTL property one wants to verify on a structure, it
suffices to submit the formulaG ¬p for verification. If there exists a trace for
which p is true, then such a trace is a counter-example for the formulaG ¬p, and
therefore NuSMV will display it to the user, giving by the same occasion a valid
deployment sequence.

We have conducted experiments with NuSMV on sample deployment sequences
with constraints of the same form as Sequential Formulas 1 and 2. We varied the
size of the configurations and the number of sequential constraints per node
imposed on the structure, and computed the time NuSMV took to provide acorrect
deployment sequence. The results of these experiments are presentedin Figure 3b.
Each curve corresponds to the generation time of a valid deploymentsequence
involving some number of nodes, with 1, 2 or 3 sequential constraints imposed on
eachnode � that is, the total number of constraints actually increases with the
number of nodes.

As expected, generating a valid sequence is much harder than validating an
existing one. Moreover, the number of sequential constraints oneach node does
matter in this case, and can change a rather simple situation into an untractable
one. One can see that, for sequences that involve the addition or modification of
about 10 nodes, which is comparable to deployment of a simple VPN on a router,
up to three sequential constraints per node can be imposed without the generation
time becoming prohibitive.

These findings suggest that model checking is indeed an interesting tool for on-
the-fly validation of deployment sequences, and for offline,a priori synthesis of
valid sequences for network services with a complexity comparable to a Virtual
Private Network.

5. Conclusion

In this paper, we have shown how Linear Temporal Logic applied to Kripke
structures can accurately formalise sequential constraints in the deployment of
network services. Using these model checking concepts, we defined the notion of
milestonestates in a Kripke structure and gave arguments for using these points as
validation, synchronization and rollback points during the deployment of a
service,and illustrated how the Netconf protocol could be enhanced by the addition
of a transactional component based on milestones.

Empirical results on sample network configurations demonstrate the feasibility
of validating deployment sequences using model checking tools, and show that
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finding a deployment sequence that validates a set of constraints is a
computationally hard problem.

The authors plan future work on these concepts in order to further use
milestones in a hiearchical decomposition of a service deployment. In such a
setting, each component could contain sub-milestones that wouldfurther divide a
process into sub-steps based on the same principle. Moreover, thecurrent
methodology could be extended by considering all possible orderings of operations
in a component and eventually reduce the study to one specific ordering, in the
same waypartial order reduction reduces the state space in model checking
(Clarke et al., 2000).
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