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1 Introduction

In this paper a theory is any consistent set of (first-order, finitary) sentences,
a complete theory being a theory which contains either ϕ or ¬ϕ for every
sentence ϕ. Equivalently, it is the set Th(M) (called the theory of M) of all
sentences true in some structure M .

We will say that a theory or a sentence is preserved under some alge-
braic operation if its class of models is closed under this operation. Syntactic
characterizations of such theories have been intensively studied in model the-
ory, under the name of preservation theorems. Perhaps the first preservation
theorem was the celebrated G. Birkhoff’s 1935 result, stating that a class
of algebraic structures is preserved under substructures, direct products and
quotients if and only if it can be defined by equations, i.e. it is the class of all
models of a set of sentences of the form ∀x̄(φ(x̄)), where φ(x̄) is a conjunction
of atomic formulas.

It turned out to be more difficult to establish preservation theorems for
each one of the operations “substructure”, “quotient” and (especially) “direct
product”. In the second half of the 1950’s, closure under substructures was
characterized by  Loś and Tarski by universal sentences ([1] Theorem 3.2.2),
and closure under quotients was shown to correspond to positive sentences
by R. Lyndon ([1] Theorem 3.2.4).

The problem of the direct products was much harder, and is more con-
veniently considered together with the more general case of the so-called
reduced products (see [1]). From the 40’s to the 70’s, Mostowski, McKinsey,
Feferman, Vaught, Horn, Chang, Keisler, Weinstein, Galvin and Shelah have
all contributed to the solution of the two problems. [1] is a good source to
follow the details of this adventure, but we just recall what is needed here.

Definition The set of Horn formulas is the smallest set of formulas con-
taining finite disjunctions of negations of atomic formulas with at most one
atomic formula, which is closed under conjunction, universal and existential
quantifiers.

Horn showed that a theory axiomatized by Horn sentences is preserved un-
der direct products. The converse was proved later for universal-existential
theories (which were proved to be precisely the theories preserved under
unions of chains of embeddings). However Chang and Morel showed that
there are (existential-universal) theories which are not Horn but are never-
theless preserved under direct products. Finally Weinstein [10] gave a (rather
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involved) syntactic characterization of theories preserved under direct prod-
ucts, and Keisler proved, under the continuum hypothesis, that the Horn
sentences are precisely those preserved under reduced products. Galvin later
showed how to get rid of the continuum hypothesis.

In 1976, U. Felgner [3] showed that a complete theory of abelian groups
is preserved under direct products if and only if it is a Horn theory. This
result was further generalized by the first author to every (not necessarily
complete) theory of modules ([9]).

Note that any theory is preserved under arbitrary products if and only if it
is preserved under binary products ([1] Theorem 6.3.14). Since direct sums
and direct products of modules are elementarily equivalent ([6] Corollary
2.24), a theory of modules is preserved under direct products if and only if
it is preserved under binary direct sums.

Now the notion of extension in module theory can be seen as generalizing
the concept of binary direct sum: a module B is said to be an extension of
the module C by the module A if C ∼= B/A. The direct sum A ⊕ C is an
extension of C by A since (A⊕ C)/A ∼= C.

During his doctoral studies at Tübingen in the late 1980’s, the first author
was asked by Professor Felgner if there could be some natural characterization
of the theories of abelian groups preserved under extensions. No satisfactory
characterization was found at the time, but the work done then was the
starting point of [9] which was realized during his postdoctoral studies at
McGill university.

The main objective of this work is to answer this question. We give such
a characterization for a complete theory of abelian groups, in terms of the
values of its Szmielew invariants.

The reader must be warned that the concept of preservation under exten-
sions as defined in this paper is not equivalent to the one normally encoun-
tered in model-theory (such as in [1] Exercise 3.2.1), where an extension of
N is just a structure containing N as a substructure. While the usual notion
is meaningful for any first-order language, ours is specific to modules.

In Section 2, we review some basic facts about modules and their model
theory. We give a simple syntactic characterization of the theories of mod-
ules over a regular ring which are preserved under extensions, and indicate
possible avenues for more general cases.

Section 3 contains our main result (Theorem 3.4). After reviewing some
basic facts about the model theory of abelian groups, we give a complete proof
of our characterization of complete theories preserved under extensions.
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2 Modules

We recall some terminology and well-known facts in module theory and its
model theory, which we will use throughout the paper. The reader is referred
to [6] for (a lot) more on the subject.

A (short) exact sequence is a sequence of homomorphisms

0 → A
α
→ B

β
→ C → 0 (1)

such that α is an embedding, β is surjective, and im(α) = ker(α)
Note that B is an extension of C by A if only if there exists such a

sequence (1).
We will need to combine exact sequences in order to build new ones.

Consider two exact sequences

0 → A
α
→ B

β
→ C → 0

0 → A′ α′

→ B′ β′

→ C ′ → 0

The combination of these two exact sequences by component-wise application
is the following sequence:

0 → A⊕ A′ α⊕α′

−→ B ⊕B′ β⊕β′

−→ C ⊕ C ′ → 0

where (α ⊕ α′)(a, a′) = (α(a), α′(a′)), and similarly for β ⊕ β ′. It is left to
the reader to check that this sequence is indeed exact.

R being a fixed ring with identity, the language of the theory of (right) R-
modules is the (first-order, finitary) language containing the neutral element
0, the operation of addition + and, for every r ∈ R, a unary function symbol
which we will also denote by r.

The so-called positive-primitive formulas will be important in our context.
Those are the ones of the form ∃ȳ(ψ(x̄, ȳ)), with ψ a conjunction of atomic
formulas. In any R-module, such a sentence is equivalent to one of a simpler
form, which we take as our definition here:

Definition A positive-primitive formula, for short a pp-formula, is a formula
which is equivalent to one of the form:

∃ȳ
∧

k

(
n∑

i=1

xiri,k +
m∑

j=1

yjsj,k = 0)

with ri,k, sj,k ∈ R, and ȳ = y1...ym.

4



If A
α
→ B is an embedding and ϕ(x̄) a pp-formula, one has that ifA |= ϕ[ā]

then B |= ϕ[ā]. The converse is not necessarily true, but when it is, it gives
the following important concept.

Definition An embedding A
α
→ B is said to be pure if for every pp-formula

ϕ(x̄), one has that A |= ϕ[ā] if and only if B |= ϕ[ā].

In this definition, and in many of the facts about pp-formulas, one can
assume that ϕ has only one free variable.

Definition An exact sequence

0 → A
α
→ B

β
→ C → 0

is said to be pure-exact if α is pure.

A theory is preserved under pure extensions if for any pure submodule
A of B, B is a model of T as soon as A and B/A are. Equivalently, when
in every pure-exact sequence as in the definition, B is a model of T when A
and C are.

If ϕ(x) is a pp-formula and M a module, the set ϕ(M) = {m ∈M ;M |=
ϕ[m]} is an abelian subgroup of M .

Definition Let ϕ(x) and ψ(x) be pp-formulas in one variable and M be a
module. The Bauer-Monk invariant Inv(M,ϕ, ψ) is the cardinality of the
quotient abelian group ϕ(M)/(ϕ(M)∧ψ(M)) if it is finite, and ∞ otherwise.

The fundamental theorem of the model theory of modules is that it admits
pp-elimination of quantifiers: every sentence in the language of R-modules is
equivalent to a boolean combination of sentences of the form Inv(M,ϕ, ψ) <
k, where Inv(M,ϕ, ψ) is a Bauer-Monk invariant and k a natural number
([6] Corollary 2.15). We will use mainly the following obvious consequence:

Theorem 2.1 ([6] Corollary 2.18) Two modules are elementarily equiva-
lent if and only if their Bauer-Monk invariants are equal.

We will see in Section 3 that for abelian groups, one can use still simpler
invariants.

5



Let us now consider theories of modules preserved under extensions. First
note that every such theory must be preserved under products (see the In-
troduction). The syntactic characterization of the theories of structures pre-
served under products is rather involved, but for modules it takes a particu-
larly simple form, as we will see in the next theorem.

Examples of theories preserved under products but not under extensions
are easily found, even for modules over the ring of integers, i.e., the abelian
groups (see next section). However, any such theory must be preserved under
pure extensions:

Theorem 2.2 Let T be a theory of R-modules over some ring R. The fol-
lowing conditions are equivalent:

(a) T is preserved under pure extensions;

(b) T is a Horn theory;

(c) T is preserved under reduced products;

(d) T is preserved under products.

If T is complete, then those conditions are equivalent to

(e) every Bauer-Monk invariant of T is either infinite or equal to 1.

Proof Note that the Bauer-Monk invariants of a theory T make sense when
T is complete. (d) ⇔ (c) is the main result of [9], and (b) ⇔ (c) is a classical
theorem of model theory ([1] Proposition 6.2.5′). (a) ⇒ (d) follows from the
fact that the natural embedding A→ A⊕A is pure. (d) ⇒ (a) is [6], Lemma
2.23, stating that if B is a pure extension of C by A, then B ≡ A ⊕ C.
Finally, (d) ⇔ (e) is [6], Lemma 2.23 and Corollary 2.18.

Note that the fact that the Bauer-Monk invariants are infinite or equal
to 1 can be easily expressed as Horn sentences, so for complete theories the
values of the invariants already give an axiomatization in terms of Horn
sentences.

We deduce immediately:

Corollary 2.3 Let R be a (von Neumann) regular ring and T be a theory of
R-modules. The following conditions are equivalent:
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(a) T is preserved under extensions;

(b) T is a Horn theory;

(c) T is preserved under products.

If T = Th(M) is complete, then those conditions are equivalent to:

(d) for all idempotent r of R, annM (r) is either 0 or infinite.

Proof (c) ⇒ (a) is clear from Theorem 2.2 since all extensions are pure when
R is regular ([6] Theorem 16.A (iv)). (c) ⇔ (d) follows from the theorem
above and a result of Rothmaler, showing that the Bauer-Monk invariants
for modules over a regular ring have the required simple form ([6], Corollary
16.18).

Corollary 2.3 suggests a possible approach for the general case. Trying
to identify the form of the sentences preserved under extensions, we know
already that they are special Horn sentences. However, we know also a
condition on the elements of the ring which will make all Horn sentences
preserved under extensions, namely that for every element r of the ring,
there exists s such that rsr = r (since this is equivalent to being regular by
[6] Theorem 16.A (iii)). Could we trace down the reason for this connection
at the syntactic level? In the case of complete theories, a similar approach
could be attempted with the Bauer-Monk invariants instead of the Horn
sentences.

We now turn our attention to a special case, namely the complete theories
of abelian groups.

3 Abelian groups

In this section we review some basic notions about abelian groups which we
will later need. We follow as closely as possible the notation and terminology
of the classical reference on abelian groups [4].

Definition Let p be a prime number. A p-element is an element whose
order is a power of p.

Definition An abelian group is said to be p-torsion free or to have no p-
torsion if it contains no p-element.
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We will need to consider some specific abelian groups which we now de-
scribe. The trivial group 0 is the group containing only the neutral element
0. Q will denote as usual the group of rational numbers. Qp is the subgroup
of Q formed of all fractions n

m
such that p does not divides m. Z is the group

of integers, while mZ is the subgroup of Z formed of all multiples of m. The
cyclic group of order m will be denoted by Z(m), and we will see its elements
as the cosets n+mZ of Z/mZ. Finally the Prüfer group Z(p∞) is the group
formed of all pnth roots of unity for n ∈ N , where N is the set of natural
numbers. Note that Z(p∞) is also Q(p)/Z where Q(p) is the group of fractions
of the form m

pn
(not to be confused with Qp), where m ∈ Z and n ∈ N .

Proposition 3.1 Any extension of two p-divisible abelian groups is p-divisible.

Proof Let
0 → A

α
→ B

β
→ C → 0

and take b ∈ B. Since β(b) is p-divisible it is equal to some pc ∈ C. Take a
pre-image b′ ∈ B of c under β. Now b and pb′ are both mapped to the same
value in C, hence b − pb′ = a for some a ∈ A. a being p-divisible we have
that a = pa′ and therefore b = p(b′ + a′), showing that b is p-divisible.

Proposition 3.2 Any extension of two p-torsion-free abelian groups is p-
torsion-free.

Proof Let
0 → A

α
→ B

β
→ C → 0

and take b ∈ B. If pb = 0 then β(pb) = pβ(b) = 0 and since C has no
p-torsion we have that b ∈ A. Again by hypothesis an element of order p of
A must be 0 hence b = 0 completing the proof.

3.1 Model theory of abelian groups

Szmielew in [8] showed that the first-order theory of abelian groups is decid-
able by showing that every formula is equivalent to a boolean combination
of pp-formulas with core sentences, a concept that we define below.

Szmielew also showed that every abelian group is elementarily equivalent
to one of a set of groups of specific forms, which we will call the Szmielew
groups, following [2]. We now state the results of Szmielew which we will
use, again following the presentation of [2].
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Let us first introduce the Szmielew invariants. We denote by dimp the
vector space dimension over the field with p elements if it is finite, and ∞
otherwise. Similarly |nG| is the cardinality of the subgroup {ng; g ∈ G} if it
is finite, and ∞ otherwise. Following [4], G[p] is the subgroup of the abelian
group G containing all the elements of order p and nG[p] is a shorthand for
(nG)[p]. The Szmielew invariants are the following values, where p is a prime
number and n a natural number.

U(p, n;G) = dimpp
nG[p]/pn+1G[p]

Tf(p, n;G) = dimpp
nG/pn+1G

D(p, n;G) = dimpp
nG[p]

Exp(n;G) = |nG|
In fact the second and third invariants of [2] are a bit different than

ours. They consider instead the values Tf(p;G) = limn→∞Tf(p, n;G) and
D(p;G) = limn→∞D(p, n;G). Tf(p;G) is well defined since multiplication
by p is an epimorphism of pnG/pn+1G onto pn+1G/pn+2G, so Tf(p, n;G)
decreases as n grows. Similarly D(p;G) is well defined since pn+1G[p] ⊆
pnG[p], so D(p, n;G) decreases as n grows. Our choice of invariants does
not change the validity of the results given below, but our version is more
convenient for our purpose.

A core sentence is just any statement asserting that a Szmielew invariant
is smaller than some specific natural number.

As in the case of modules, we have the following fundamental theorem
for the model theory of abelian groups:

Theorem 3.3 ([2] Theorem 2.1 and 2.6) Two abelian groups are elemen-
tarily equivalent if and only if all their Szmielew invariants are equal.

Finally Szmielew introduced the following kind of groups and showed that
every abelian group is elementarily equivalent to one of them ([2] Theorem
2.9).

Definition A Szmielew group is an abelian group of the following form where
αp,n, βp and γp are finite or countably infinite, δ is either 0 or 1, and where p
ranges over the prime numbers and n ranges over the natural numbers (here
A(α) is the direct sum of α many copies of A):

⊕

p,n

Z(pn)(αp,n) ⊕
⊕

p

Q(βp)
p ⊕

⊕

p

Z(p∞)(γp) ⊕Q(δ) (2)
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3.2 Complete theories of abelian groups preserved un-
der extensions

In this section we characterize the complete theories of abelian groups pre-
served under extensions.

As for the modules, if T = Th(G) is a complete theory, we can write
Inv(p, n;T ) instead of Inv(p, n;G) for any Szmielew invariant.

Theorem 3.4 A complete theory of abelian groups T is preserved under ex-
tensions if and only if all of the following conditions are satisfied:

(a) if T 6= Th(0), then Exp(n;T ) = ∞, for all n > 0.

(b) every other Szmielew invariant is either 0 or ∞;

(c) U(p, n;T ) = 0 for all primes p and all natural numbers n;

(d) for any given prime p, Tf(p, n;T ) does not depend on n;

(e) for any given prime p, D(p, n;T ) does not depend on n;

(f) for any given prime p, Tf(p, n;T ) and D(p, n;T ) are not both infinite;

In order to prove the theorem, we will need the following lemmas.

Lemma 3.5 A complete theory of abelian groups T preserved under exten-
sions is either the theory of the trivial abelian group 0 or satisfies Exp(n;T ) =
∞, for all n > 0.

Proof First note that the following sequence

0 → Z(pn) → Z(p2n) → Z(pn) → 0 (3)

where the embedding sends the coset x+ pnZ to pn · x+ p2nZ, is exact.
Secondly, by Theorem 2.2, Exp(n;T ) is ∞ or 1. In the latter case, a

model G of T is n-torsion and, from the structure of such groups (as direct
sums of cyclic groups of order bounded by n), it is clear from equation (3)
that G must be 0, since otherwise T would not be closed under extensions.

Lemma 3.6 If T is a complete theory of abelian groups preserved under
extensions, then U(p, n;T ) = 0 for all primes p and all natural numbers n.
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Proof Let p be a prime number. We will show that there is a model G of
T which is a Szmielew group having no cyclic p-group in its decomposition
(2). The result will then follow since this implies that U(p, n;G) = 0.

Let G′ be a Szmielew group which is a model of T . Suppose G′ has a
cyclic p-group in the decomposition (2), and let Z(pn) be such a summand
of smallest order. We then have that U(p, n− 1;G′) 6= 0. We will now show
how to build an extension G of G′ by G′ which is again a Szmielew group but
which has no direct summand which is a cyclic p-group of order equal to pn.
Therefore U(p, n− 1;G) = 0 and this is a contradiction since T is complete.

In the decomposition of G′, regroup all summands of the form Z(pn) in
order to write G′ =

⊕
Z(pn) ⊕G′′ where G′′ contains no Z(pn) summand.

By component-wise application of the exact sequence (3), we also have
an exact sequence

0 →
⊕

Z(pn) →
⊕

Z(p2n) →
⊕

Z(pn) → 0 (4)

Finally since G′′ ⊕G′′ is an extension of G′′ by itself we get that

0 → G′′ → G′′ ⊕G′′ → G′′ → 0 (5)

is again exact. Combining the exact sequences (4) and (5) component-
wise, we get the exact sequence

0 →
⊕

Z(pn) ⊕G′′ →
⊕

Z(p2n) ⊕G′′ ⊕G′′ →
⊕

Z(pn) ⊕G′′ → 0 (6)

Taking G to be
⊕
Z(p2n) ⊕G′′ ⊕G′′ completes the proof.

Lemma 3.7 Let T be a complete theory of abelian groups. For any prime p,
if U(p, n;T ) = 0 for every natural number n, then Tf(p, n;T ) = Tf(p, 0;T )
for every natural number n.

Proof This follows from Lemma 1.6 of [2], which is proved by showing the
exactness of the following sequence:

0 → pnG[p]/pn+1G[p] → pnG/pn+1G
×p
→ pn+1G/pn+2G→ 0

Lemma 3.8 Let T be a complete theory of abelian groups. For any prime
p, if U(p, n;T ) = 0 for every natural number n, then D(p, n;T ) = D(p, 0;T )
for every natural number n.
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Proof This follows from Lemma 1.8 of [2], which is proved by showing the
exactness of the following sequence:

0 → pn+1G[p] → pnG[p] → pnG[p]/pn+1G[p] → 0

In the following lemmas we will use some standard homomorphisms be-
tween Q, Qp, Z(p∞) and Z(p), in order to construct specific extensions.
Hence it may be useful to recall some well-know related facts:

1. Qp is a subgroup of the rationals Q, and the mapping x 7→ x
n

where n
is a non-zero integer is an embedding of Qp into Q.

2. Qp/pQp
∼= Z(p).

3. Q/Qp
∼= Z(p∞).

4. The (division by p) mapping (n+pZ) 7→ (n
p
) is a well defined embedding

of Z(p) into Z(p∞).

5. The (division by p) mapping ( n
m

+ pQp) 7→ ( n
p·m

+Qp) is a well defined

homomorphism from Qp/pQp to Q/Qp.

Lemma 3.9 There is an exact sequence of the form

0 → Qp → Q⊕ Z(p) → Z(p∞) → 0 (7)

Proof By the facts above, it is sufficient to show that the following sequence
is exact:

0 → Qp
α
→ Q⊕Qp/pQp

β
→ Q/Qp → 0 (8)

where α(q) = ( q

p
, q + pQp) and β(q, q′ + pQp) = (q +Qp) − ( q′

p
+Qp)

α is an embedding by the fact 1, and β is an epimorphism because the
canonical homomorphism Q→ Q/Qp is onto.

im(α) ⊆ ker(β) is clear from β(α(q)) = β( q
p
, q + pQp) = ( q

p
+Qp) − ( q

p
+

Qp) = 0.
In order to show that ker(β) ⊆ im(α), consider (q, q′ + pQp) such that

β(q, q′ + pQp) = (q+Qp)− ( q′

p
+Qp) = 0. This means that q+Qp = q′

p
+Qp

and hence q = q′

p
+ n

m
= 1

p
( q′·m+p·n

m
), with n

m
∈ Qp. Therefore (q, q′ + pQp) =

(1
p
( q′·m+p·n

m
), ( q′·m+p·n

m
) + pQp) = α( q′·m+p·n

m
), as required.
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Lemma 3.10 If T is a complete theory of abelian groups preserved under
extensions, then for every prime p, Tf(p, n;T ) and D(p, n;T ) are not both
infinite.

Proof This proof is similar in spirit to the one of Lemma 3.6.
Assuming that for some prime p, Tf(p, n;T ) = D(p, n;T ) = ∞, we

will build an extension G of two models of T such that U(p, 0;G) 6= 0,
contradicting Lemma 3.6.

So take G′ to be a Szmielew group which is a model of T satisfying
Tf(p, n;T ) = D(p, n;T ) = ∞ for some prime p. Since by Lemma 3.6 we
have that U(p, n;G′) = 0 for every natural number n, it follows that the
decomposition of G′ has at least one copy of Qp and also one copy of Z(p∞).

Hence G′ = Qp ⊕G′′ = Z(p∞) ⊕G′′′ for some G′′ and G′′′.
Since G′′ ⊕G′′′ is an extension of G′′ by G′′′ we get the exact sequence

0 → G′′ → G′′ ⊕G′′′ → G′′′ → 0 (9)

Combining the exact sequences (7) and (9) component-wise, we obtain
the exact sequence

0 → Qp ⊕G′′ → Q⊕ Z(p) ⊕G′′ ⊕G′′′ → Z(p∞) ⊕G′′′ → 0 (10)

Taking G to be Q⊕ Z(p) ⊕G′′ ⊕G′′′ completes the proof.

We can now give the first part of the proof of the theorem.

Proof of Theorem 3.4 (left to right) Condition (a) follows from Lemma
3.5. Condition (b) follows from the fact that if T is preserved under ex-
tensions, then it is preserved under direct products, therefore its invariants
(other than Exp(n;T )) are either 0 or infinite.

The others conditions follow from Lemmas 3.6, 3.7, 3.8, and 3.10 respec-
tively.

In order to complete the proof of Theorem 3.4, we need some more lem-
mas.

Lemma 3.11 Let T be a complete theory of abelian groups. If Tf(p, n;T ) =
∞, then Tf(p, n;B) = ∞ for any extension B of two models of T .
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Proof Let A and C be two models of T in the exact sequence

0 → A
α
→ B

β
→ C → 0

By hypothesis we have that dimpp
nC/pn+1C = ∞. Take infinitely many

ci ∈ pnC which are linearly independent modulo pn+1C. Each ci has a pre-
image bi under β which is in pnB (if ci = pnc take pn times a pre-image of
c). These bi’s must be linearly independent modulo pn+1B since the ci’s are
independent modulo pn+1C.

Lemma 3.12 Let T be a complete theory of abelian groups. If D(p, n;T ) =
∞, then D(p, n;G) = ∞ for any extension G of two models of T .

Proof Let A and C be two models of T in the exact sequence

0 → A
α
→ B

β
→ C → 0

By hypothesis we have that dimpp
nA[p] = ∞. Now α sends elements of

pnA[p] to element of pnB[p], proving the claim.

Lemma 3.13 Let T be a complete theory of abelian groups. If Exp(n;T ) =
∞, then Exp(n;G) = ∞ for any extension G of two models of T .

Proof Let A and C be two models of T in the exact sequence

0 → A
α
→ B

β
→ C → 0

By hypothesis we have that |nA| = ∞. α sends elements of nA to elements
of nB, proving the claim.

Proof of Theorem 3.4 (right to left) Let T be a complete theory of
abelian groups satisfying the conditions (a) to (f) of the theorem. We will
show that T is preserved under extensions by showing that the value of every
invariant is preserved under extensions, i.e. an extension of two models of T
has the same invariants has T .

We first have to show that an extension B of two models A and C of T
satisfies U(p, n;B) = 0 for all prime numbers p and all natural numbers n.

Consider the following exact sequence:

0 → A
α
→ B

β
→ C → 0 (11)
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Take b ∈ pnB. We will show that b ∈ pn+1B[p], showing that U(p, n;B) =
0.

Now since β is a homomorphism, we have that β(b) ∈ pnC[p]. Since
U(p, n;C) = 0 it follows that β(b) ∈ pn+1C[p], which means that there is a
c ∈ C such that pn+1c = β(b). Take a pre-image b′ of this c under β and
let b′′ be pn+1b′. Since both b and b′′ map to the same element under β we
have b = b′′ + a for some a ∈ A. Now by hypothesis either Tf(p, n;T ) = 0
or D(p, n;T ) = 0.

In the first case dimpp
mA/pm+1A = 0 for every natural number m, and

therefore every element of A is divisible by pm for every m. Hence a is
divisible by pn+1, and since b = b′′ + a and b′′ is also divisible by pn+1, we
have that b is also divisible by pn+1. Therefore b ∈ pn+1B[p], proving the
claim.

In the case where D(p, n;T ) = 0, from β(b) ∈ pnC[p] it follows that β(b) =
0, and hence b ∈ A. Now b is an element of order p of A. Since U(p, n;A) =
0 for every natural number n, it follows by definition of U(p, n;A) that
pnA[p]/pn+1A[p] = 0 for all n. Therefore b is divisible in A (and hence
also in B) by every power of p. It follows that b ∈ pn+1B[p] completing the
proof of the claim.

Let us now consider the second invariant Tf(p, n;T ). By Lemma 3.11, if
Tf(p, n;T ) is infinite then this also holds for any extension of two models of
T . We will now show that if Tf(p, n;T ) = 0, then Tf(p, n;G) = 0 for any
extension G of two models of T .

By Lemma 3.7, Tf(p, n;T ) = Tf(p, 0;T ), so Tf(p, 0;T ) is also equal to 0.
Now p0H/pH = H/pH , so Tf(p, 0;H) = 1 is equivalent to H/pH = 0. This
means that H is p-divisible. Hence every model H of T is p-divisible. Now if
G is an extension of two models of T , then by Proposition 3.1 G is p-divisible,
so that Tf(p, 0;G) = 0. We have already shown that U(p, n;G) = 0 for all
n since it is an extension of two models of T , so by Lemma 3.7 it follows
that Tf(p, n;G) = 0 for all n. This completes the proof of the preservation
of Tf(p, n;T ) by extension.

For the third invariant D(p, n;T ), as in the last case it follows from
Lemma 3.12 that if D(p, n;T ) = ∞, then this also holds for any extension of
two models of T . We now show that if D(p, n;T ) = 0, then D(p, n;G) = 0
for any extension G of two models of T .

By Lemma 3.8, D(p, n;T ) = D(p, 0;T ), so D(p, 0;T ) is also equal to 0.
Now D(p, 0;H) = dimpH [p], so D(p, 0;H) = 0 is equivalent to H [p] = 0,
which means that H has no p-torsion. We therefore have that every model
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H of T has no p-torsion. Consider an extension G of two models of T . By
Proposition 3.2, G has no p-torsion, so D(p, 0;G) = 0. We have already
shown that U(p, n;G) = 0 for all n since it is an extension of two models of
T , so by Lemma 3.8 it follows that D(p, n;G) = 0 for all n. This completes
the proof of the preservation of D(p, n;T ) by extension.

The theory of the trivial abelian group 0 is obviously preserved under
extensions. If T is not the theory of 0 and fulfill all conditions of the statement
of the theorem, then Exp(n;T ) = ∞ for all n > 0 by hypothesis. Now by
Lemma 3.13 we have that Exp(n;G) = ∞ for any G which is an extension
of two models of T . This completes the proof.

Theorem 3.4 characterizes complete theories of abelian groups preserved
under extensions in terms of their Szmielew invariants. Alternatively the
following result, whose proof consists in computing the Szmielew invariants,
characterizes these theories in terms of their Szmielew groups.

Corollary 3.14 The theory Th(G) of the abelian group G is preserved by ex-
tensions if and only if G is elementarily equivalent to a group of the following
form: ⊕

p∈P1

Q(ω)
p ⊕

⊕

p∈P2

Z(p∞)(ω) ⊕Q(δ)

where P1, P2 are disjoint sets of prime numbers and δ is either 0 or 1.

4 Conclusion

We have characterized theories preserved under extensions for modules over
regular rings, and for complete theories of abelian groups. Different types of
characterizations appear in the paper: structural, syntactical, and in terms
of the values of the (modules or groups) invariants.

Obvious open problems remain: 1) find a simple syntactically defined fam-
ily of sentences which characterize theories of R-modules (or abelian groups)
preserved under extensions, 2) formulate a more general characterization in
terms of the (modules or abelian groups) invariants for the theories preserved
under extensions.

A possible approach for 1) was mentioned in Section 2. Note however
that there is no guarantee that preservation under extensions is a uniform
property: this means that there might be a theory preserved under exten-
sions which is not equivalent to any set of sentences which are themselves
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(individually) preserved under extensions. Such a possibility was first rec-
ognized by M. Rabin, who showed that preservation under intersection (of
substructures) is not uniform in this sense ([7]). For more on this see [5].

As for 2), an idea could be to try to describe the possible invariants of
an extension of two modules or abelian groups A and C in terms of the
invariants of A and of C. Both suggestions appear to be rather difficult, but
this problem surely deserves further study.

On a more personal level, the first author would like again to thank
Professor Felgner for supervising him at the doctoral level, sharing his en-
thusiasm for research and logic. It is a pleasure to have the chance to return
after so many years to the field of model theory, particularly by contributing
to this longstanding open problem which was initiated by Professor Felgner.
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