
Firewall Anomaly Detection With A Model Checker
for Visibility Logic

Bassam Khorchani and Sylvain Hallé
Université du Québec à Chicoutimi, Canada

Email: bassam.khorchani@uqac.ca, shalle@acm.org

Roger Villemaire
Université du Québec à Montréal, Canada

Email: villemaire.roger@uqam.ca

Abstract—An anomaly in a firewall is a relationship between
two of its rules that may hint at a possible misconfiguration
of its filter. One notable limitation of existing solutions for
firewall analysis is that they provide algorithms tailored for the
verification of specific anomalies. We introduce a modal logic,
called Visibility Logic (VL), which can be used to express arbi-
trary patterns between rules inside a firewall. A model checker
allows one to verify any formula expressed in visibility logic, of
which traditional anomalies are merely particular instances, with
running times of under one second for 1,500 rules.

Index Terms—firewall; rules; visibility logic; model checking

I. FIREWALL RULE ANALYSIS

In order to secure a corporate network or some subnetwork
within it, network traffic is usually filtered according to such
criteria as origin, destination, protocol and service. Typically,
dedicated routers, called firewalls, are equipped with filters
specifying which packets should be forwarded and which
should be discarded.

A filter is a sequence of rules that are tried in order, up
to the first matching one. A rule consists of a condition,
which is a region of the packet’s space (usually consisting
of source/destination IP addresses, protocol, source/destination
ports), and of a decision (usually accept/deny). Each packet
hence goes through the rules in sequence up to the first
matching condition, whose decision determines whether the
packet is forwarded or discarded. In our setting a filter is
simply formalized by its sequence of conditions, which are
axis-parallel packet space regions and a unique propositional
variable a representing the accept decision.

Figure 1A schematic filterfigure.1 illustrates a schematic
filter, where we consider only source and destination IP
addresses represented in dotted decimal (four dot-separated
numbers in the range 0− 255). To simplify presentation, we
use a ∗ to represent the complete range 0−255. In this figure
the first rule expresses the fact that packets with any source

Rule Source IP addr. Dest. IP addr. Decision
1 *.*.*.* 132.208.100.* accept
2 130.*.*.* 132.208.*.* deny
3 130.*.*.* 132.208.100.* accept
4 *.*.*.* *.*.*.* deny

Figure 1. A schematic filter

IP address and destination in the range 132.208.100.∗ are
accepted. The second rule ensures that remaining packets with
source address in the range 130.∗ .∗ .∗ and destination in the
range 132.208. ∗ .∗ will be denied. Note that the last rule
ensures that all packets that match no previous rule will be
denied.

Configuring a filter is a well-known error-prone task. Net-
work management researchers have therefore introduced filter
properties, called anomalies, which either reveal or hint to a
possible misconfiguration.

A. Anomalies

Network management researchers have introduced filter
properties, called anomalies, which either reveal or hint to a
possible misconfiguration. In particular, Al-Shaer’s work [1],
[2] considered the following cases, involving a pair of rules.

1) Simple Shadowing: A rule r1 is simply shadowed if there
is a rule r2, preceding r1 in the filter, and such that all packets
satisfying r1’s condition already satisfy r2’s. In such a case
r1 applies to no traffic and is therefore either misplaced or
unneeded. For instance rule 3 is simply shadowed by rule 1
in the filter of Figure 1A schematic filterfigure.1.

2) Correlation: Correlation happens when a later rule
matches some packet already matched by r while having a
different decision. In this case the filter is not necessarily
misconfigured, but it could be useful to inform the network
engineer that the second rule’s decision will not apply to
all packets satisfying its condition. We can formalize this
property with the following formula. For instance correlation
happens for rules 1 and 2 in the filter of Figure 1A schematic
filterfigure.1.

3) Generalization: Generalization happens when a later
rule matches more than r, but has a different decision. While
generalization has legitimate uses, such as rejecting packets
from some host and then accepting traffic from all remaining
machines on its subnet, it could be useful here also to inform
the network engineer that the rule will not apply to all packets
satisfying its condition. For instance rule 4 generalizes rule 1.

4) Simple Redundancy: Finally, a rule is simply redundant
if it is simply shadowed by a rule with the same decision.
In this case, the rule can be removed without changing the
packets that are accepted. This is the case for rule 3 which is
simply shadowed by rule 1 in the filter of Figure 1A schematic
filterfigure.1.978-1-4673-0269-2/12/$31.00 c© 2012 IEEE

B. Beyond Simple Anomalies

These “classical” anomalies have been reported in vari-
ous formulations in previous works. However, most of these
anomalies only hint at misconfigurations, on the grounds that
the administrator’s intent is ambiguous. Yet, we have seen,
for example, that the presence of correlated rules can be
legitimate, such as when a rule is better expressed as exception
intervals overriding a subsequent, more general rule. In many
cases, anomalies have as much to do with policy than with
correctness.

It would hence be desirable to relax some of the previous
anomalies, so as not to declare an error in some specific corner
cases. More generally, one may be interested in finding, for
various reasons, arbitrary patterns of rules inside a firewall,
and act upon them. In the following, we describe two such
possible patterns.

1) Second-Degree Generalization: A first case deals pre-
cisely with the exception vs. general rule that triggers a
false-positive anomaly. A firewall administrator may decide
to accept “first-degree” generalization —that is, the case
where an interval of addresses is given a decision that stands
in exception to a general rule— and decide to ignore any
warnings given by the detection of this type of anomaly.

Yet, for the sake of readability, the administrator may wish
to detect and act upon any “second-degree” generalization. In
such a case, a first rule gives a decision for some interval I, a
later rule overrides that decision for an interval I′ ⊇ I, and a
third rule again reverses that decision for yet a wider interval
I′′ ⊇ I′.

2) Overlapping Chains: A second case is to monitor se-
quences of overlapping rules with alternating decisions. Such
a set of three or more rules forms an overlapping “chain”; one
may argue that, again, while two overlapping rules may have
legitimate uses, an overlapping chain seriously decreases the
legibility and any such chain be detected.

II. VISIBILITY LOGIC

Since anomalies are special instances of patterns, it is
natural to develop a pattern language in which they can
be expressed, general enough for the cases discussed in the
previous section. We present in this section our formalization
of Visibility Logic, an extension of previous work on the
formalization of spatial sequences [3]. We start by defining
a set of binary relations suitable for distinguishing visibility-
related concepts such as occlusion, obstruction and covering.
We then use these binary relations to define a modal logic, and
show how this language is suitable to express the anomalies
described above.

A. Visibility Relations

Since we are considering visibility along a viewpoint,
our basic structures are finite sequences of spatial regions,
which we will simply name spatial sequences. In the case of
firewalls, spatial regions are simply the packet space’s regions
induced by the restriction on port, source and destination IP
address ranges.

B

A

(c)

D

t

B

A

(b)

B

A

(a)

Figure 2. Occludes, obstructs and covers, with foreground on the left.

1) R,r |= P, for some propositional variable P, if P ∈P(r),
2) the usual definitions for the Boolean connectives ¬, ∧, ∨,
3) R,r |=©Rϕ , if there is a r′ such that R(r,r′) and R,r′ |= ϕ , for r′ the

first such region (in sequence order),
4) R,r |= ♦Rϕ , if R,r′ |= ϕ , for some region r′ satisfying R(r,r′),
5) R,r |=�Rϕ , if R,r′ |= ϕ , for all regions r′ satisfying R(r,r′),

Table I
THE DEFINITION OF VISIBILITY LOGIC OPERATORS.

One can view each firewall rule as being “stacked” beneath
the previous one, with an observer standing on top of the stack
and looking downward. The first rule of the filter (rule #1)
can hence be seen as lying at the extreme foreground of the
observer’s viewpoint. A packet trickles down the stack until
it hits one of the rules’ spatial region. If we consider two
regions in isolation, the major aspects are the visibility of the
background region and to what extent the foreground region
obstructs this background region. If A is in the foreground of
B, we can distinguish the following three conditions.
• A occludes B, when A ⊆ B (Figure 2Occludes, obstructs

and covers, with foreground on the leftfigure.2 a),
• A obstructs B, when A∩B 6= /0 (Figure 2Occludes, ob-

structs and covers, with foreground on the leftfigure.2 b),
• A covers B, when A⊇ B (Figure 2Occludes, obstructs and

covers, with foreground on the leftfigure.2 c).
Let us denote these relations by R⊆(A,B), R∩(A,B) and

R⊇(A,B) respectively. Note that these relations are not mere
set-theoretical notions, since the A parameter must be in the
foreground of B.

B. Syntax and Semantics

In order to formalize spatial sequence properties, we intro-
duce in this section a modal logic, which we call Visibility
Logic (VL). From a logical point a view, a spatial sequence
R on a space S is a sequence of subsets of S , that we will
simply call regions, where every r ∈ R is labelled by a set
of propositional variables P(r). In the present case, we need
only one propositional variable, a, which is true exactly when
the rule’s decision is “accept”.

Visibility Logic is the multi-modal logic on the binary
relations R⊆, R∩, R⊇ and R‖. We introduce for each of these
relations R, modal connectives ©R, ♦R and �R. This logic
is interpreted on spatial sequences as defined in Table IThe
definition of Visibility Logic operatorstable.1.

Note that according to the definitions of our relations, if
R(r,r′) holds then r appears before r′ in the spatial sequence.
We therefore have that the semantics of ©R, ♦R and �R
refer to regions appearing later in the spatial sequence. We
furthermore also consider converse connectors ©−1

R , ♦−1
R and

�−1
R , in order to speak of previous regions.
To simplify notation, we will write©⊆, ♦⊆ and �⊆ instead

of ©R⊆ , ♦R⊆ and �R⊆ . Similarly we will use ©⊇, ♦⊇, �⊇
and ©∩, ♦∩, �∩.

C. Revisiting Firewall Anomalies

Equipped with this language, we can now revisit the
anomalies described earlier and show how they are proper-
ties definable in Visibility Logic. This, in turn, entail that
checking for an anomaly on a given rule-based filter reduces
to a process called model-checking for the special logic we
defined. Visibility logic hence offers a uniform approach to
anomaly verification, instead of relying on algorithms tailored
to specific anomalies.

1) Simple Shadowing: If we let R = r1,r2, . . .rn be the set
of rules in a given firewall, then ri is simply shadowed if and
only if the following expression holds:

R,ri |= ♦−1
⊇ >

The ♦−1
⊇ operator applies to all rules r preceding ri, such that

r ⊇ ri. The symbol > denotes the constant “true”; therefore,
the expression will return true whenever there exists a rule
preceding ri that covers it. This is indeed the definition of
simple shadowing.

2) Correlation: Using the same notation, ri is correlated if
the filter satisfies the following expression:

R,ri |= (a∧♦∩¬a)∨ (¬a∧♦∩a)

This expression can be broken down into two alternative cases.
The left-hand side of the ∨ connective states that the decision
of ri is “accept”, and that there exists a rule r following ri, such
that ri overlaps r and r’s decision is “deny”. This occurs when
r is correlated with ri. The right-hand side of the ∨ connective
covers the case where r and ri’s decisions are reversed.

3) Generalization and Simple Redundancy: Generalization
and simple redundancy are formalized in almost the same way
as correlation, the difference lying in the visibility relationship
used to express the rule (⊆ and ⊇ instead of ∩), and the direc-
tion in which to look (backwards in the case of redundancy).
This yields the following two expressions, which we will not
describe in detail.

R,r |= (a∧♦⊆¬a)∨ (¬a∧♦⊆a)

R,r1 |= (a∧♦−1
⊇ a)∨ (¬a∧♦−1

⊇ ¬a)

4) Second-Degree Generalization: The interesting point of
using Visibility Logic for expressing constraints on spatial
sequences is that one is not restricted to the classical anomalies
already studied in earlier works. Hence the second-degree
exception anomaly we described earlier can also be written as
a VL formula. Formally, a rule r is a second-degree exception
if and only if the following holds:

R,r |= a∧♦−1
⊇

(
¬a∧♦−1

⊇ a
)

Formally, the expression says that r’s decision is “accept”,
and that there exists a previous rule ri such that r ⊇ ri whose
decision is “deny”, which itself has a previous rule r j such
that ri ⊇ r j and whose decision is “accept”. In such a case, r
is indeed a second-degree exception. We omit the mirror case
where all decisions are reversed.

5) Overlapping Chains: The second relaxed anomaly we
introduced, overlapping chains, can also be expressed in
Visibility Logic as follows:

R,r |= a∧♦∩(¬a∧♦∩a)

This formula is true whenever r’s decision is accept, there
exists a subsequent rule ri overlapping r with an opposite
direction, which in turn has a subsequent rule r j overlapping
with again an opposite direction. The end result is a chain of
three rules that overlap each other with alternating decisions.

III. A MODEL CHECKER FOR VISIBILITY LOGIC

To assess the feasibility of the approach, we implemented
a model checker for Visibility Logic and performed tests on
sample rule bases. The definitions in Table IThe definition
of Visibility Logic operatorstable.1 provide a direct, recursive
algorithm to evaluate any VL formula. The truth value of the
top-level connective of a formula is computed recursively by
combining the truth value of its child operators.

For Boolean connectives the process is straightforward; the
case of R,r |=FR ϕ , where F ∈ {♦,©,�} and R ∈ {∩,⊆
,⊇}, is handled in the following way. One first computes,
given the current rule r, the list of all rules {r j,1,r j,2, . . .} such
that R(r,r′) holds. If F is the operator ©, the expression is
true exactly when R,r j,1 |= ϕ . If F is the operator ♦, the
expression is true exactly when R,r j,k |= ϕ for some r j,k.
Finally, if F is the operator ♦, the expression is true exactly
when R,r j,k |= ϕ for all rules r j,k.

The VL model checker is a direct implementation of this
algorithm in Java. It takes as input a VL formula ϕ , a rule base
R and a starting rule r, and returns as output “true” or “false”
depending on whether R,r |=ϕ . The model checker was tested
using four different rule sets, produced in the same way as
described in [1]. We measured the time required to evaluate
all the formulæ described in the paper, for rule sets ranging
from 100 to 4,000 rules. The results are plotted in Figure
3Model checking time according to rule base sizefigure.3.
It is straightforward to determine that the complexity of the
aforementioned algorithm is O(|R|k), where |R| is the size
of the rule base and k is the number of nested operators in

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

Number of rules

T
im
e
(s
)

Figure 3. Model checking time according to rule base size.

the formula to verify. Since the formulæ in the paper have at
most two nested operators, we observe that the approach scales
quadratically to large firewall rule bases, and yields validation
times under one second for as many as 1,500 rules.

IV. RELATED WORK

The detection of anomalies in firewall rules has been
the subject of a number of related works in the past. The
Firewall Policy Advisor [4] is one of the earliest tools for
firewall analysis. It uses Binary Decision Diagrams (BDDs) to
represent rules. BDDs have also been considered in FIREMAN
to represent regions and test for the shadowing, generalization,
correlation and redundancy anomalies [5]. This approach has
been evaluated experimentally, detecting anomalies in a 800-
rule filter in less than 3 seconds.

Alternatively, a tree structure that represents a spatial
decomposition of regions into non-overlapping axis-parallel
regions is used in [6] in a prototype tool. Special decision
tree data structures have also been introduced in [7], [8] to
process sequences of regions, but with neither theoretical nor
experimental evaluation.

While these tools are efficient at detecting a predefined
set of firewall anomalies, their algorithms are hard-coded
and built-in. To detect different patterns in rule bases, such
as the second-degree exceptions and overlapping chains we
described, one therefore has to modify the existing tools, and
implement the algorithms that detect the desired patterns. An
exception is the Margrave tool [9], which allows a user to
write queries in a first-order language; however, this language
is closer to a scripting language, and ultimately amounts to the
user programming the desired detection mechanism. Margrave
also reports running times an order of magnitude larger than
the present work for checking shadowing anomalies. In con-
trast, our logic-based approach allows one to express arbitrary
patterns over spatial sequences, and the same model checking
algorithm can be used to efficiently evaluate any formula of
Visibility Logic without modification.

V. CONCLUSION

Early experimental results on the use of Visibility Logic
to the detection of patterns in firewall rules indicate that
the approach is efficient. However, two factors unrelated to
performance make the approach even more appealing. First,
the approach is more generic than previous work: VL is
general language for writing formulæ about sequences of
regions, and existing anomalies studied in the literature are
specific formulæ in that language. Second, while the present
logic can be likened to Linear Temporal Logic in that it
expresses constraints on single rulesets, it can generalize to
express constraints on multiple paths across rulesets. This
opens the way to a logic-based solution to the very relevant
problem of verifying of inter-firewall anomalies, which is the
subject of ongoing work.

REFERENCES

[1] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in INFOCOM, 2004.

[2] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classi-
fication and analysis of distributed firewall policies,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 10, pp. 2069–2084, 2005.

[3] R. Villemaire and S. Hallé, “Strong temporal, weak spatial logic for rule
based filters,” in TIME, C. Lutz and J.-F. Raskin, Eds. IEEE Computer
Society, 2009, pp. 115–121.

[4] E. S. Al-Shaer and H. H. Hamed, “Firewall policy advisor for anomaly
discovery and rule editing,” in IM, ser. IFIP Conference Proceedings,
G. S. Goldszmidt and J. Schönwälder, Eds., vol. 246. Kluwer, 2003, pp.
17–30.

[5] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“FIREMAN: A toolkit for firewall modeling and analysis,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2006,
pp. 199–213.

[6] Y. Yin, R. Bhuvaneswaran, Y. Katayama, and N. Takahashi, “Analysis
methods of firewall policies by using spatial relationships between filters,”
in ICSCN, pp. 348–354.

[7] A. Liu and M. Gouda, “Complete redundancy detection in firewalls,” in
Proceedings of the 19th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security, ser. Lecture Notes in Computer Science,
vol. 3654. Springer, 2005.

[8] M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer
Networks, vol. 51, no. 4, pp. 1106–1120, 2007.

[9] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The Margrave tool for firewall analysis,” in LISA, R. van Drunen, Ed.
USENIX Association, 2010, pp. 1–18.

