Sanity Checks in Smart Home Sensor Streams

Rania Taleb

Université du Québec a Montréal
Montréal, Québec, Canada

Sébastien Gaboury
Université du Québec a Chicoutimi
Saguenay, Québec, Canada

Abstract

The integrity of sensor datasets used in smart home applications is
crucial for tasks like activity recognition and automation. We iden-
tify common validity issues such as event ordering errors, lifecycle
inconsistencies, and data corruption, which are often overlooked
but can significantly affect the reliability of analyses. We present
a toolbox based on the BeepBeep stream processing library that
enables efficient verification of these sanity checks on data streams.
Our analysis of several publicly available smart home datasets
reveals that most of them violate key assumptions about sensor
behavior, emphasizing the need for pre-validation.

CCS Concepts

« Information systems — Data cleaning; Data mining; Data
stream mining.

Keywords
stream processing, smart homes, sensor logs

ACM Reference Format:

Rania Taleb, Roger Villemaire, Hubert Kenfack Ngankam, Sébastien Gaboury,
and Sylvain Hallé. 2025. Sanity Checks in Smart Home Sensor Streams.
In The 40th ACM/SIGAPP Symposium on Applied Computing (SAC ’25),
March 31-April 4, 2025, Catania, Italy. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3672608.3707789

1 Introduction

The proliferation of smart home technologies has led to an increas-
ing number of sensors embedded within domestic environments,
continuously generating vast amounts of data. These sensor streams
offer valuable insights into various aspects of smart home opera-
tions, including security, energy management, and occupant well-
being [4, 13, 15, 15, 22, 29, 33, 42, 44]. All these operations suppose
that the smart home platform operates correctly, and that the event
logs it generates contain faithful and reliable data. Indeed, feeding
algorithms with raw data that contains gaps, corrupted or incon-
sistent readings could have harmful consequences. For instance, a
patient could be prevented from obtaining emergency assistance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °25, March 31-April 4, 2025, Catania, Italy

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0629-5/25/03

https://doi.org/10.1145/3672608.3707789

Roger Villemaire
Université du Québec a Montréal
Montréal, Québec, Canada

Hubert Kenfack Ngankam
Université de Sherbrooke
Sherbrooke, Québec, Canada

Sylvain Hallé
Université du Québec a Chicoutimi
Chicoutimi, Québec, Canada

because their current actions are incorrectly or partially recorded;
on the contrary, an occupant could be erroneously diagnosed as
declining in health on the grounds of faulty or missing data. In other
words, the results produced by the intricate analysis of sensor data
proposed in these works is as good as the quality of the incoming
data (“garbage in, garbage out”).

Yet, there exist multiple reasons why the data fed to these al-
gorithms might not be as faithful a record of the habitat’s state
and occupant’s actions as expected. Device firmware can contain
bugs, sensors can break, batteries can run out, hardware clocks can
drift, and occupants themselves may accidentally interfere with the
proper operation of the monitoring apparatus. However, there is
little evidence that research works using smart home datasets per-
form any kind of pre-validation of the data fed to their algorithms.
In most of the aforementioned works, raw data is seemingly fed
directly to the proposed algorithms, and whether any checks have
been made to ensure that the data was “sane” in the first place is
almost never documented. Stated otherwise, there is no evidence
that these approaches use a safety net that would perform a first
pass of verification to ensure that basic assumptions about the input
data are indeed satisfied before being analyzed further.

Yet these assumptions do exist, and are numerous when one
makes the effort to make them explicit. Some are trivial and easy
to verify, such as the fact that every sensor produces values within
a documented range. But others are less so, and what is more, can
lead to grossly incorrect results. For example, one may suppose that
events are written to the data source in the temporal order of their
occurrence, which may then simplify further processing made on
this data. An algorithm assuming this and being fed out-of-order
events may conclude to errors that actually did not occur. Similarly,
it may be assumed that every “open” event emitted by a contact
sensor is followed by a “close”, which can cause interpretation errors
if this is not the case. It can be seen that validating these hypotheses
is a stateful process that goes beyond simple data cleaning, as is
common practice in Big Data-based techniques.

This paper addresses this problem by providing a three-part con-
tribution. First, after a brief overview of smart home technologies
and their more specific application to activity recognition, Section
2 highlights various validity issues that datasets may be subject to,
and implicit hypotheses that are typically held about the nature
of these datasets. Then, Section 3 proposes, through the extension
of an existing event stream processing system, abstract templates
corresponding to common processing operations on sensor streams.
These templates easily allow the evaluation of numerous “sanity
checks” —that is, conditions that, if violated, reveal a potential mal-
function at the level of the smart home platform or data collection.

https://doi.org/10.1145/3672608.3707789
https://doi.org/10.1145/3672608.3707789

Finally, Section 4 presents the results of the analysis of more than
half a dozen smart home datasets, with regard to the respect of these
sanity checks. Our study ends with a surprising finding, namely
that most of the datasets we examined violate most of the sanity
conditions we consider.

2 Activity Recognition from Sensor Logs

Smart homes are residential environments equipped with a variety
of interconnected sensors designed to collect and monitor data re-
lated to activities of daily living (ADL) of residents. These sensors,
such as temperature, motion, and pressure sensors, gather infor-
mation about environmental conditions and resident behaviors.
Together, these devices contribute to efficient and responsive living
in Ambient Assisted Living (AAL) environments [1, 18].

2.1 ADL Recognition

The data emitted by these sensors form continuous data streams,
which are fundamental for real-time monitoring and automated
control in smart homes. In the context of Internet of Things (IoT)
devices, streams are typically processed continuously, as storing the
entire dataset is impractical due to its volume and evolving nature.
In this regard, Bifet et al. highlight the need for flexible learning
models capable of adapting to dynamic, non-stationary data [10].
However, in the context of ADL recognition, streams are very often
recorded and stored in the form of logs, since many approaches
require the addition of a posteriori annotations to identify activities,
before these logs can then be used as training data for learning a
model. This aligns with the stream data analysis needs in smart
home environments [3, 6], where timely insights and predictions
are necessary for applications ranging from security to energy
management.

Machine learning, clustering, and classification algorithms are
commonly used to analyze data streams [9, 11, 12, 24-26, 30, 32, 39].
In smart homes, these algorithms can be used to classify and detect
specific activities. For example, Das et al. [20] applied classification
in the context of activity recognition by using one-class classifi-
cation to learn normal activity patterns. This machine learning
technique is trained on data representing typical, error-free activi-
ties performed by individuals. When new, unseen activity patterns
are presented, the classifier identifies deviations from the norm,
which are classified as activity errors. These errors are used to
detect situations where individuals may need intervention or assis-
tance, such as when someone with memory limitations struggles
to complete daily tasks.

Some techniques such as decision trees are used by building
models that classify human activities [37, 40, 41]. These models
learn patterns from the data and attempt to predict which activity is
happening based on the input. Other models are built using neural
networks, trained using labeled datasets of activities, and used to
monitor behavior and detect deviations that may indicate health
issues or emergencies [14, 34]. For instance, Chen et al. [15] used
self-supervised learning in the recognition of ADL through deep
neural networks. These models were learned from pre-segmented
activity data gathered from smart home environments containing
labeled activity data. Support vector machines can also be used for
these tasks [23, 28, 38]. Similarly, clustering can employed for ADL

recognition; Akl et al. [2] applied k-means clustering to categorize
room activity distributions into three groups: Cognitively Intact
(CIN), Transition (TR), and MCL To enhance accuracy, Affinity
propagation was used to create exemplars representing each cluster.

The use of a knowledge-driven approach, supported by ontolo-
gies, sometimes helps in improving the recognition of activities in
smart homes by providing structured representations of context
and actions. Chen et al. [16] applied this approach by construct-
ing ontologies to model both the smart home environment and
ADLs. These ontologies capture the relationships between various
objects, locations, and activities, allowing the system to interpret
sensor data in a semantically meaningful way. Through subsump-
tion reasoning, the system compares real-time sensor data against
predefined activity models, enabling it to infer and recognize user
activities accurately and adapt to individual user behaviors.

Finally, in a last category, Demongivert et al. [21] developed
a distributed event-oriented architecture for activity recognition
that employs autonomous agents communicating via event-based
messaging. This system distributes computational tasks across mul-
tiple locations, and processes data in real-time, allowing it to track
several smart homes simultaneously.

2.2 Existing Platforms and Their Uses

Multiple research teams and labs set up experimental platforms to
collect datasets for activity recognition and smart home research.
We provide a brief overview of some prominent research platforms,
as well as the various research works that used the data produced
by them and made publicly available.

CASAS [17] offers a platform that deploys sensor networks in
homes to monitor daily activities such as sleeping, preparing meals
and eating for aging populations. Using data from motion, temper-
ature, and door sensors, they train machine learning models for
activity recognition. CASAS also provides open-source datasets
that are widely utilized in research on health monitoring, behavior
analysis, and smart home assistance.

NEARS-Hub [36] focuses on lightweight edge computing for
real-time monitoring in smart environments. Its goal is to create
a framework that processes data locally in smart homes, particu-
larly for elderly or health-monitored individuals. By capturing data
from sensors and using edge computing, NEARS-Hub enables real-
time decision-making and assistance without relying on a cloud
infrastructure.

Amiqual4Home (A4H) [19] develops smart home testbeds that
mimic real-life environments to study human interaction with ambi-
ent intelligence systems. Equipped with various sensors and devices,
A4H aims to automate tasks and adapt to user needs while captur-
ing detailed data on daily activities such as cooking, cleaning, and
leisure. The research focuses on enhancing user comfort, energy
efficiency, and health monitoring.

Smart Environments at Home and Elsewhere (SEArch) [5] develops
smart environments aimed to improve the quality of life for elderly
and disabled residents. Motion detectors and environmental sensors
are deployed. The goal of this platform is to use sensor networks to
monitor health and predict expected issues. Their datasets are used
to design machine learning algorithms to detect abnormal behavior
patterns in real time.

Other projects aim to develop smart home solutions specifically
for elderly care and health monitoring. We mention the Smart*
project [7], which gathers data on energy consumption and appli-
ance usage patterns in smart homes, with the aim of improving
home automation and energy efficiency, and the PlaceLab [31], a
highly instrumented home environment used to monitor a wide
range of activities and human behaviors.

Some of the datasets produced by these platforms have been put
to multiple uses, particularly in the field of e-Health. The so-called
“Aruba” dataset from CASAS has been the subject of a large number
of studies, principally focused on the recognition of activities of
daily living. Fahad et al. [22] proposed a robust activity recognition
system using the Aruba dataset to identify daily living activities
where they noted that the activity “Resperate” was not correctly
recognized by either method due to the limited number of occur-
rences, making it difficult to identify. Huang et al. [29] excluded
this activity and focused on human activity recognition experiment
involving the remaining 10 activities. They stated that the dataset
is imbalanced, as some of the activities occur more frequently than
others and around 54% of the entire sensor events have missing
labels. In their part, Yala et al. [35] revealed that no method could
identify the 'Dish Washing’ activity, where most of its test instances
are identified as ’Meal Preparation’ activity. This is because the two
activities run in the same location and trigger the same sensors.

Other CASAS datasets have been the focus of numerous studies
as well. Tan et al. [42] introduced the front-door events classification
algorithm. They proposed the brief-return-and-exit (BRE) event
and studied how much a resident is active in terms of the number
of exits per month. Aminikhanghahi et al. [4] focused on enhancing
activity recognition by segmenting behavior-based sensor data,
specifically using a Change Point Detection (CPD)-based activity
segmentation method. The main idea was to improve the accuracy
of activity recognition in smart homes by identifying the start
and end points of activities in real-time, which provides clearer
boundaries for recognizing activities. They discovered that some
activities such as “Enter Home,” “Leave Home,” and “Bed Toilet
Transition,” are generally short and involve similar movements to
other activities, making segmentation less effective. Bouchabou et al.
[13] emphasized the significance of sensor placement to accurately
capture activities. For instance, if a motion sensor is installed above
a bed to detect its usage, but the bed is later moved to a different
spot in the room, the sensor will no longer capture the relevant
data. This limitation is crucial in real-world applications, where
algorithms need to be resilient and continue functioning effectively
even when information is lost due to such changes.

The Orange4Home dataset has been used by Song et al. [43]
who propose a cognitive model for ADL. They observed that the
regularity in the routines of this dataset influences prediction accu-
racy, leading to generally higher performance due to the consistent
activity patterns. However, this suggests that the dataset may not
fully capture more complex and irregular behaviors.

2.3 Validity Issues in Smart Home Datasets

It is evident that data stream quality has a profound impact on the
performance of employed learning models. Addressing this chal-
lenge is critical for improving the robustness of machine learning

systems, particularly in ADL recognition. Yet, there are multiple fac-
tors that can result in the data produced by a smart home platform
to present issues regarding its validity. For instance:

o Heterogeneity: Events in smart home datasets are stored in
multiple incompatible formats, often with different conven-
tions even within the same format (e.g., CSV). This hinders
the reusability of analysis scripts and discourages thorough
data validation.

e Event Ordering: Sensor logs are often assumed to be time-
ordered, but factors like race conditions, transmission delays,
or batch reporting can violate this assumption. Analyses
relying on strict ordering risk producing incorrect results.

e Data Corruption: Issues like malformed names or outlier
values may indicate corrupted data. Smart home datasets
typically lack error correction mechanisms, making corrup-
tion detection challenging.

e Low Battery: Sensors with low battery levels may produce
inaccurate readings or encounter transmission errors. Logs
containing such intervals should be interpreted cautiously.

e Outages: Gaps in the data stream can result from sensor
malfunctions, power loss, or user interference. Mechanisms
like ZigBee radio check-ins can help detect such outages.

o Outliers: Platform malfunctions may produce outliers in sen-
sor data. While extensively studied, outliers in this context
are framed as one aspect of broader validity issues.

o Lifecycle Issues: Stateful sensors (e.g., open/close sensors)
may produce invalid event patterns (e.g., consecutive "open"
events) or miss intermediate events, indicating potential
malfunctions.

o Annotation Issues: Annotated datasets assume that each mo-
ment in time corresponds to at most one activity. Overlap-
ping or missing labels raise concerns about labeling quality.

e Abnormal Behavior: Patterns in the logs that deviate from
expected platform behavior (e.g., simultaneous motion de-
tection in all rooms) suggest platform issues, distinct from
erratic occupant behavior.

3 Generic Patterns Applied to Sensors Datasets

There is little evidence that the works using datasets presented in
Section 2.2 perform verifications for the various issues raised in Sec-
tion 2.3. Reasons for such a lack of sanity checks are multiple: little
perceived added value in a research environment with a pressure
for new results, low estimated occurrence of such problems in the
datasets. We also suspect such checks are not performed because
no fast and easy way of specifying and evaluating them on a dataset
exists. In order to uncover evidence of possibly invalid log data, one
must have at their disposition a set of tools allowing the querying
and manipulation of event logs in a flexible and format-agnostic
way.

In this section, we present a set of event stream processing tem-
plates expressed at a high level of abstraction. Among the numerous
stream processing platforms and systems available, we elected to
express and implement these tasks in the idiom of the BeepBeep
stream processing engine [27]. Arguments in favor of this system
include the fact that it has a a formally defined operational se-
mantics [8], has been under active development for a decade, is

available under the form of an open source Java library, and is easily
extensible.

Conceptually, the tool provides a set of computation units called
processors. Each processor ingests one or more streams of events,
and produces one or more streams according to a calculation that
is specific to each type. BeepBeep obviously operates in streaming
fashion, meaning that each new input event fed to a processor
triggers the calculation associated to that processor, and the new
output events resulting from this calculation (if any) are made
available for consumption immediately.

Processors can be connected or “piped” together to form directed
graphs called pipelines. A pipeline is created by taking the output
of a processor and feeding it as one of the inputs of another pro-
cessor. Depending on the actual processor instances used in the
pipeline and the way they are arranged in a graph, complex (and
more importantly, stateful) calculations can be obtained. The basic
processors provided by BeepBeep allow events to be decimated,
filtered, sliced across multiple sub-streams, or aggregated on sliding
windows. The elementary processors are very flexible and often
offer greater expressiveness than the operators of the same name
available in other stream processing systems. The core of BeepBeep
lists close to 90 distinct processors, to which can be added dozens
more in domain-specific extensions called palettes. Due to lack of
space and the fact that these topics have been amply covered in
past literature, the reader is referred to a recent textbook on the
topic for more details about the platform [27].

3.1 Format Abstraction

A first step towards developing a toolbox for easy evaluation of
validity conditions on a dataset is to abstract from the heterogeneity
of the various datasets. Datasets use differing formats, both in the
type of events recorded (XML, JSON, CSV) and in the way data
is recorded as attributes. There is a need for a mechanism that
reconciles these formats and presents a uniform higher-level view
of events. A first part of our contribution is to make a synthesis of
multiple popular smart home datasets, identify the common key
concepts and provide an abstraction layer allowing these datasets
to be processed in a format-agnostic way.

The approach we propose is to define an abstract interface ex-
posing a number of objects and functions that provide access to
different attributes of an event. Its purpose is to manipulate sensor
events at a level of abstraction that hides the differences in the file
formats across multiple datasets. According to our analysis of the
datasets described in Section 2.2, we observe that, under various
arrangements, events have the following common features:

o A state, which corresponds to a single value or reading pro-
duced by a sensor at a given moment

o A timestamp that determines the time at which a specific
state reading has been produced

e An index, which corresponds to the position of the event in
the physical ordering of the input source

o Two attributes specifying the placement of the sensor: the
location, which is the broad area (e.g. room) where the sensor
is located, and the subject, which is the particular element
(e.g. bedhead, stove, door) that the sensor is observing

o A model, which is the physical device producing the reading

o The name of the sensor that produces the reading

It is further assumed that these last four attributes are nested
within each other (i.e. for a given location, the value of subject
uniquely defines a subject; for a given location-subject pair, the
value of model uniquely defines a physical device, and so on).

Note, however, that the datasets considered concretize these
different characteristics in various ways. Thus, in the Aruba dataset,
each sensor has its own ID, which is part of the attributes contained
in an event —it can therefore be queried directly. In contrast, the
NEARS platform explicitly provides the quadruplet location-subject-
model-sensor, but not an explicit ID for each sensor. In this case, it is
therefore the quadruplet itself that is used as ID. In Orange4Home,
all these elements are on the contrary agglomerated in a single
attribute and separated by underscores; moreover, the same part
in a name may sometimes refer to a subject, and sometimes to a
model, depending on the actual sensor. The functions returning
the various characteristics of an event therefore all read the same
field, but extract different parts according to a regular expression
to follow the dataset’s unusual nomenclature.

Similarly, datasets use different conventions to represent the
timestamp (which is standardized in Unix epoch regardless of its
input format), and similarly for symbolic values produced by some
sensors (for example the “open” and “closed” states of a contact
sensor). Ultimately though, providing support for a given dataset or
platform therefore boils down to defining the handful of BeepBeep
Function objects that extract these various features. A processing
pipeline can then be written in a way that disregards the type of
the actual event source, by simply invoking functions of the appro-
priate event format object. This seemingly innocuous contribution
actually opens the way to reusing the same analysis script across
heterogeneous datasets.

3.2 Processing Templates

In order to detect the different situations where the validity of a
dataset could be compromised, a user could write BeepBeep pro-
cessor chains corresponding to each of the cases discussed above.
However, we quickly notice that many of these operations involve
a small number of patterns, which recur with some variations in
many of these pipelines. A contribution of this article is therefore
to propose parameterizable pipeline patterns, synthesizing the com-
mon processing performed in sensor log analysis, and allowing the
user to define computations at a high level of abstraction. Some of
these templates are graphically represented in Figure 1. We discuss
them in the following.

Filter: this template takes as a parameter a pipeline P producing a
stream of Boolean values. It outputs a stream made of all the events
of o at indices i for which P produces the value true (T). If P repre-
sents a condition on the input stream, then this template outputs
only events satisfying P and discards the others. For example, P
could evaluate the function checking that an event’s value is either
“open” or “close”, thus keeping from the log only data about contact
sensors. Note, however, that P can also evaluate a stateful condition
on multiple events; for instance, one could only keep events that
are immediately followed by two more events with the same value.

Successive: this template takes as a parameter a binary function
fa. It produces a stream of values obtained by evaluating fa (x, y)

on every pair of successive events x, y in the input stream o. This
template is useful to calculate durations. For example, to identify
gaps in a log, one can calculate the timestamp difference between
two successive events.

Locate: when a condition on a stream is violated, or a potentially
suspicious pattern is found in an event stream, it is often desirable
to manually inspect the log or isolate the appropriate portion for
additional analysis. This template takes as a parameter a 1:1 pipeline
P producing a stream of Boolean values. It outputs a stream made
of all the indices in & for which P produces the value true (T). This
makes it very easy for a user to further investigate a potential issue:
if a pipeline P indicates a violation, Locate(—P) will directly identify
the positions in the log where this violation can be found.

Count: this template takes as a parameter a 1:1 pipeline P pro-
ducing a stream of Boolean values. It outputs a stream of numerical
values, where the value at index i is the number of times P has
produced the value true (T) up to index i. For example, calculating
the number of times a door has been open during a day is done by
instantiating the Count template.

Threshold: a pattern taking a function f, an integer m and a
numerical value ¢. It produces a stream of Boolean values; output
event at index i is T if event at index i in the input is the first
of a sequence of at least m successive events, such that applying
f(x) to each of them produces a value that exceeds some threshold
t. This pattern is “smart” in the sense that it produces a single
value T at the start of a sequence of contiguous events exceeding
the threshold, and not a T value for every window of m events
exceeding the threshold.

SliceBy: leverages BeepBeep’s Slice processor. A function f is
used to dispatch events into sub-streams (one per value produced
by f). A distinct instance of processor P is run on each sub-stream.
Once the end of the input stream is reached, the resulting values of
all instances of P are then “played back” as the output stream.

Characterize: a descriptive pattern that helps get an overview
of a set numerical values. It takes as a parameter a processor P,
which extracts from the input log a stream of numerical values.
The pattern then provides basic descriptive statistics about that
stream of values, using the BoxAndWhiskers function calculating
the various quartiles over which the data is distributed.

Follows: another descriptive pattern taking as input a processor
P. The output of P is a stream of arbitrary values, which are then
collected into bigrams made of all pairs of successive events. These
bigrams are interpreted as edges in a weighted directed graph,
where a bigram (x, y) indicates a directed edge between vertices x
and y. Multiple occurrences of a bigram result in a higher weight.

Following the spirit of the BeepBeep system, these templates can
naturally be composed and nested. This means not only that the
output of one template can be connected to the input of another,
but also that parameter P of a given template, when expecting
a processor, can be instantiated by setting P to the instance of
another template —or any other chain of processors. Thus, the
Characterize pattern may not be applied only on raw numerical
values fetched from events, but can also be applied to a stream
of values produced by a complex chain of processors. Thus, one
can calculate the elapsed time between each opening and closing
of a door, and pipe this into Characterize to get an overview of
the underlying numerical values. This flexibility allows the user to

(h) Follows

Figure 1: Generic patterns for processing sensor streams in
smart homes.

Family Instance Ref. Events Format Ann.

0032 [36] 186532 JSON N

N 0034 [36] 382268 JSON N
I:}filiso‘oi:”m“e de 10 [36] 689842 JSON N
0104 [36] 461,980 JSON N

0105 [36] 385772 JSON N

Aruba 1 [17] 1,719,558 CSV Y

CASAS, Washington Aruba 2 [17] 3,509,096 Csv N
State University HH115 [17] 2,240,010 Csv Y
HH130 [17] 1156820 CSV Y

Amiqual4Home, Inria Orange4Home [19] 746,768 CSv Y

Table 1: The sensor logs included in our analysis.

quickly create complex calculations, without having to create the
low-level pipeline from scratch.

Concretely, these patterns are bundled in the form of a “toolbox”
that extends the BeepBeep library with these high-level objects. A
user can create a pipeline by directly instantiating and connecting
the desired processors inside a Java program; but more conveniently,
the same processor chains can be obtained through simple shell
scripts in the Groovy language.

4 Experimental Evaluation

Considering the validity issues raised in Section 2, and equipped
with the high-level stream processing templates we defined in Sec-
tion 3, we will now attempt to determine whether the logs provided
by various research teams satisfy the minimal “sanity checks” we
discussed earlier. To this end, we implemented BeepBeep pipelines
to reveal the presence of violations of these assumptions, and set
out to evaluate them on a set of publicly available sensor logs that
have been widely used in the past. All the pipelines are publicly
available online!, while the datasets themselves can be retrieved
from the respective research teams.

Table 1 presents a summary of the basic characteristics of the
datasets we surveyed. They are taken from three independent re-
search teams, and total more than 10 million events in either JSON
or CSV format. Some of them contain annotations about ongoing
activities done by the resident. All of them are concerned with a
single person living in the smart home (hence not a multi-resident
situation), with the possibility of occasional visitors. At the outset,
we disclose our primary finding, namely that, surprisingly, most
of the conditions considered are not met by the majority of the
datasets studied (cf. Table 2).

Let us emphasize that the aim of this experiment is not to cast
blame on the teams who collected this data. Setting up a smart home
test environment, gathering data (especially with real participants),
and documenting a dataset is a considerable task, and it is to the
community’s benefit that these data are made available. Rather, we
observe that it is challenging for any dataset to be entirely free of
failures, errors, and inconsistencies.

The following sections revisit the validity issues from the be-
ginning of the paper, and describe the problems that the analysis
pipelines allowed us to —easily— uncover.

4.1 Formatting Issues

At the lowest level of abstraction, we can report on issues related to
the physical formatting of data in the files provided in each dataset.

Uhttps://github.com/sylvainhalle/beepbeep-sensor-events

o] |E
el |3
2 3 S| 3
2 - A S| E
[9 o | & 3| E
g3 3 2 g . 2| &
o txl - Q < E 5
- =1 | = < - H) g
19 < £ Q =)) ° o -9
3 || 9 2| 4 | .2 =S T -~ T -Vl s
@ £ |5 |= sl |2 | BA|le|o|&8l=|2] 2
E = = o [s S| e & |5 |2 § @ >
g I I R A A AR
S z | 2 = 3| o SlEl 8%
2 2|2 || F|leo|w| S| | 8| E|&|E|e
= = | @ | N PlZzZ | R | R |Z|a | & N | P z
0032 X | X X | x| x
0034 — | — X | x| x| x X - | -
0102 x | — | — X | x X X | — | — | -
0104 x| — | — X | x X | x| x| =] =] -
0105 X X | x| x| x| x| x
Aruba 1 X X X | x | x| x| x| x| x|Xx
Aruba 2 x x X | x| x X
HH115 X X X X X X X
HH130 X | x| x| x X | x| x
O4H — | - X X | x| x

Legend: / : satisfied; - violated, but plausible; x: violated; — not applicable.

Table 2: Summary of sanity checks on datasets.

We admit that this simplistic check is not the cornerstone of our
toolbox, and that these issues can usually be fixed with existing
data cleaning tools.

4.1.1 Uniformity. The HH115 dataset contains two lines (out of
1.7M events) whose timestamp parameter has a different formatting
from the others (missing digits for milliseconds) which can cause
parsing exceptions when using, e.g. the SimpleDateFormat utility
class in Java. The Aruba 1 dataset presents the same timestamp
formatting issues. Moreover, the file starts with a space separat-
ing fields in each line, and after about 550,000 events, switches to
tabs as the separator and remains so until the end. More interest-
ingly, motion sensors at some point intermittently emit incorrectly
formatted values, with the expected “ON” and “OFF” replaced by
strings like “ONc”, “OFF5cc” or “OF cF” for a period of approximately
10 hours. Finally, some lines have incorrect values in the column
standing for a sensor’s name. A single line (number 1523045) has
LEAVEHOME as the sensor name and 189 as its value; a single other
line (1530062) rather has ENTERHOME and 6592. This obviously does
not match any documented sensor.

4.1.2 Event Ordering. In the NEARS dataset, we discovered that
events are not physically written in the file in the order dictated
by their timestamps. In the case of small time differences between
mis-ordered events, one could suggest as a possible cause either
slight synchronization issues between each device’s clock, or delays
in the transmission of events causing them to be mildly shuffled.
However, in the case of NEARS, some events have a timestamp that
deviates from their neighbors by several hours. Desynchronization
of clocks must also be ruled out, since those shuffling issues occur
even when considering the events produced by a single sensor in
isolation. We can only speculate about the precise cause of these
re-orderings, and whether they warrant considering timestamp
data with caution.

4.2 Incomplete Information

A second type of issue is related to the gaps that can be found in the
recorded data, which indicates either a general loss of the sensor
platform, or a failure of the recording infrastructure to properly
save the events generated by the sensors.

https://github.com/sylvainhalle/beepbeep-sensor-events

25x108

2x108
1.5x108
1x108

5x107 1111

N | / / Uy LUy
1.4855x102 1.486x10'2 1.4865x10'2 1.487x1072 14875x107 1.488x10
Timestamp

Figure 2: Time since the latest sensor update for Or-
ange4Home dataset. Spikes indicate extended periods of time
where no sensor produced any event.

4.2.1 Temporal Gaps. All the datasets we considered contain ex-
tended periods of time where no event is generated from any of the
documented sensors. For instance, the NEARS dataset contains a
gap of almost one day where no sensor produced any event. Addi-
tional gaps can be found when looking at the event rates produced
by individual sensors (e.g. Coffee pot which goes silent after 23 days
and remains so forever). Similarly, the Orange4Home dataset has
three intervals of approximately 69 hours where no sensor reports
any data; it also contains several more periods where no data is
reported for approximately 13 hours (see Figure 2). On its side, the
HH115 dataset contains a gap of 6 days where no data is recorded.
Although the dataset comes with a detailed documentation file, it
does not warn the user of this large gap in the data.

4.2.2 ZigBee Heartbeats. The HH130 dataset is the only one to
include ZigBee devices which, according to its documentation, are
expected to make a radio check-in at predefined intervals (once
every 15 or 30 minutes, depending on the device). We found that
all ZigBee devices listed in the dataset violate the radio check-in
condition, which was defined as failing to send a message for more
than 60 minutes.

4.2.3 Other Potential Gaps. In the HH115 dataset, temperature sen-
sors are expected to send a new event only when the temperature
changes. Yet there are 22 occurrences (across 6 different sensors)
that report two successive temperature readings with the same
value. This indicates either that the sensors do not behave as re-
ported in the documentation, or that events between the two suc-
cessive temperature readings, with a different value, have not been
recorded. At other times, sensors mentioned in the dataset docu-
mentation do not appear in the log. This is the case again in HH115,
where the sensor types Control4-Radio and Control4-Button
and the corresponding sensors BT001 to BT@08 do not produce a
single event in the whole dataset. Note that in reverse, in the HH130
dataset, we found sensors in the log that are not mentioned in the
documentation.

4.3 Suspicious Ranges

Without performing full-fledged outlier analysis on a stream of
numerical data, one can still devise basic rules of thumb to spot
wildly aberrant sensor readings by examining their range of values.
For instance, by stipulating that temperature should reasonably be
comprised between 0°C and 40°C, we were able to spot a single

abnormal value in excess of 200°C for three different sensors in
the Aruba 1 dataset. Examining surrounding values of those same
sensors, one can suspect that this is caused by a missing decimal
period, which would frame it as a formatting issue instead of a true
outlier. Still, it is worth wondering why only these three values
suffer from this problem, especially when the file is generated (as
is supposed) automatically. Similarly in the NEARS 0105 dataset,
the oven temperature sensor sometimes reports values all the way
down to —65°C. This reading is part of an interval where oven
temperature fluctuates between freezing and room temperatures
over the course of about 15 minutes.

In contrast, the HH115 dataset also has a sensor whose tempera-
ture readings are in the interval [40, 55]. However, in that case, the
sensor map shows it is located over the stove range, which makes
these values plausible. This is a prime example of the fact that the
violation of a sanity check is not necessarily indicative of an error,
only that further inspection is warranted.

The Orange4Home dataset reports 0 as the power consumption
for all appliances in the kitchen throughout the whole log, which
would suggest they are never used. This is despite the fact that both
voltage and current for these appliances is non-null. The problem
can be found in reverse in the NEARS 0032 and 0104 datasets:
some appliances report a non-null power consumption despite
their voltage and/or current being at 0 in the entire log.

4.4 Lifecycle Issues

The datasets we studied also present issues related to sensors ex-
hibiting a lifecycle behavior.

4.4.1 Invalid Transitions. In the NEARS dataset, almost all such
sensors violate their lifecycle because of the aforementioned gap
in the data (causing, for example, the occurrence of two successive
“close” events on each side of the gap). However, outside of gaps, all
datasets reported events violating the lifecycle of a door or a switch
during what appears to be periods of normal operation. We noted
36 invalid transitions out of 17,825 contact events in the NEARS
dataset which could not be explained. In the Orange4Home dataset,
the on/off lifecycle is violated 14 times out of about 41,000 toggle
events. Similarly in the Aruba dataset, almost all motion and door
contact sensors violate the on/off or open/closed cycle at least a
few times; there is a total of 128 violations out of 1.6 million events.

4.4.2 Suspicious Intervals. In addition to unexpected on/off or
open/close transitions, we can also report sensors reporting a state
of an object for either an unusually long, or an unusually short
period of time. In the NEARS dataset, a drawer in the kitchen has
been open on June 17th and seemingly remained open until the end
(that is, for multiple weeks). Similarly, the main door contact sensor
remained in the “open” state for 35 hours in one apartment, and 18
days for another. On its side, in the HH115 dataset, the bathroom
door seemingly remained open for 22 days, while the fridge door
remained open for two months. This is the case, despite the fact
that the rest of the platform apparently operates normally.

In reverse, a cycling of sensor states at short intervals may also
indicate an issue. In the NEARS dataset, we found an interval of
time where the front door opens and closes multiple times per
second over the course of several seconds. One could assume that

3N

o - : 1 ¥
12898810 12.28989x10 14 2899x10 21 2899x10 21 2899x10 4 28991x10 £ 28992x1C

(b) Zoom in

o
1.288x10 Zox10 B02x10.38:

(a) Complete log

Figure 3: The “glissando” phenomenon discovered in the
Aruba 1 sensor log. Figure (a) shows the entire log, and figure
(b) shows the detail of the first spike.

this is a situation where the door slams (for example, due to the
wind), but it would be unwise to conclude from this data that a
person repeatedly operated the door.

4.5 Simultaneous Presence

In general, it is not suspicious for several motion sensors to re-
port movement simultaneously, as their coverage areas overlap
and these sensors exhibit a certain latency. However, the situation
becomes more curious when a large number of these sensors report
movement at the same time, especially knowing that the habitats
studied are inhabited by a single person.

4.5.1 Sporadic Simultaneous Presence. Surprisingly, we discovered
that most datasets contain short time spans where movement is
reported in multiple rooms of the apartment at the same time. In
the case of the Orange4Home dataset, this situation occurs a single
time over the whole log, where motion is reported by sensors in two
rooms on two different floors. In contrast, in the NEARS dataset, we
witness multiple occasions where motion is reported in all rooms
simultaneously. This can hardly be explained by the presence of a
visitor in the apartment.

4.5.2 Aruba Glissando. Perhaps the most unexpected phenome-
non can be found in the Aruba dataset. Analysis of the motion sen-
sors, and in particular the number of these sensors simultaneously
reporting motion at a given point in time, revealed a surprising
behavior. At a few points in the event stream, the sensors transition
to the ON state (indicating that motion is detected) one after the
other, and remain ON, until all the sensors in the apartment are
ON simultaneously. The sensors then switch back to the OFF state,
again one after the other, until they are all OFF again. This kind
of “glissando” sometimes repeats itself immediately a few times,
after which the sensors resume what appears to be normal behavior.
Figure 3a shows how this phenomenon manifests itself in the form
of spikes where all 31 sensors in the apartment are ON at once.
Figure 3b zooms in on the period of time covering the first of this
phenomenon. What appears as a single spike is actually a sequence
of multiple intervals where all sensors are ON at the same time.
As one can see, in the Aruba 1 dataset, there are three such
episodes (over an 8-month period), while in the Aruba 2 dataset
there are six (over 13 months); they occur spontaneously, with no
apparent regularity, and at any time of the day. One can only spec-
ulate on the precise nature of this phenomenon, but it is absolutely

unlikely that these readings are produced by the activity of a human
being (who would then be moving simultaneously throughout the
entire apartment). However, the Aruba dataset documentation does
not explain these unusual passages in the flow of events, nor does
it even warn users of the presence of these passages. Moreover, the
Aruba 1 dataset curiously associates two of these intervals with an
activity: the first with Sleeping, and the third with Relaxing.

4.6 Annotation Issues

The following issues only apply on datasets that contain annota-
tions about activities performed by the occupant.

4.6.1 Overlapping Activities. In some datasets, intervals of time
where an activity takes place are indicated by “begin” and “end”
markers throughout the log; in our study, this is the case for Aruba
and Orange4Home. However, such a way of labeling the dataset
opens the possibility for activities to be nested or to overlap (i.e. a
“begin” marker for an activity is observed without the “end” marker
of the previous activity being observed first).

This phenomenon does not occur in the Orange4Home log. How-
ever, the Aruba 1 dataset contains 36 occurrences of such overlap-
ping. For example, the Relax activity very often encompasses a
begin/end pair of the Eating activity. The Housekeeping activity
contains occurrences of Leave Home and Enter home begin/end;
Meal Preparation overlaps several times with either Eating or Relax.
On one particular occurrence, the begin/end pair of the Meal Prepa-
ration activity spans almost 6 hours, during which several other
activities (Relax, Enter, Leave Home) take place.

4.6.2 Under-Supported Activities. One could describe some sen-
sors as “passive” in that they report the state of the apartment at
regular intervals (regular readings of temperature, electricity con-
sumption) and generate data independently of activity—or even
the presence—of an individual. On the other hand, all the datasets
studied also contain “active” sensors, i.e., sensors generating events
following a concrete action taken by a resident; for example, the
opening of a door, the activation of a switch, or simply the move-
ment of an individual in a room.

In this context, and without presuming anything about the be-
havior or habits of a resident, it is reasonable to assume that a
range of sensor data associated with an explicitly labeled activity is
supported by the presence of events induced by a person’s action,
via active sensors. One might question the labeling in the case of
an activity that contains, for instance, only temperature readings.
However, there is indeed an occurrence in the Aruba 1 dataset of
an activity during which no motion or door sensor is involved.

5 Conclusion and Future Directions

In conclusion, to derive valuable insights in smart home environ-
ments, it is essential to ensure the integrity of sensor data. Our
toolbox, built on the BeepBeep stream processing library, provides
a comprehensive solution for detecting potentially erroneous sensor
behavior and verifying data quality before analysis. By addressing
the gaps in existing methodologies, this toolbox enhances the reli-
ability of smart home applications, ensuring that decisions made
from sensor data are based on accurate and consistent information.

Without being alarmist, we can still question the consequences
of the fact that the datasets we studied all present several violations
of simple validity conditions. We have seen that many studies have
used these datasets and draw various conclusions, whether in ac-
tivity recognition or for other purposes. Whether these potential
“problems” have been identified and managed by the different re-
searchers who have used these data is unclear, and could represent
an issue from a methodological standpoint.

This work also lends itself to several extensions. Thus, by virtue
of the functioning of the BeepBeep system, all sanity checks can
be evaluated not only on pre-recorded logs, but also in real time
on streams of events produced as they occur. It would therefore
be possible to imagine the implementation of alarms to warn man-
agers of potential problems with the functioning of the smart home
platform (and thus avoid, for example, gaps in the data of several
days and other aberrations). Finally, the Locate template could be
used to mark the events of a log involved in the violation of one of
the sanity checks considered. This elementary form of traceability
would make it possible to indicate to users that the result of a cal-
culation should be considered with caution, because it consumes
such flagged events.

References

[1] G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilakos. A survey on ambient
intelligence in healthcare. Proc. IEEE, 101(12):2470-2494, 2013.

[2] A.AKL B.Chikhaoui, N. Mattek, J. A. Kaye, D. Austin, and A. Mihailidis. Clustering
home activity distributions for automatic detection of mild cognitive impairment
in older adults. J. Ambient Intell. Smart Environ., 8(4):437-451, 2016.

[3] M. M. Alam, L. Torgo, and A. Bifet. A survey on spatio-temporal data analytics
systems. ACM Comp. Surv., 54(10s):219:1-219:38, 2022.

[4] S. Aminikhanghahi and D. J. Cook. Enhancing activity recognition using cpd-
based activity segmentation. Pervasive Mob. Comput., 53:75-89, 2019.

[5] J.C. Augusto, J. G. Gimenez-Manuel, M. Quinde, C. L. Oguego, S. M. M. Ali, and
C. James-Reynolds. A smart environments architecture (Search). Appl. Artif.
Intell., 34(2):155-186, 2020.

[6] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, and S. Maniu. Data stream analysis:
Foundations, major tasks and tools. WIREs Data Mining Knowl. Discov., 11(3),
2021.

[7] S.Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and]J. Albrecht. Smart*:

An open data set and tools for enabling research in sustainable homes. Proc.

SustKDD., 01 2012.

A. Bédard and S. Hallé. Formal verification for event stream processing: Model

checking of BeepBeep stream processing pipelines. Inf. and Comput., 293:105058,

2023.

A. Bifet. Adaptive Stream Mining: Pattern Learning and Mining from Evolving

Data Streams, volume 207 of Frontiers in Artificial Intelligence and Applications.

IOS Press, 2010.

A. Bifet and J. Gama. IoT data stream analytics. Ann. des Télécommunications,

75(9-10):491-492, 2020.

[11] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank. Fast perceptron decision tree

learning from evolving data streams. In M. J. Zaki, J. X. Yu, B. Ravindran, and

V. Pudi, editors, PAKDD, volume 6119 of LNCS, pages 299-310. Springer, 2010.

A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and T. Seidl.

MOA: massive online analysis, a framework for stream classification and cluster-

ing. In T. Diethe, N. Cristianini, and J. Shawe-Taylor, editors, WAPA, volume 11

of JMLR Proceedings, pages 44-50. JMLR.org, 2010.

[13] D.Bouchabou, S. M. Nguyen, C. Lohr, B. Leduc, and I. Kanellos. A survey of human
activity recognition in smart homes based on IoT sensors algorithms: Taxonomies,
challenges, and opportunities with deep learning. Sensors, 21(18):6037, 2021.

[14] A.F. Cavalcante, V. H. de Lima Kunst, T. de Menezes Chaves, J. D. T. de Souza,
I. M. Ribeiro, J. P. Quintino, F. Q. B. da Silva, A. L. M. Santos, V. Teichrieb, and
A.E.F.D. Gama. Deep learning in the recognition of activities of daily living
using smartwatch data. Sensors, 23(17):7493, 2023.

[15] H. Chen, C. Gouin-Vallerand, K. Bouchard, S. Gaboury, M. Couture, N. Bier,
and S. Giroux. Enhancing human activity recognition in smart homes with
self-supervised learning and self-attention. Sensors, 24(3):884, 2024.

[16] L. Chen, C. D. Nugent, and H. Wang. A knowledge-driven approach to activity
recognition in smart homes. IEEE Trans. Knowl. and Data Eng., 24(6):961-974,
2012.

8

=

=
X0

[10

[12

(17

[18

(19]

[20

[21]

[22]

[23

[24]
[25]

[26]

~
=

(28]

[29]

[30

[31

(33]
(34]

[35

[36]

®
=

[38

(39]

[40

[41

[42]

[43

[44

D. J. Cook. Learning setting-generalized activity models for smart spaces. IEEE
Intell. Syst., 27(1):32-38, 2012.

D.J. Cook, J. C. Augusto, and V. R. Jakkula. Ambient intelligence: Technologies,
applications, and opportunities. Pervasive Mob. Comput., 5(4):277-298, 2009.

J. Cumin, G. Lefebvre, F. Ramparany, and J. L. Crowley. A dataset of routine daily
activities in an instrumented home. In S. F. Ochoa, P. Singh, and J. Bravo, editors,
UCAmI, volume 10586 of LNCS, pages 413-425. Springer, 2017.

B. Das, D. J. Cook, N. C. Krishnan, and M. Schmitter-Edgecombe. One-class
classification-based real-time activity error detection in smart homes. IEEE J. Sel.
Top. Signal Process., 10(5):914-923, 2016.

C. Demongivert, K. Bouchard, S. Gaboury, B. Bouchard, M. Lussier, M. Parenteau,
C. Laliberté, M. Couture, N. Bier, and S. Giroux. A distributable event-oriented
architecture for activity recognition in smart homes. 7. Reliab. Intell. Environ.,
7(3):215-231, 2021.

L. G. Fahad, S. F. Tahir, and M. Rajarajan. Activity recognition in smart homes
using clustering based classification. In ICPR, pages 1348-1353. IEEE, 2014.

A. Fleury, M. Vacher, and N. Noury. Svm-based multimodal classification of
activities of daily living in health smart homes: sensors, algorithms, and first
experimental results. IEEE Trans. Inf. Technol. Biomed., 14(2):274-283, 2010.

H. M. Gomes,]. P. Barddal, F. Enembreck, and A. Bifet. A survey on ensemble
learning for data stream classification. ACM Comp. Surv., 50(2):23:1-23:36, 2017.
H. M. Gomes and A. Bifet. Practical machine learning for streaming data. In
R. Baeza-Yates and F. Bonchi, editors, KDD, pages 6418-6419. ACM, 2024.

H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. Gama. Machine learning for
streaming data: state of the art, challenges, and opportunities. SIGKDD Explor.,
21(2):6-22, 2019.

S. Hallé. Event Stream Processing With BeepBeep 3: Log Crunching and Analysis
Made Easy. Presses de I'Université du Québec, 2018.

Y. Hu, B. Wang, Y. Sun, J. An, and Z. Wang. Genetic algorithm-optimized support
vector machine for real-time activity recognition in health smart home. Int. J.
Distributed Sens. Networks, 16(11):155014772097151, 2020.

X. Huang and S. Zhang. Human activity recognition based on transformer in
smart home. In CACML, pages 520-525. ACM, 2023.

D. Ienco, A. Bifet, I. Zliobaite, and B. Pfahringer. Clustering based active learning
for evolving data streams. In J. Firnkranz, E. Hiilllermeier, and T. Higuchi, editors,
DS 2013, volume 8140 of LNCS, pages 79-93. Springer, 2013.

S. Intille, K. Larson, J. Beaudin, E. Tapia, P. Kaushik, J. Nawyn, and T. McLeish.
The placelab: a live-in laboratory for pervasive computing research (video). In
PERVASIVE 2005 Video Program, Online, May 2005, 12 2010.

H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and B. Pfahringer.
An effective evaluation measure for clustering on evolving data streams. In
C. Apté, J. Ghosh, and P. Smyth, editors, SIGKDD, pages 868-876. ACM, 2011.
B. D. Minor and D. J. Cook. Forecasting occurrences of activities. Pervasive Mob.
Comput., 38:77-91, 2017.

S. A. Mohamed and U. Martinez-Hernandez. A light-weight artificial neural
network for recognition of activities of daily living. Sensors, 23(13):5854, 2023.
Y. Nawal, M. Oussalah, B. Fergani, and A. Fleury. New incremental SVM algo-
rithms for human activity recognition in smart homes. J. Ambient Intell. Humaniz.
Comput., 14(10):13433-13450, 2023.

H. K. Ngankam, M. Lussier, A. Aboujaoudé, H. Pigot, S. Gaboury, K. Bouchard,
M. Couture, N. Bier, and S. Giroux. NEARS-Hub, a lightweight edge computing
for real-time monitoring in smart environments. In J. Bravo, S. F. Ochoa, and
J. Favela, editors, UCAmI, volume 594 of LNNG, pages 125-138. Springer, 2022.
M. Prossegger and A. Bouchachia. Multi-resident activity recognition using
incremental decision trees. In A. Bouchachia, editor, ICAIS 2014, volume 8779 of
LNCS, pages 182-191. Springer, 2014.

H. Qian, Y. Mao, W. Xiang, and Z. Wang. Recognition of human activities using
SVM multi-class classifier. Pattern Recognit. Lett., 31(2):100-111, 2010.

J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Scalable and efficient multi-label
classification for evolving data streams. Mach. Learn., 88(1-2):243-272, 2012.

V. G. Sanchez and N. Skeie. Decision trees for human activity recognition
modelling in smart house environments. Simul. Notes Eur., 28(4):177-184, 2018.
V. Stankovski and J. Trnkoczy. Application of decision trees to smart homes.
In J. C. Augusto and C. D. Nugent, editors, Designing Smart Homes, The Role of
Artificial Intelligence, volume 4008 of LNCS, pages 132-145. Springer, 2006.

T. Tan, M. Gochoo, F. Jean, S. Huang, and S. Kuo. Front-door event classification
algorithm for elderly people living alone in smart house using wireless binary
sensors. IEEE Access, 5:10734-10743, 2017.

S. Xinjing, D. Wang, C. Quek, A.-H. Tan, and Y. Wang. Spatial-temporal episodic
memory modeling for adls: encoding, retrieval, and prediction. Complex &
Intelligent Systems, 10, 12 2023.

N. Yala, B. Fergani, and A. Fleury. Towards improving feature extraction and clas-
sification for activity recognition on streaming data. J. Ambient Intell. Humaniz.
Comput., 8(2):177-189, 2017.

	Abstract
	1 Introduction
	2 Activity Recognition from Sensor Logs
	2.1 ADL Recognition
	2.2 Existing Platforms and Their Uses
	2.3 Validity Issues in Smart Home Datasets

	3 Generic Patterns Applied to Sensors Datasets
	3.1 Format Abstraction
	3.2 Processing Templates

	4 Experimental Evaluation
	4.1 Formatting Issues
	4.2 Incomplete Information
	4.3 Suspicious Ranges
	4.4 Lifecycle Issues
	4.5 Simultaneous Presence
	4.6 Annotation Issues

	5 Conclusion and Future Directions
	References

