
CDCL with Less Destructive Backtracking

through Partial Ordering
Anthony Monnet, Roger Villemaire
Université du Québec à Montréal

Montreal, Quebec, Canada
anthonymonnet@aol.fr, villemaire.roger@uqam.ca

Abstract

Con�ict-driven clause learning is currently the most e�cient complete algorithm for
satis�ability solving. However, a con�ict-directed backtrack deletes potentially large por-
tions of the current assignment that have no direct relation with the con�ict. In this paper,
we show that the CDCL algorithm can be generalized with a partial ordering on decision
levels. This allows keeping levels that would otherwise be undone during backtracking
under the usual total ordering. We implement partial ordering CDCL in a state-of-the-art
CDCL solver and show that it signi�cantly ameliorates satis�ability solving on some series
of benchmarks.

1 Introduction

Con�ict-driven clause learning (CDCL) [13] is a very e�cient algorithm for solving the proposi-
tional satis�ability problem, currently used in virtually all complete state-of-the-art SAT solvers.
For each con�ict, it deduces a new clause that will allow an early detection of future similar
con�icts, thus helping to prune the search space. It also performs a con�ict-directed backtrack-
ing, which may undo several decision levels at once in order to return faster to the cause of the
con�ict and propagate this new learnt clause as early as possible in the search tree.

Despite this approach was proved very e�ective, each con�ict-directed backtrack deletes a
possibly large amount of instantiations that have no direct connection with the detected con�ict.
Indeed, by de�nition, none of the deleted levels contains any variable from the con�ict, except
for the con�ict level itself. In the worst case, these levels could even belong to a distinct
connected component of the problem, meaning that they can't be a�ected by the con�ict and
the resulting assertion, even indirectly. This results in a partial loss of previous search work,
which may delay the discovery of a model or of another con�ict. CDCL may have to rebuild this
part of the search and reprocess all propagations. Given that propagations are the most time-
consuming task of SAT solving, it is natural to try avoiding the destruction of instantiations
that are still consistent with the current state. Several methods have been conceived to tackle
this issue and minimize the amount of unrelated instantiations that are deleted, for instance
tree decompositions [9, 3, 11, 5, 15] and phase saving [18].

In this paper, we propose a novel variation of the CDCL algorithm that detects instan-
tiations that would be undone by the regular algorithm but can be safely retained. This is
achieved by relaxing the ordering between decision levels. Indeed, with the usual total order,
con�ict-directed backtracking must delete all levels above the assertion level in order to return
to that level and propagate the con�ict clause. We show that this total ordering is not required
to maintain essential properties of the algorithm, and that a partial ordering re�ecting depen-
dencies between decision levels can be used instead. As a consequence, instantiations are only
deleted by the con�ict-directed backtracking if they actually interfere with the con�ict reso-
lution. Partial order backtracking [7, 14, 4] has previously been described for the Constraint
Satisfaction Problem (CSP), but to the best of our knowledge, it has never been used in the

1

anthonymonnet@aol.fr
villemaire.roger@uqam.ca

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

context of SAT solving, moreover within the CDCL algorithm. This is the main contribution
of our paper.

We also provide experimental results obtained by implementing partial order CDCL (PO-
CDCL) in a state-of-the-art CDCL solver. We show that although PO-CDCL is not e�cient on
all SAT benchmarks, it seems to signi�cantly reduce the solving trace on instances with a low
partial order density, and that some benchmark series have a consistantly low density. Thus
PO-CDCL manages to solve these series faster than the original CDCL solver.

The rest of this paper is organized as follows: section 2 summarizes the CDCL algorithm.
Section 3 quickly introduces previous related works, namely tree decompositions, phase saving
and partial order CSP. Section 4 presents the algorithm of partial order CDCL and gives the
proof of some of its essential properties. Finally, section 5 shows and analyzes experimental
results obtained by our implementation of PO-CDCL.

2 Con�ict-Driven Clause Learning

Let V be a set of variables and L = {v,¬v | v ∈ V} the set of literals on V. A propositional
formula in conjunctive normal form F(V, C) is de�ned by a set V of variables and a set C of
clauses on V, each clause c ∈ C being a set of literals. An assignment σ ⊂ L is a set of non-
con�icting literals considered true. σ can be extended and interpreted as a partial function
associating boolean values to variables, literals, clauses and formulas. If σ is de�ned on v ∈ V,
we will say that v is instantiated by σ; if it isn't, we will note σ(v) = undef. A total assignment
σ on V is a model of the formula F(V, C) i� σ(F(V, C)) = true. Given a formula, the SAT
problem consists in determining whether it is satis�able, i.e. whether it has at least one model.

The CDCL algorithm [13] determinates the satis�ability of a formula through a combination
of depth-�rst search and inference. Algorithm 1 presents a pseudocode of CDCL. The search

Algorithm 1 CDCL

1: σ ← ∅ /* begin with the empty assignment */
2: loop

3: c←Propagate /* propagate new instantiations */
4: if c 6= NIL then /* a con�ict was found during propagations */
5: if λ = 0 then /* con�ict at decision level 0 */
6: return false /* F is unsatis�able */
7: else

8: γ ← Analyze(c) /* infer the con�ict clause γ */
9: a← AssertionLevel(γ, λ)
10: Backtrack(a) /* backtrack to assertion level */
11: λ← a /* a becomes the current level */
12: C ← C ∪ {γ} /* γ is learnt */
13: PropagateAssertion(γ)
14: else /* no con�ict during propagations */
15: if all variables are instantiated then

16: return σ /* σ is a model of F */
17: else

18: λ← NewLevel
19: Decide(λ)

2

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Algorithm 2 AssertionLevel(γ, λ) [CDCL]

a← max({λ(l) | l ∈ γ} \ {λ})
return a

Algorithm 3 Backtrack(a) [CDCL]

for v ∈ V |λ(v) > a) do

σ(v)← undef

part of the algorithm is conducted by repeatedly choosing instantiations to add to the current
assignment σ (through the procedure Decide) until either all variables are instantiated or a
con�ict is reached. Con�icts are solved by undoing some of the last search choices.

The inference engine used within CDCL is the unit propagation rule: for any clause c =
{l1, . . . , li} such that σ(l1) = σ(l2) = . . . = σ(li−1) = false and σ(li) = undef, c entails li
under σ so li is added to σ. c is called the antecedent of li, noted α(li) = c. Unit propagation
is exhaustively applied to all unit clauses by procedure Propagate before making any new
decision. The nth decision and all unit propagations it entails form the nth decision level of the
search; all propagations which were deduced without any decision belong to decision level 0.
We will note λ(v) the decision level of a variable v and λ the current level of the search.

Propagate encounters a con�icts if it �nds a clause c for which all literals are false under
the current assignment σ. CDCL Analyzes this con�ict and its reasons to produce a con�ict
clause γ which is also falsi�ed by σ but only has one literal of current decision level λ. If λ = 0,
then the con�ict can't be avoided and F is unsatis�able. Else γ de�nes an AssertionLevel
a, which is the second largest decision level in this clause (Alg. 2). CDCL performs a Back-
track to the assertion level by entirely deleting all decision levels above a (Alg. 3). γ becomes
unit, is propagated by PropagateAssertion, and Propagate is called again to deduce all
possible inferences from this new instantiation. When a call to Propagate exhausts all unit
propagations without encountering any con�ict, a new decision is taken. If all variables have
already been instantiated then σ is a model of F .

All modern CDCL solvers implement unit propagation using watched literals [16], a method
allowing a very e�cient detection of unit propagations. Its pseudocode is shown by Alg. 4.
As long as a clause has at least two literals that aren't false under σ, it can't be propagated.
Therefore, for each clause c, CDCL keeps track of two of its literals ω(c) = {w1, w2} ⊆ c. For
each new propagation l, CDCL checks all clauses c where ¬l is watched. If the second watched
literal w is true under σ, then c is true and obviously can't be propagated; CDCL doesn't need
to replace ¬l. Else, CDCL looks for another non-false literal w′ to watch instead of ¬l. If it
can't �nd one, either w is false (and c is a con�ict), or w is unde�ned. In the latter case, c is
unit and w is added to σ.

Checking clauses for propagations (lines 4 to 17 of Alg. 4) is the innermost loop of the
Propagate procedure, which is generally by far the procedure in which the most time is spent
during solving. Because of this, we will use in the rest of the paper the number of clause checks
as a secondary indicator of solving e�ciency, less implementation-dependent than solving time.

Note that the Backtrack procedure is described here as implemented in zChaff [16]
and Glucose [1] for instance. One of the original CDCL solvers GRASP [13] uses a less
destructive backtracking: it generally only deletes the last decision level and instantiates the
assertion as a new �pseudo-decision�. It only performs an actual con�ict-directed backtracking
when the decision at the con�ict level is already a pseudo-decision itself. Although pseudo-
decisions allow the use of less destructive backtracks, they are propagations stored in a pseudo-

3

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Algorithm 4 Propagate [CDCL]

1: Π←{instantiations not yet propagated}
2: while {Π 6= ∅} do

3: choose l ∈ Π
4: for c ∈ C | ¬l is watched in c do

5: w ← the second watched literal in c
6: if σ(w) 6= true then

7: Ω← {l′ ∈ c |σ(l′) 6= false} \ {w}
8: /* Ω is the set of literals that could replace ¬l */
9: if Ω = ∅ then /* no other literal in c can be watched */
10: if σ(w) = undef then /* c is unit */
11: σ(w)← true /* w is propagated by c*/
12: Π← Π ∪ {w}
13: else

14: return c /* c is a con�ict */
15: else

16: choose w′∈Ω
17: ω(c)← {w,w′} /* w′ is watched instead of ¬l */
18: Π← Π \ {l}
19: return NIL /* no con�ict occured */

level without any other literal of their antecedent. Therefore they can be deleted without these
causes, leaving an undetected unit clause. GRASP-type backtracks thus do not ensure that all
possible unit propagations have been performed before taking a new decision, unlike backtracks
used in zChaff and Glucose. As a result, con�icts discovered by GRASP can involve clauses
that were already unit several decision levels earlier, which means these con�icts could have been
avoided much earlier in the search by an exhaustive unit propagation. As unit propagations
are crucial for e�ciently pruning the search space, we suspect that the incompleteness of unit
propagations in GRASP is partly responsible for its lower performance wrt. zCha� ([16],
Section 4.4.4. of [12]). Enforcing complete unit propagations within a GRASP backtrack type
would require to exhaustively check all clauses after each con�ict, which may be time expensive,
and would still cause pseudo-decisions. In contrast, PO-CDCL aims to reduce the amount of
instantiations undone during con�ict-directed backtracking while keeping the exhaustive unit
propagation property.

3 Related Works

Several methods have been proposed to directly or indirectly minimize the quantity of search
progress lost during con�ict-directed backtracking while solving SAT or CSP problems.

Some of them rely on tree decompositions [19] of the connectivity graph between variables.
They constrain the order of decision variables so that the instance �rst breaks into several
connected components, and then that the solving of one component can't undo instantiations
in another component [9, 3, 11, 5, 10]. The main practical drawback is that challenging SAT
problems are typically so large that computing a good decomposition becomes untractable [15].

Phase saving [18] is a more heuristic and very lightweight approach. It simply memorizes
the last polarity assigned to a variable and reuses it if the variable is picked for a decision.

4

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Phase saving actually doesn't prevent instantiations from being undone, but makes it possible
to rediscover the deleted instantiations later and recover the search progress. This recovery
however doesn't save the cost of repeating the time-consuming propagation phase.

A set of CSP solving algorithms was designed with the goal of undoing less search progress
than con�ict-directed backjumping (CBJ) by relaxing the order between variables. While CBJ
resolves a con�ict by deleting all instantiations and restoring all eliminated values from the
culprit variable on (the most recent variable in the nogood), dynamic backtracking (DB) [7]
only undoes the culprit variable and restores only eliminated values where the culprit variable
was part of the nogood. Partial order backtracking (POB) [14] uses the same backtrack as DB
and additionally allows to pick any variable in the nogood as the culprit variable. To ensure
termination, it however progressively sets permanent order constraints between variables. Both
algorithms were hybridated [8] and generalized [4].

Similarly to DB and POB, PO-CDCL undoes less search progress than regular con�ict-
directed algorithms, and like POB it allows some freedom in the choice of the assertion level.
However, instead of setting de�nitive constraints on the order of variable instantiations, it sets
local constraints on the order in which decision levels will be undone. Moreover, PO-CDCL is
speci�cally adapted to various aspects of CDCL, such as the integration of unit propagations and
the watched literal mechanism, which correctness implicitely relies on the total order between
decision levels.

Finally, some techniques aim to enhance performances of SAT solvers by increasing the
quantity of instantiations undone by backtracks [17, 2], which is a totally opposite strategy
wrt. PO-CDCL.

4 Partial Order CDCL

This section introduces PO-CDCL, a generalization of the usual CDCL that relies on a partial
order on decision levels during the search. In the �rst subsection, we will present the algorithm
of PO-CDCL, and in the second we will show amongst others that it is correct and complete
and that it terminates.

4.1 Algorithm

Algorithm 1, that we used to describe CDCL, remains the backbone of PO-CDCL, but some
of its elements are modi�ed.

In the original CDCL, decision levels are assumed to be totally ordered such that i < j
i� the decision of level i was set before the decision of level j. In PO-CDCL, we only set a
strict partial ordering ∆ between decision levels. We will say that i is a dependency for j,
or equivalently that j depends on i, and note i <∆ j if (i, j) ∈ ∆. i ≤∆ j is the re�exive
extension of <∆. i <∆ j means that decision level i had an in�uence on propagations at level
j. Consequently, level j should be deleted when level i is deleted or modi�ed. Two cases of the
Propagate procedure add dependencies between levels (see Alg. 5):

1. At lines 14 and 15, when a unit clause c = {l1, . . . , li} propagates the literal li, then this
propagation at the current level obviously depends on all other levels occurring in c:
λ(l1), . . . , λ(li−1) <∆ λ (except when λ(lj) = λ).

2. At line 7, when σ(w) = true, we add the dependency λ(w) <∆ λ if λ(w) 6= λ. Indeed, in
this case a clause c is checked because one of its watched literals ¬l is false, but ¬l doesn't
need to be replaced because the second watched literal w is true. w is the reason why we

5

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Algorithm 5 Propagate [PO-CDCL]

1: Π←{instantiations not yet propagated}
2: while {Π 6= ∅} do

3: choose l ∈ Π
4: for c ∈ C | ¬l is watched in c do

5: w ← the second watched literal in c
6: if σ(w) = true then

7: ∆← ∆ ∪ {(λ(w), λ)} /* λ depends of λ(w) */
8: else

9: Ω← {l′ ∈ c |σ(l′) 6= false} \ {w}
10: /* Ω is the set of literals that could replace ¬l */
11: if Ω = ∅ then /* no other literal in c can be watched */
12: if σ(w) = undef then /* c is unit */
13: σ(w)← true /* w is propagated by c*/
14: for l′ ∈ c \ {w} |λ(l′) 6= λ do

15: ∆← ∆∪ {(λ(l′), λ)} /* λ depends of λ(l′) */
16: Π← Π ∪ {w}
17: else

18: return {c} /* c is a con�ict */
19: else

20: choose w′∈Ω
21: ω(c)← {w,w′} /* w′ is watched instead of ¬l */
22: Π← Π \ {l}
23: return ∅ /* no con�ict occured */

Algorithm 6 AssertionLevel(γ, λ) [PO-CDCL]

Θ← {λ(l) | l ∈ γ}\{λ} /* Θ is the set of levels involved in the con�ict, except λ*/
Γ← {i ∈ Θ, @j ∈ Θ | i <∆ j} /* Γ is the set of maximal elements in Θ */
choose a ∈ Γ
return a

can stop watching c for unit propagations, but we have to make sure that w will not be
uninstantiated before ¬l, else c could become unit without being properly watched. This
is impossible with a total order on decision levels but could happen with a partial order.

AssertionLevel also has to be modi�ed, as indicated in Alg. 6. Partial order will allow
some freedom in the choice of the assertion level. In CDCL, it is uniquely de�ned as the largest
level in the set Θ = {λ(l) | l ∈ γ} \ {λ} of decision levels involved in the con�ict clause, minus
the current decision level. In PO-CDCL, due to the partial order, Θ may have several largest
elements. Each of these largest elements is eligible as a valid assertion level, so that the assertion
level can be arbitrarily picked amongst them.

Finally, we also modify Backtrack (see Alg. 7) since the goal of our method is to undo
less instantiations during this phase. CDCL resolves a con�ict by undoing all instantiations
which decision level is larger than the assertion level a. PO-CDCL performs a similar deletion,
except that it only deletes decision levels i such that a <∆ i (λ may not depend on a but must
obviously be deleted in any case). This deletion ensures the antisymmetry of ∆: if a level i such
that a <∆ i wasn't deleted, the search returning to level a may produce a propagation of level

6

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Algorithm 7 Backtrack(a) [PO-CDCL]

Λ← the set of all decision levels
for i ∈ Λ | (a <∆ i)or (i = λ) do

for v ∈ V |λ(v) = i do

σ(v)← undef

a depending on level i, so we would have simultaneously a <∆ i and i <∆ a. The antisymmetry
of ∆ is crucial to ensure that the assertion level of a con�ict is well-de�ned. Indeed, without
this property, the set of decision levels involved in a con�ict clause may not have any maximal
element.

Note that we should also always enforce ∀i 6= 0, 0 <∆ i; else, when backtracking to level 0,
it would be possible to make a propagation at top-level which depends on a decision.

4.2 Properties

In this subsection, we will prove some properties of PO-CDCL, including that it is correct,
complete and that it terminates. Most other properties we will prove are implicit or obvious
properties within the original CDCL, but are less straightforward in the case of a partial order.

Proposition 1. ∆ is antisymmetric.

Proof. Algorithm 5 only adds dependencies to the current decision level λ. To show the anti-
symmetry of ∆, it is thus su�cient to prove that no other level depends on λ at the moment it
becomes the current level. λ can be a newly created decision level, in which case it has initially
no dependency. Else, the search returned to λ because it has been chosen as the assertion level
for some con�ict. Then Backtrack deleted all decision levels which depended on λ. In both
cases, no non-empty level depends on λ.

Corollary 1. ∆ is a strict partial order.

De�nition 1. A propagation l is valid i� ∀a ∈ α(l), υ(a) = false.

Proposition 2. During a PO-CDCL solving, all propagations remain valid.

Proof. The only way to make a propagation invalid would be to delete a level to which a literal
from its antecedent belongs, without deleting the level of the propagation itself. Dependencies
added in Alg. 5 when a propagation occurs ensure that such a case can't happen.

De�nition 2. A SAT solver is propagation-complete i� when its Propagate function stops
without having detected a con�ict, no more clause is unit.

Lemma 1. Whenever Propagate terminates without encountering any con�ict, the following
propreties hold. All clauses not yet satis�ed watch two unde�ned literals. Satis�ed clauses may
watch true, false, or unde�ned literals, but each clause watches at most one false literal. If a sat-
is�ed clause watches a false literal w1, the second watched literal w2 is true, and λ(w2)≤∆λ(w1).

Proof. We will prove the lemma by recurrence on con�ictless calls to Propagate.

Initialization: Before the initial propagation round of the search, all variables are uninstanti-
ated, so all clauses are unsatis�ed and watch two unde�ned variables.
Assume a clause c whose two watched literals become false. Propagate will eventually

7

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

check one on them and try to replace it by a true or unde�ned literal. If it fails, it means
that the clause is already unsatis�able before any decision was made, so the entire formula
is unsatis�able. If it succeeds, the clause now belongs to the next case.
Now assume a clause c with only one false watched literal w1. If the second watched
literal w2 is true, then c is true and λ(w1) = λ(w2) = λ0 so the property is true. If w2

is unde�ned, Propagate will look for a second non-false literal w3. If there is one, c
will watch w3 instead of w1. Else, it means that the clause is unit, so w2 is added to the
current assignment and c is then a true clause watched by one true and one false literal
of the same level.

Recurrence: Let's assume the property holds after the nth con�ictless call to Propagate.

If the property holds before the (n+ 1)th con�ictless call, then we can prove it still holds
after this call using the same reasoning as for the initialization phase. However, there may

be one or more con�ictual calls between the nth and (n + 1)th con�ictual call. We will
now show by another recurrence that after the backtrack following any of these con�ictual
calls (but before the learnt clause is added to the formula) the recurrence is veri�ed.
Let's assume the property holded after the previous backtrack (or after the last con�ictless
call in the case of the initialization). When a con�ict occurs, then several decision levels,
including the current level, are undone. After a backtrack, all clauses are then either in
a state verifying the recurrence property, or in a state reached by deinstantiating some
literals from such a recurrence state.
Let c be a clause, w1, w2 its watched literals and σ, σ′ the partial assignments resp. before
the con�ictual call and after the following backtrack (so σ′ ⊆ σ).

• If σ(c) = undef, then by recurrence σ(w1) = σ(w2) = undef. Since σ′ ⊆ σ, σ′(w1) =
σ′(w2) = undef so the property still holds.

• If σ(c) = true and σ(w1) = false, then by recurrence σ(w2) = true and λ(w2) ≤∆ λ(w1).

� If σ′(w2) = true, σ′(c) = true and the property still holds regardless of σ′(w1).

� Else σ′(w2) = undef. Since λ(w2) ≤∆ λ(w1), σ′(w1) = undef, so the property holds
regardless of σ′(c).

• If σ(c) = σ′(c) = true and σ(w1), σ(w2) 6= false, then the property holds regardless of
σ′(w1) and σ′(w2).

• If σ(c) = true, σ(w1), σ(w2) 6= false and σ′(c) = undef, then σ′(w1) = σ′(w2) = undef so
the property holds.

Corollary 2. After a con�ictless run of Propagate, no clause is false under the current
assignment.

Proposition 3. PO-CDCL is propagation-complete.

Proof. According to Lem. 1, after a con�ictless run of Propagate, all unsatis�ed clauses watch
two distinct unde�ned literals. Hence, none of these clauses is unit (which proves Prop. 3) or
false (which proves 2).

Theorem 1. PO-CDCL is correct.

8

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Proof. A SAT solver is correct i� any total assignment it returns is indeed a model of the
input formula, i.e. if it satis�es all clauses. A total assignment can only be returned by PO-
CDCL after a con�ictless run of Propagate. According to Cor. 2, no clause is false under this
assignment. As the assignment is total, no clause can be unde�ned either. So all clauses are
satis�ed, and the total assignment is a model.

Theorem 2. PO-CDCL is complete.

Proof. A SAT solver is complete i� it never erroneously reports a satis�able formula as being
unsatis�able. Lemma 3 of [22] proves the completeness of CDCL by showing that the empty
clause can be derived by recursively resolving the �nal con�ict clause against the antecedents of
its variables. This proof is also valid within CDCL because according to Prop. 2 all propagations
are valid, hence all literals of its antecendent are still false, except for the propagation itself. The
proof also shows that the resolution is �nite, since the process doesn't resolve against the same
variable twice. This is also still true in PO-CDCL, because ∆+ is a partial order (Cor. 1).

Theorem 3. PO-CDCL always terminates.

Proof. ∀i ∈ N, let Λi and ∆i be the set of decision levels and the associated partial order after
the �rst i instantiations in the PO-CDCL search (�at time i�). If the search terminates after
n instantiations, we will assume that ∀i > n, Λi and ∆i represent the state at the end of the
search. PO-CDCL as we described it never actually deletes any decision level or dependency,
so we can write ∀i < j ∈ N, Λi ⊆ Λj and ∆i ⊆ ∆j . Let us de�ne the (possibly in�nite) sets
of all decision levels and dependencies during the search: Λ∞ =

⋃
i∈N Λi, ∆∞ =

⋃
i∈N ∆+

i .
Thanks to the in�nite chain of inclusions on (Λi)i∈N and (∆i)i∈N, ∆∞ is a partial order on Λ∞,
and ∀i ∈ N, ∆∞ ∩ (Λi × Λi) is a partial order on Λi. Let Ψ be any total order extending ∆i.
Similarly, its restriction to Λi × Λi is a total order on Λi. We now have a total order on all
decision levels which is compatible with the local partial order at any point of the search.
∀i ∈ N, ∀j ∈ Λ∞, let us note ki(j) the number of variables instantiated at level j at time i

(or at the end of the search if it terminated after less than i instantiations).

ρi(j) =

{
0 if j = 0 or ki(j) = 0

|{k ∈ Λ∞ \ {0} | k <Ψ j and ki(j) 6= 0}|+ 1 else

is a function that orders all non-empty decision levels at time i according to Ψ. Finally, let us
de�ne

f(i) =
∑
j∈Λ∞

ki(j)

|V|ρi(j)+1
.

f(i) is de�ned, as in Lem. 1 from [22], such that one variable at a decision level j has
more weight that the sum of the weight all variables at higher decision levels. As in this
lemma, it proves that f(i) is a strictly growing function until the search �nishes. Indeed, when
some decision levels are uninstantiated, their weight is compensated by the assertion added
at assertion level, which is strictly lower than all undone levels.1 Similarly, the weight of a
decision level can decrease when a decision is taken in a formerly empty level with a lower ρ
order, but again their weight loss is compensated by the higher weight of this new decision. As
f(i) strictly grows as long as the search continues and can only take a �nite number of values,
the search is �nite.

1this proof assumes that for each con�ict we set that the con�ict level depends of the assertion level, which
has been omitted from the presented code but can be added without inconsistency.

9

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Algorithm 8 Analyze(φ)

/* φ is the false clause detected during unit propagation */
/* γ will be the con�ict clause produced by con�ict analyzis */
γ ← φ
while {|{l ∈ γ |λ(l) = λ}| > 1} do

/* there remains more than one literal of level λ in γ */
l← Last(γ, λ) /* pick the last instantiated literal of level λ in γ */
γ ← γ ⊗var(l) α(l) /* resolution of γ and α(l) on the variable of l */

De�nition 3. A learnt clause is non-redundant if obtained by resolving at least two clauses of
the formula. A con�ict is non-redundant if its analyzis produces a non-redundant learnt clause.

A learnt clause is useful if it becomes unit after the backtrack.

Proposition 4. All clauses learnt during a PO-CDCL are non-redundant and useful.

Proof. A shown by Alg. 8, if the con�ict clause is produced without any resolution, it means that
the false clause φ only contained one literal of level λ. This implies that before the propagation
round responsible for the con�ict, either φ was already false or it was unsatis�ed with only one
unde�ned variable. Both possibilities can be ruled out using the proof of Lem. 1. Hence all
clauses learnt during PO-CDCL are non-redundant.
Before the backtrack, γ contains by de�nition exactly one literal at the con�ict level. Since the
con�ict level is always undone by the backtrack, γ is unit after the backtrack unless another
decision level involved in the con�ict is undone. The latter case is impossible by de�nition of
the assertion level (see Alg. 6). Therefore γ is useful.

5 Experimental Results

In order to evaluate the practical e�ciency of PO-CDCL, we implemented PO-Glucose2 as
a modi�cation of state-of-the-art solver Glucose 1.0 [1]. Glucose was chosen because it has
ranked as one of the most e�cient solvers on application benchmarks during the last SAT
competitions and races [20] and is based on miniSAT [6] which has also been a regular winner
of these competitions.

Our implementation does not explicitely store the entire partial order ∆; instead, we only
keep track of all direct dependencies between decision levels. The algorithm only requires to
�nd all levels depending directly or indirectly of candidate assertion levels during the Asser-
tionLevel procedure, which can be easily done by a few recursive traversals of the dependency
tree from these levels. Maintaining the full transitive relation ∆ would require a time-expensive
enforcement of transitivity after each new propagation, which is much less e�cient according
to our preliminary tests.

For the choice of the assertion level, we kept in our experiments the basic CDCL strategy by
choosing amongst candidate assertion levels the latest created one. We don't modify restarts
(they still undo all instantiations except top level assertions), nor their frequency.

Glucose uses phase saving by default. As we partly designed PO-CDCL as an alternative
to phase saving, we disabled it in our implementation PO-Glucose. Moreover, preliminary

2Source code of PO-Glucose is available at http://www.info2.uqam.ca/~villemaire_r/Recherche/SAT/

120210partial_order_glucose.tar.gz

10

http://www.info2.uqam.ca/~villemaire_r/Recherche/SAT/120210partial_order_glucose.tar.gz
http://www.info2.uqam.ca/~villemaire_r/Recherche/SAT/120210partial_order_glucose.tar.gz

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Table 1: Compared performances of Glucose without phase saving (TO), Glucose with phase

saving (TO-phase) and PO-Glucose (PO) on the set of 300 application benchmarks from the SAT

2011 competition. The �rst line shows the total solving time for each implementation (tot.), counted

in days, hours and minutes. Each instance was given a time limit of one hour, the number of instances

that couldn't be solved within that limit is indicated in column #to. The second line gives the total

number of clause checks needed for solving all instances (checks are counted in billions). Limit was set

to 100 billions of checks for each instance, the number of unsolved instances is again given in column

#to.

TO TO-phase PO

#to tot. #to tot. #to tot.

time (d:hh:mm) 122 6d02h05m 111 5d15h47m 144 7d03h23m

clause checks (Bn) 113 13 911 103 12 869 127 15 200

experiments indicated us that enabling phase saving in PO-Glucose almost always caused a
signi�cation degradation of performances. In order to make sure that performance di�erences
were not solely caused by disabling phase saving, PO-Glucose was compared with the original
Glucose implementation including phase saving, but also with a slight variant where phase
saving was disabled. Experiments were conducted on a 3.16 GHz Intel Core 2 Duo CPU with
3 GB of RAM, running a Ubuntu 11.10 OS.

Our tests con�rm that in practice the PO-CDCL algorithm is able to save instantiations
compared to regular CDCL during the solving of any non-trivial benchmark, although the
average number of instantiations saved per con�ict varies a lot amongst benchmarks (from less
than one to several thousands).

In order to test the behaviour of PO-Glucose on a wide range of SAT benchmarks, we
ran it on the set of 300 application benchmarks from the SAT 2011 Competition. Results are
summarized in Table 1. They clearly show that in general PO-Glucose tends to degradate
solving performances compared to Glucose, no matter if phase saving is enabled or not. If we
compare PO-Glucose withGlucose with phase saving (the best performing of bothGlucose
variants), only 26 of the 300 instances are solved faster by PO-Glucose, while 153 are to the
contrary solved slower than by Glucose. Glucose is globally slightly less e�cient when phase
saving is disabled, but even then it still clearly outperforms PO-Glucose.

This counterperformance is partly due to the cost of maintaining and handling dependencies
during solving. As we pointed it out, unit propagation is one of the most frequent operation
performed during SAT solving and is often responsible for the largest part of the solving time.
For all propagations, PO-CDCL requires to ensure that the current decision levels depends on
the decision levels of all variables in the antecedent clause. This task is relatively lightweight,
but as it occurs very frequently it results in a sensibly slower solving: on average, PO-Glucose
performs about 30% less clause checks than Glucose in the same time, and in some extreme
cases this decrease can reach 75%. Our implementation of PO-CDCL thus starts with a handi-
cap over the regular CDCL and has to drastically reduce the solving trace in order to outperform
it in terms of solving time.

Also, PO-CDCL actually follows a longer search path than CDCL on many instances, despite
our original intuition. For instance, amongst the 153 instances on which PO-Glucose takes
more time than Glucose, it also performs more clause checks on 143 of them. Since the CDCL
algorithm is very sensitive to variations, the partial order may have negative side-e�ects on some
aspects of the algorithm, for instance on the dynamic VSIDS heuristic used to choose decision

11

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Table 2: Compared solving time of Glucose without phase saving (TO), Glucose with phase saving

(TO-phase) and PO-Glucose (PO) on some example instances. For each instance, direct dep. gives

the average direct dependency density δ(∆dir), a lower bound of the actual density δ(∆), during the

execution of PO-Glucose. AProVE07-03, homer14.shuffled, post-c32s-gcdm16-23 and k2fix_gr_rcs_w9.shuffled

are taken from the application benchmarks of the SAT 2011 competition. 7pipe_k and 12pipe_bug4

are two microprocessor formal veri�cation benchmarks taken respectively from the pipe_unsat_1.0 and

pipe_sat_1.0 series.

TO TO-phase PO direct dep.

AProVE07-03 6m24s 7m16s 16m57s 69.13%

homer14.shuffled 7m51s 10m51s 25m14s 39.47%

post-c32s-gcdm16-23 1m18s 1m20s 3m41s 33.36%

k2fix_gr_rcs_w9.shuffled >1h00m00s 30m20s 9m13s 4.51%

7pipe_k 23m36s >1h00m00s 3m07s 3.92%

12pipe_bug4 >1h00m00s 18m49s 4m11s 2.07%

variables. We think the issue is that on many instances the advantages gained from using a
partial order are outweighted by these drawbacks.

The principle of PO-CDCL being to take advantage of some independence between decision
levels, the obvious question is whether this is a frequent phenomenon in SAT solving. During
the solving of a problem, if decision levels often depend on all or most previously created
levels, PO-CDCL will behave very similarly to CDCL. In that case the overhead of PO-CDCL
obviously comes with little bene�t. The independence between decision levels can be measured
by the density of the partial order ∆.

At any point of the search, let l be the current number of decision levels (not includ-
ing level 0). We will de�ne the cardinality of ∆ as |∆| = |{(i, j), i <∆ j}|, i.e. the num-
ber of dependencies between decision levels. The maximal cardinality for l decision levels is
|∆|max(l) = (l− 1)(l− 2); it is reached i� ∆ is a total order on the l levels. The current density

of ∆ is then de�ned by δ(∆) = |∆|
|∆|max(l) . A low density (near 0) means that there are very

few dependencies between decision levels compared to the maximum possible number of depen-
dencies given the current number of decision levels. Conversely, a value of δ(∆) approaching 1
denotes a high amount of dependencies and means that ∆ is close to de�ning a total order on
decision levels. Considering the previous discussion, we expect PO-Glucose to perform better
on instances with a low average value of δ(∆) during its execution.

Table 2 shows this average value on some example instances, or more exactly a lower bound of

it: the average value of δ(∆dir) = |∆|dir
|∆|max(l) where ∆dir is the set of direct dependencies between

decision levels. These examples seem to validate our intuition that PO-Glucose has more
chances to ameliorate performances on instances with low level dependencies. Instances that
PO-Glucose solves signi�cantly faster than both Glucose variants often have only around
5% or less of the maximum possible direct dependencies. On the contrary, PO-Glucose tends
to generally degradate the solving performance on instances having an average direct density
of 30% or more. Partial order CDCL thus has indeed more chances to be e�cient on instances
where decision levels interact moderately with each other.

Although most SAT instances we thoroughly examined have little independence during
the search, we identi�ed at the opposite some benchmark series where all instances share a
low dependency level, resulting in most cases in signi�cant solving speedups. For instance,

12

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

Table 3: Solving performances of total order Glucose without (TO) and with (TO-phase) phase saving and

PO-Glucose (PO) on two benchmark families of formal veri�cation of microprocessors. All tests were run

with a time limit of 1 hour. For each test the necessary amounts of time (in seconds) and of clause checks (in

millions of checks) is given, and the best performance amongst the three solvers is printed in bold. Average

direct density of ∆ is respectively 1.5% on pipe_sat_1.0 and 5% on pipe_unsat_1.0. Some instances of pipe_unsat_1.0

have been ommited: 2pipe_k, which in solved in less then 1s and 1M clause checks by all solvers, and 10pipe_k to

14pipe_k, which all 3 solvers are unable to solve within the time limit.

time (s) checked clauses (M)

TO TO-phase PO TO TO-phase PO

pi
pe

_s
at

_1
.0

bug1 >3 600 15 9 >68 766 427 20

bug2 >3 600 722 17 >30 290 12 122 117

bug3 1 875 178 2 246 22 776 5 344 30 485

bug4 >3 600 1 702 251 >42 762 52 933 3 236

bug5 115 34 25 2 261 1 181 265

bug6 1 750 354 138 35 695 10 056 1 525

bug7 >3 600 783 389 >21 687 21 393 3 902

bug8 >3 600 1 569 3 230 >84 337 35 203 31 314

bug9 >3 600 5 13 >66 840 73 82

bug10 8 1 525 282 145 36 226 3 089

total >25 348 6 887 6 601 >375 562 174 962 74 034

pi
pe

_u
ns

at
_1

.0

3pipe_k 0 2 1 13 82 15

4pipe_k 6 22 15 217 876 385

5pipe_k 13 68 37 520 2 604 911

6pipe_k 23 77 9 847 2 709 173

7pipe_k 1 416 4 727 187 56 905 228 327 3 977

8pipe_k 3 538 4 059 1 058 139 673 94 965 27 288

9pipe_k 174 258 150 5 948 7 187 2 006

total 5 171 9 212 1 456 204 123 336 750 34 756

table 3 shows detailed statistics obtained on two benchmark sets from formal veri�cation of
microprocessors [21]. These benchmarks have particularly low dependency between decision
levels, as shown in the caption of Table 3 and on a couple of examples in Table 2, and PO-
Glucose signi�cantly outperforms both versions of Glucose on most instances. Moreover, the
management of dependency structures is particularly time-expensive on these instances. Thus
the performance of PO-Glucose is even more signi�cant when purely algorithmic indicators
are considered, such as the total number of checked clauses: speedups up to one or even two
orders of magnitude are common. This means that on these instances partial ordering CDCL
consistently manages to explore the search space much more e�ciently than the regular CDCL
algorithm. Moreover, one family contains satis�able benchmarks and the other unsatis�able
benchmarks. Thus PO-CDCL can be e�cient not only for reaching quickly a model of the
instance, but also for pruning the search space.

13

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

6 Conclusion

In this paper, we addressed the issue of information loss in CDCL algorithms during con�ict-
directed backtracks. We designed a variation of CDCL that de�nes a partial order on deci-
sion levels, and showed this order allows to undo less instantiations during backtracks, while
keeping all essential properties of the algorithm. Finally, we implemented our algorithm in a
state-of-the-art SAT solver and evaluated its e�ciency. We noticed that PO-CDCL performs
particularly well on benchmarks where the partial order as a low average density during the
search. Moreover, some series of benchmarks are characterized by a consistently low density
and can be solved signi�cantly faster by PO-CDCL.

We are currently exploring some avenues to further ameliorate performances on instances
that we already identi�ed as relevant to partial order CDCL. For instance, the choice of the
assertion level was set rather arbitrary in the experiments presented above, but using more
relevant strategies to choose this level can lead to even better performances on the formal
veri�cation instances on which we focussed in this paper.

References

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on
Arti�cial Intelligence, pages 399�404, 2009.

[2] Ateet Bhalla, Inês Lynce, José T. de Sousa, and João Marques-Silva. Heuristic-based backtracking
relaxation for propositional satis�ability. Journal of Automated Reasoning, 35(1�3):3�24, October
2005.

[3] Per Bjesse, James H. Kukula, Robert F. Damiano, Ted Stanion, and Yunshan Zhu. Guiding SAT
diagnosis with tree decompositions. In Enrico Giunchiglia and Armando Tacchella, editors, Theory
and Applications of Satis�ability Testing � 6th International Conference, SAT 2003, volume 2919
of Lecture Notes in Computer Science, pages 315�329. Springer, 2004.

[4] Christian Bliek. Generalizing partial order and dynamic backtracking. In AAAI/IAAI '98 Pro-
ceedings, pages 319�325. AAAI Press / The MIT Press, 1998.

[5] Vijay Durairaj and Priyank Kalla. Exploiting hypergraph partitioning for e�cient boolean sat-
is�ability. In Ninth IEEE International High-Level Design Validation and Test Workshop, 2004,
pages 141�146. IEEE Computer Society, 2004.

[6] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando
Tacchella, editors, Theory and Applications of Satis�ability Testing � 6th International Conference,
SAT 2003, volume 2919 of Lecture Notes in Computer Science, pages 502�518. Springer, 2004.

[7] Matthew L. Ginsberg. Dynamic backtracking. Journal of Arti�cial Intelligence Research, 1:25�46,
August 1993.

[8] Matthew L. Ginsberg and David McAllester. GSAT and dynamic backtracking. In Alan Borning,
editor, PPCP'94 Proceedings, volume 874 of Lecture Notes in Computer Science, pages 243�265.
Springer, 1994.

[9] Jinbo Huang and Adnan Darwiche. A structure-based variable ordering heuristic for SAT. In
Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Arti�cial Intelligence, pages 1167�1172. Morgan Kaufmann, 2003.

[10] Philippe Jégou and Cyril Terrioux. Hybrid backtracking bounded by tree-decomposition of con-
straint networks. Arti�cial Intelligence, 146(1):43�75, 2003.

[11] Wei Li and Peter van Beek. Guiding real-world SAT solving with dynamic hypergraph separator
decomposition. In 16th IEEE International Conference on Tools with Arti�cial Intelligence (ICTAI
2004), pages 542�548. IEEE Computer Society, 2004.

14

CDCL with Less Destructive Backtracking through Partial Ordering Anthony Monnet and Roger Villemaire

[12] João P. Marques-Silva, Ines Lynce, and Sharad Malik. Con�ict-driven clause learning SAT solvers.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satis�a-
bility, volume 185 of Frontiers in Arti�cial Intelligence and Applications, chapter 4, pages 131�153.
IOS Press, 2009.

[13] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satis�ability. IEEE Transactions on Computers, 48(5):506�521, May 1999.

[14] David A. McAllester. Partial order backtracking. Research note, Arti�cial Intelligence Laboratory,
MIT, 1993.

[15] Anthony Monnet and Roger Villemaire. Scalable formula decomposition for propositional satis�-
ability. In C3S2E '10 Proceedings, pages 43�52. ACM, 2010.

[16] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Cha�:
engineering an e�cient SAT solver. In Proceedings of the 38th Design Automation Conference
(DAC 2001), pages 530�535. ACM Press, 2001.

[17] Alexander Nadel and Vadim Ryvchin. Assignment stack shrinking. 6175:375�381, 2010.

[18] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for satis�a-
bility solvers. In João P. Marques-Silva and Karem A. Sakallah, editors, Theory and Applications
of Satis�ability Testing - SAT 2007, 10th International Conference, volume 4501 of Lecture Notes
in Computer Science, pages 294�299. Springer, 2007.

[19] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309�322, September 1986.

[20] The international SAT Competitions web page. http://www.satcompetition.org.

[21] Miroslav N. Velev and Randal E. Bryant. E�ective use of boolean satis�ability procedures in the
formal veri�cation of superscalar and VLIW microprocessors. Journal of Symbolic Computation,
35(2):73�106, February 2003.

[22] Lintao Zhang. Searching for Truth: Techniques for Satis�ability of Boolean Formulas. PhD thesis,
Princeton University, June 2003.

15

http://www.satcompetition.org

	Introduction
	Conflict-Driven Clause Learning
	Related Works
	Partial Order CDCL
	Algorithm
	Properties

	Experimental Results
	Conclusion

