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Abstract
Games present sophisticated challenges and require intricate reasoning. Quantified

Boolean Formulas (QBF) enjoy a natural game-theoretic semantics and are therefore a
promising representation for games. However, solving games with current QBF solvers
remains challenging due to their significant runtime. In this paper, we use QBF solvers’
reasoning capabilities to search for a specific kind of winning strategy, restricting the
allowed moves. While this could, in principle, prevent the discovery of a winning strategy,
when there are only more complex ones, we experimentally show that our method does
indeed find a winning strategy when one is found by the current best QBF encoding.
Furthermore, we also show that this reduction in available moves allows to reduce solving
time across QBF solvers and preprocessors.
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1. Introduction

Combinatorial games are zero-sum complete information games where players, usually
two, compete, with the first player to attain the intended objective winning the game.
Many board games such as Chess, Checker, Go, Tic-Tac-Toe, Hex and Gomoku all fall
within this category. With deceivingly simple rules, these games raise intricate challenges
that captivate players. Game playing therefore necessitates complex reasoning capabilities
and it hence comes as no surprise that games are of central concern in AI. Moreover, the
mathematical study of combinatorial games is a highly active field [1–4] with many striking
results, open questions, and research challenges.

Harary Tic-Tac-Toe (HTTT) [5] is a combinatorial game, where two players, Black and
White, alternatively claim cells on a square board, with the first player to form a specified
target shape winning the game. HTTT has been very influential with many results, gener-
alizations, and complex combinatorial problems [6–13], some of which have been open for
many years. For instance, the winning status of the Snaky polyomino is still unknown, even
on the original square boards.

Quantified Boolean Formulas (QBFs), where a sequence of existential and universal quan-
tifiers on Boolean variables, the prenex, is followed by a purely propositional formula, the
matrix, allow for a natural game semantics. Following the quantifiers’ order, an existential
player chooses values for existentially quantified variables while a universal player does the
same for universally quantified variables. A QBF is then satisfied exactly when the existen-
tial player has a winning strategy ensuring that the matrix is satisfied. It therefore comes
as no surprise that combinatorial games have attracted the attention of the QBF commu-
nity [14–18]. Determining Snaky’s status on 9 × 9 boards has, for instance, been set as a
challenge for the QBF -community [16, 17]. Game encodings furthermore allow to evaluate
QBF -solvers’ performance with a large number of quantifier alternations, in stark contrast
to the small number of alternations found in many QBF applications [19].

Solving a game consists in showing whether or not there is a winning strategy for some
player. For HTTT, the usual approach to QBF game solving is to encode, as a QBF instance,
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the existence of a winning strategy for the first player (Black) [14, 16, 17, 20], since it is
known that there is no winning strategy for the second player (White).

In this paper, we leverage the fact that some moves are more sensible than others. We
therefore introduce the COVER QBF encoding, which encodes the existence of a specific
kind of strategy for the first player that restricts possible moves.

We experimentally show that this restriction on the strategy is not detrimental since our
COVER encoding actually allows to find a winning strategy as often as the current best
HTTT QBF encoding COR+. Furthermore, we also show that this reduction in the number
of available moves has a beneficial effect on the QBF solving time of our COVER encoding
with respect to that of COR+.

This paper is structured as follows. Section 2 introduces QBF formulas, Harary’s Tic-Tac-
Toe, and presents related work. Section 3 defines our COVER encoding, which is evaluated
in Section 4. Section 5 finally concludes the paper.

2. Background Knowledge

2.1. QBF Formula

A Quantified Boolean Formula (in prenex CNF form) (QBF) is formed of a finite sequence
of universal (∀) and existential (∃) quantifiers on Boolean (0/1) variables followed by a
matrix. For its part, the matrix is a formula in Conjunctive Normal Form (CNF), i.e., a
conjunction (“AND”) of disjunctions (“OR”) of literals, which are variables or negation of
variables. We consider only closed QBF where every variable is quantified (existentially or
universally).

QBF semantics can be defined by a game, as mentioned in the introduction, or alterna-
tively by rewriting ∃xφ(x) into φ(0) ∨ φ(1) and ∀xφ(x) into φ(0) ∧ φ(1) to remove every
quantifier and then simply evaluating the obtained expression.

Determining the truth value of a QBF is PSPACE-complete [21] and is widely considered
to be of a higher time complexity than CNF solving (SAT). There is therefore quite some
interest in extending the striking advances in SAT solving toward QBF and accordingly
many QBF solvers have been developed over the years [22–25].

2.2. Harary’s Tic-Tac-Toe

Harary’s Tic-Tac-Toe [5] is a game played by two players, Black and White, on a board
divided into square cells called positions. Players alternate, with Black playing first. At
each time-step the current player claims an empty position that then acquires her color.
The objective of the game is to form the target shape in a single color. The first player that
succeeds wins the game. Target shapes are edge-connected shapes, called polyominos. For
instance, Figure 1 depicts the Snaky polyomino.

Figure 1. The Snaky polyomino

Originally, the game was played on a regular (square) board but nowadays torus boards
that wrap around at horizontal and vertical edges are also considered.

By a classic strategy stealing argument one observes that a winning strategy allowing
White to complete the target could as well be used by Black (pretending an arbitrary pre-
game move). There is therefore no such winning strategy for White. The game outcome is
hence that either Black has a winning strategy, in which case the target shape is said to be
a winner, or White has a blocking strategy preventing Black’s win, in which case the target
shape is said to be a loser.
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On regular boards the asymptotic (i.e., when the board is big enough) winner/loser status
of all polyominos was already known to Harary [5], except for Snaky (Figure 1) whose exact
status has drawn considerable attention but is still an open question. However, a polyomino
that is a winner on large enough boards could be a loser on smaller boards. Also, very little
has been published on the winner/loser status on torus boards, which is a distinct question.

2.3. Related Work

Surprisingly, encoding a combinatorial game in QBF is not as straightforward as one
could expect. For instance, in order to correctly represent the game’s rules, [14] introduces
so-called indicator-variables ensuring that when a player breaks a game rule the matrix
indeed reaches the correct Boolean value, i.e., False (0) if the first player breaks a rule, and
True (1) if it is the second player. This QBF -encoding is then applied to the Connect-4
game, showing a rapidly increasing run time that unfortunately does not allow to solve the
standard Connect-4 game on a 7 × 6 board within 10 minutes. A similar encoding is also
developed for HTTT [16], solving all 84 instances on a 3 × 3 board with 10s timeout and
some of the 96 instances on a 4 × 4 board with a 1000s timeout. Game solving is hence
challenging for QBF solving technologies.

While indicator-variables have been thought to be crucial to QBF-encoding of games [15],
[17] distinguish between move choices variables, existentially quantified for the first player
and universally quantified for the second, and variables determining the occupied positions
on the board that are always existentially quantified. Occupied board positions are then
changed only when the players’ moves do not break any game rules. In the context of
positional games, such as HTTT, where players lay but do not move stones on a board, [17]
introduces the very compact COR QBF encoding. This allowed to solve all HTTT instances
on a 4 × 4 board with 1000s timeout. It is also noted in [17] that searching for a winning
strategy by encoding in QBF a game of maximal length, for instance, 25 for a 5x5 board, is
intractable and it is much faster to use iterative deepening and progressively solve for games
of increasing lengths k = 1, 2, . . .. Indeed, as soon as a winning strategy for Black is found,
the shape is a winner.

A QBF-encoding for the PAIRING blocking strategy for White is introduced in [18].
This approach is then shown to be more than two orders of magnitude faster than [17] on
4 × 4 boards. Moreover, in a further twist to iterative deepening and making good use of
the Black winning strategy/White blocking strategy duality, [18] extends this method by
alternating the search for a winning strategy for Black with COR, for k odd, with that of a
blocking strategy for White with PAIRING, for k even. As soon as a satisfiable instance is
encountered, the shape is winning if k is odd or losing if k is even, completely solving the
game. This approach allows [18] to solve 72 of 110 instances on 5×5 boards (1000s timeout)
compared to only 7 for [17].

3. The COVER Encoding

In this section, we introduce our COVER encoding. We first present the underlying
principles, then the variables, quantifiers, and clauses, and finally we justify the correctness
of this QBF encoding.

3.1. Overview and Rationale

The COVER encoding follows the general approach of QBF game encodings [14, 16]
where at each time-step t = 0, . . . , tend, the game configuration, i.e., the positions (x, y) oc-
cupied by Black and White, are encoded by the Boolean variables blackt,x,y, and whitet,x,y.
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Furthermore, as for the COR/COR+ encodings [17, 20], the COVER encoding takes advan-
tage of the positional nature of the game in which an occupied position remains occupied up
to game’s end. Therefore, as the game progresses, occupied positions remain so. Further-
more, at each time-step, it is sufficient to simply record which new position is claimed using
variables moveBt,j for t odd (Black’s moves) and moveWt,j for t even (White’s moves) as
detailed in the next subsection. Finally, Black (the existential player) can stop the game at
any time point by setting the timet variable to false, at which point the game configuration
is no longer allowed to change. This hence allows to check the winning condition simply at
tend.

QBF game encodings therefore present a long quantifier prefix, with a number of alterna-
tions proportional to the game length (tend). Furthermore, each quantifier block expresses
a player’s move with a length proportional to the number of possible moves. The COVER
encoding follows [20] and uses a logarithmic (binary) encoding for the moves. Moreover, the
central objective of the COVER encoding is to reduce the number of possible choices that a
player can make. This is indeed a natural objective since as the play goes on, some choices
are obviously more sensible than others.

To this end, the COVER encoding restricts the players’ moves. Black’s very first move is
simply restricted by symmetry breaking, as in the COR/COR+ encodings. Furthermore, the
COVER encoding restricts further moves to the positions of a specific set, called the cover.
This set contains the positions of all shapes that contains Black’s first move. The objective
is therefore to concentrate and focus the players on positions that offer the possibility of
completing an already partially occupied shape.

Restricting Black’s moves to the cover is sound in the sense that if a winning strategy
restricting Black move’s is found, this is indeed a winning strategy for Black. In the converse
direction, this is, however, not complete, since there could be a winning strategy for Black,
without any that restricts Black to the cover. Nevertheless, we will show in Section 4 that
in our experiments this does not occur and that a winning strategy for Black is found with
COVER every time that such a strategy is found with COR+.

As to restricting White’s moves to the cover, this is clearly unsound. Indeed, one must
ascertain that Black has a strategy that is winning and this irrespective of White’s behavior.
To restore soundness, our COVER encoding restricts White’s moves to the cover but also
allows a single additional out-of-cover (ooc) (White) move. COVER also keeps track of the
number of times White plays out of cover (ooc) in order to check the winning condition, as
we will now see.

In COR/COR+ the winning condition is simply that at tend Black has formed the target
shape and White not. As Black can halt the game at any time, preventing further positions
from being claimed, this rightly ensures that Black has a winning strategy that complete the
shape before White does. COVER’s winning condition still checks that Black has completed
the target shape, but for White COVER rather considers, for all target forms F the parts
Fc lying in the cover and Fo outside of the cover, in the following way. For every target
shape F , such that the size of Fo does not exceed the number of White’s out-of-cover moves,
COVER checks that White did not complete Fc. This ensures that White could not have
completed F , regardless of where its out-of-cover moves could have been. This is therefore
sound.

In summary, with a cover of size n, Black is restricted to n possible moves, while White is
restricted to exactly n+1 moves including its out-of-cover move. COVER therefore bounds
the number of moves both for Black and White.
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3.2. Variables and Quantifiers

We now define the variables representing the game and their intended meaning. The range
of parameters x, y, e, t below is as follows, unless otherwise stated: 1 ≤ x ≤ W, 1 ≤ y ≤ H,
where W is the width and H the height of the board, e ∈ E for E the set of target shapes
on the board, and t ∈ T = {0, . . . , tend} the set of game turns.

timet : the game is running at time t (3.1)
moveBt,j : j-th digit of the binary encoding of Black’s move at time t (3.2)
moveWt,j : j-th digit of the binary encoding of White’s move at time t (3.3)
incoverSe : the shape e is contained in the cover (3.4)

incoverPx,y : the position at x, y is in the cover (3.5)
out_of_cover_inct,i : White has already played outside the cover a number i of

times at turn t (3.6)
blackt,x,y : there is a black stone at x, y at time t (3.7)
whitet,x,y : there is a white stone at x, y at time t (3.8)

wine : all cells in shape e are black at time tend (3.9)

In the previous variable list, j ranges over the number of bits necessary to encode the
moves and i from 0 to the size (number of cells) of the target shape.

Note that, we will define the cover in two steps. First, with the incoverSe variables we
will determine the shapes that are in the cover, which are those that contain Black’s first
move. Secondly, we will determine with the incoverPx,y variables the positions within the
cover, which are those within some shape contained in the cover.

We now specify the quantifier blocks. They appear in turn order beginning at turn t = 0
where the board is initialized, as we will see in the next subsection.

∃time0 (3.10)
∃black0,x,y; for all x, y (3.11)
∃white0,x,y; for all x, y (3.12)

At t = 1, Black plays and the cover is defined.

∃time1 (3.13)
∃moveB1,j ; for all j (3.14)
∃incoverSe; for all e (3.15)

∃incoverPx,y;; for all x, y (3.16)
∃black1,x,y; for all x, y (3.17)
∃white1,x,y; for all x, y (3.18)

At t = 2, ..., tend White plays for t even and Black for t odd. Furthermore, at White’s
turns the count of ooc moves are recorded with the out_of_cover_inct,i variables.
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∃timet (3.19)
∀moveWt,j ; for t even and all j (3.20)
∃moveBt,j ; for t odd and all j (3.21)

∃out_of_cover_inct,i; for t even and all i (3.22)
∃blackt,x,y; for all x, y (3.23)
∃whitet,x,y; for all x, y (3.24)

Finally, at the last turn of the game tend, we have:

∃wine; for all e (3.25)

3.3. Clauses

We now give the clauses, either directly as disjunctions of literals or as conjunctions of
clauses or double-implications that can readily be transformed into clauses in the usual way.
Below, t is any timepoint greater of equal to 1 since we will compare with t− 1. As before
x, y is any board position.
Time Handling. If the game is still running at time t, it was running at time t− 1.

¬timet ∨ timet−1 (3.26)
Structure of the board. Clause (3.27) encodes that there is no stone on the board at time
t = 0. Furthermore, both players cannot claim the same cell as expressed by (3.28). Finally,
(3.29) indicates that once a cell is claimed, it stays the same color until the end of the game.

¬black0,x,y ∧ ¬white0,x,y (3.27)

¬blackt,x,y ∨ ¬whitet,x,y (3.28)

(¬blackt−1,x,y ∨ blackt,x,y) ∧ ¬(whitet−1,x,y ∨ whitet,x,y) (3.29)
Frame axioms. The following clauses (3.30), (3.31), (3.32), (3.33) specify that when the
game is over, no new stone are permitted on the board and no new black, or white stones
can appear on the board if it is not Black’s or White’s turn.

timet ∨ blackt−1,x,y ∨ ¬blackt,x,y (3.30)

timet ∨ whitet−1,x,y ∨ ¬whitet,x,y (3.31)

blackt−1,x,y ∨ ¬blackt,x,y; for t even (3.32)

whitet−1,x,y ∨ ¬whitet,x,y; for t odd (3.33)
Cover setup. By definition, the cover contains the positions of all shapes that contain Black’s
first move. Accordingly, (3.34) states that incoversSe holds exactly when one of e’s cells has
been played on Black’s first move. Furthermore, (3.35) expresses the fact that a position
x, y is in the cover exactly when it is the position of a cell that is in a shape e of the cover.
Finally, (3.36) expresses that Black cannot play outside the cover, as intended.
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incoverSe ⇐⇒
∨

(x,y)∈e

black1,x,y (3.34)

incoverPx,y ⇐⇒
∨

{e∈E;(x,y)∈e}

incoverSe (3.35)

incoverPx,y ∨ ¬blacktend,x,y (3.36)
Black’s moves. The next clauses (3.37), (3.38) represent Black actions. Here a move that
sets a stone on the cell at x, y is encoded by the binary string [x, y] with j-th bit [x, y](j).
These clauses express the fact that the cell at x, y becomes black at turn t if it was not played
before and the j-th digit of the binary encoding representing Black’s choice is moveBt,j .
This is the At-Most-One constraint of [20] preventing Black from playing multiple times in
the same turn.

blackt−1,x,y ∨ ¬blackt,x,y ∨moveBt,j ; [x, y](j) = 1 (3.37)
blackt−1,x,y ∨ ¬blackt,x,y ∨ ¬moveBt,j ; [x, y](j) = 0 (3.38)

Symmetry breaking. Symmetry breaking uses the fact that on a regular board Black’s first
move is irrelevant, up to reflection and rotation of the board. On a torus board the situation
is even simpler since all cells are equivalent and Black can be constrained to play on a specific
position without restricting generality. Therefore, for torus boards, we force Black to play
at the center (3.39) whereas on a normal board, we force Black to play in the top left side
triangle of the board (3.40).

black1,⌈W
2 ⌉,⌈H

2 ⌉ (3.39)

⌈W
2 ⌉∨

x=1

⌈H
2 ⌉∨

x=1

black1,x,y (3.40)

White’s moves. For White’s moves we distinguish two cases. First, if White plays within
the cover, clause (3.41) expresses that if the game is still on, the cell at x, y is not black,
x, y is in the cover, and White’s move is to the cell at x, y, then the cell at x, y is white.

¬timet ∨ blackt−1,x,y ∨ ¬incoverPx,y∨∨
j;[x,y](j)=1

¬moveWt,j ∨
∨

j;[x,y](j)=0

moveWt,j ∨ whitet,x,y (3.41)

Furthermore, if White rather chooses the out-of-cover (ooc) move, we simply increase the
out_of_cover_inc counters in the following way. Clause (3.42) expresses that if the game
is still on, White chooses the out-of-cover (ooc) move, and out_of_cover_inct−2,i−1, then
out_of_cover_inct,i. Note that the highest value of i attained will be equal to the number
of times White has played outside of the cover. Furthermore, the only requirement on the
binary value [ooc] is that it differs from all [x, y].

¬timet ∨
∨

j;[ooc](j)=1

¬moveWt,j ∨
∨

j;[ooc](j)=0

moveWt,j

∨ ¬out_of_cover_inct−2,i−1 ∨ out_of_cover_inct,i (3.42)
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This counting must be initialized with clause (3.43) to start at 0 and then clause (3.44)
ensures that i can only increase as t increases. Note that in all these clauses i ranges up to the
number of cells in the target shape. This is sufficient since there is no point in counting for
more moves than there are cells in the target shape, as we will see in the winning condition.

out_of_cover_inct,0 (3.43)

¬out_of_cover_inct−2,i ∨ out_of_cover_inct,i (3.44)

Winning Condition. Clause (3.45) first expresses that wine is true exactly when Black has
completed all the cells of e. Then (3.46) ensures the first part of the winning condition,
namely that Black must complete at least one target shape.

wine ⇐⇒
∧

(x,y)∈e

blacktend,x,y (3.45)

∨
e∈E

wine (3.46)

We must now ensure that White did not win. We consider for any shape e and number i
of out-of-cover White moves all subsets p of shape e containing i elements and express with
clause (3.47) that having, all at once, i out-of-cover White moves, all of e \ p (all cells of e
except those of p) white, and all cells of p outside the cover, is impossible. Therefore, what-
ever moves that White could have done outside the cover, this could never have completed
a shape. This ensures that White clearly could not have completed the target shape.

¬out_of_cover_inctend,i ∨
∨

(x,y)∈e\p

¬whitetend,x,y
∨

∨
(x,y)∈p

incoverPx,y (3.47)

3.4. Justification

That our encoding is correct is essentially straightforward, except maybe for the clauses
(3.41), (3.42) that can be justified in a way similar to that of [17, 20]. The justification
therefore follows from the fact that the only universally quantified variables are the moveWt,j

variables. More precisely, in the QBF game semantics, where the existential player aims at
making all clauses true, for clause (3.41) the existential player will have to set whitet,x,y only
if all other literals are false and White has indeed made a move inside the cover. Similarly,
for clause (3.42) the existential player will have to set out_of_cover_inct,i, i.e., increase
the count, only if White made an ooc move.

In other words, the existential player lay all stones, black and white, and sets the
out_of_cover_inct,i counter. The clauses therefore ensure that the existential player acts
on White’s behalf only if White plays as expected.

4. Experimental Results

We compare our approach with the current best QBF encoding for HTTT, which is the
COR+ encoding [20], an improved version of the COR encoding of [17]. Data and com-
plete code to reproduce our results are available at gitlab.info.uqam.ca/boucher.steve/cover-
sources.git.

Although the SN encoding of [26] has also been applied to the maker-breaker variant
of HTTT, this is a weaker version of HTTT in which Black wins if she completes the
target shape, regardless of the fact that White could have completed the target earlier.

https://gitlab.info.uqam.ca/boucher.steve/cover-sources.git
https://gitlab.info.uqam.ca/boucher.steve/cover-sources.git
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Furthermore, that work only reports results on 11 polyominos on a 5x5 regular board that
our method processes within the same time, and this for the more involved full game where
Black loses as soon as White completes the target shape.

We evaluate our encoding with the following QBF solvers: CAQE [22], DepQBF [23],
QESTO [24], Qute [25], and with the QBF -preprocessors (simplifiers): bloqqer [27], HQSPre
[28], and QRATPre+ [29]. All experiments are run on Dell OptiPlex 7050, 3.6 GHz Intel
Core i7-7700 Quad-Core, 16GB of 2400 MHz DDR4 RAM.

Since [18] easily solves all games on 4x4 boards and that our approach is equally effective
on these small boards, our experiments are run on 5x5 boards, both normal and torus. As
in [16, 17], we also consider all polyominos of specific sizes. Namely, we experiment on all 47
polyominos that fit on a 4x4 board (in order to allow some extra space for nontrivial games
on our 5x5 boards), with the exception of the one-cell Elam that is obviously a winner on
Black’s first move.

4.1. Iterative deepening on 5x5 boards

In this subsection, we compare iterative deepening with COR+/PAIRING with iterative
deepening with COVER/PAIRING.

In this setting, iterative deepening yields 3177 QBF instances for COR, 3177 for COVER
(and a similar additional number for PAIRING) in order to solve the game as explained
previously. Results are summarized in Table 1.

solver preprocessor B/W/U COR+/PAIRING COVER/PAIRING

CAQE

none 13/62/19 48466.13 48397.52
bloqqer 14/62/18 45665.90 45308.02
HQSPre 13/62/19 50256.66 50248.72

QRATPre+ 14/62/18 46024.13 45530.75

DepQBF

none 14/62/18 46669.55 45903.58
bloqqer 14/62/18 47591.13 46078.10
HQSPre 14/62/18 47491.20 46655.83

QRATPre+ 14/62/18 47175.92 46455.84

QESTO

none 14/64/16 44035.47 44911.54
bloqqer 14/64/16 41270.15 41196.53
HQSPre 12/64/18 48757.67 48756.93

QRATPre+ 14/64/16 41868.17 41834.90

Qute

none 12/60/22 55356.24 55265.69
bloqqer 12/60/22 57134.60 57095.74
HQSPre 12/61/21 53129.73 53122.35

QRATPre+ 12/60/22 55470.14 55385.08

Table 1. Iterative deepening for COR+/PAIRING and COVER/PAIRING on 5x5
boards with 2500s timeout

In Table 1 the B/W/U column shows the number of shapes/board types (normal or
torus) for which a winning strategy for Black is found with COR+ and COVER, a blocking
strategy for White is found with PAIRING, and the remaining Unknown cases where no
winning nor blocking strategy is found.

One first notes that there is a single value for B since the exact same number of winning
strategies for Black is found with COR+ and COVER. Moreover, we checked that COR+
and COVER both find a winning strategy in the very same cases (shape/board) and at
the same iteration number (tend value). Therefore, both winning strategies have the same
number of moves. This shows that while COVER restricts itself to a specific kind of winning
strategy, this does not prevent a winning strategy from being found with COVER each time
that a winning strategy is found with COR+.



10

As to solver/preprocessor performance, one notes from Table 1 that QESTO is the solver
that attains the highest number of winning/blocking strategies, namely 14 and 64, respec-
tively. Furthermore, from the last two columns of the table, one sees that for every pre-
processor but HQSPre, QESTO yields the best total run time, with QESTO/bloqqer and
QESTO/QRATPre+ in the first and second positions. Finally, run time for COR+/PAIRING
and COVER/PAIRING are similar. Therefore, overall, Table 1 shows that COVER is as
effective as COR+ in this iterative deepening setting with PAIRING.

However, since iterative deepening runs up to timeout when no winning/blocking strategy
is found and since Table 1 shows the total time including that for running PAIRING, this
Table does not allow to correctly compare the performance of COR+ and COVER. To this
end, we will now turn to a direct comparison of COR+ and COVER run times.
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COR+ vs. COVER

Figure 2. Run time for COVER/COR+ on 5x5 boards with 2500s timeout for all pre-
processors and solvers

Figure 2 compares COVER and COR+ runtimes. More precisely, for each board type,
shape, iteration (tend value) and preprocessor/solver pair of the experiments presented in
Table 1, Figure 2 shows the pairs formed of the runtimes for COVER and COR+. This
therefore allows to compare COVER and COR+ on the same task (finding a winning strategy
for Black) for a broad range of game settings (board type, shape, iteration) and this over
many preprocessor/solver pairs.

One observes from this figure that the points appear largely under the diagonal, and that
COVER therefore outperforms COR+ on most instances. Moreover, a detailed analysis of
the data shows that COVER outperforms COR+ on 61% (336/547) of the instances taking
more than 0.01s, 70% (248/355) of the instances taking more than 0.1s, 74% (136/183) of
the instances taking more than 1.0s, and 76% (74/98) of the instances taking more than
10s. Therefore, COVER is furthermore even more beneficial as the difficulty the instance
increases.

5. Conclusion

QBF is a flexible representation that enables the definition of many properties in a variety
of ways. In order to solve a game such as HTTT, one must determine either that there is
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a winning strategy for Black or a blocking strategy for White. However, QBF allows us to
also look for specific kinds of strategies, as we did in this paper. This has many benefits.
First, as we showed in Section 4 there are strategies which are easier to ascertain while still
as frequent as a general strategy, under current QBF technologies.

There is, however, a second more fundamental benefit to our approach. By focusing on a
specific kind of strategy, QBF technology is used to reason about the game, and learn new
facts as the existence of such a specific strategy. This is clearly of interest to the study of
combinatorial games. Indeed, this is reminiscent, for instance, of theoretical results such as
[30] that, for HTTT with the Snaky target, shows that there is no winning strategy where
Black only plays on a cell that share an edge with another black cell or [31] that shows
that Snaky is a loser on a 6 × 6 board but that Black has a winning strategy if White
is restricted to domino paving strategies. Our approach therefore has the potential to be
successfully applied to further types of strategies and games, broadening our understanding
of the essential properties of these games.
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