
Modelling the Temporal Aspects of Network
Configurations

Sylvain Hallé1, Rudy Deca1, Omar Cherkaoui1, Roger Villemaire1
and Daniel Puche2

1Université du Québec à Montréal, Montréal, Canada
2Cisco Systems Inc., Montréal, Canada

Abstract

One of the main issues with the existing management configuration is
the absence of a transactional model, which should allow the network con-
figuration data to retain their integrity and consistence during the configu-
ration process. In this paper, we propose a mathematical framework based
on lattice theory allowing the structuring of configuration operations lead-
ing to the concept of component and validation checkpoint, and present
polynomial-time algorithms for studying these structures. We will illus-
trate the model by an example of two examples of configuration opera-
tions: the deployment of a VLAN service through SNMP and the deploy-
ment of a VPN service through the Netconf protocol.

1 Introduction

Among other network management functions, configuration manage-
ment is still mainly accomplished by proprietary means, be it Command
Line Interface (CLI), JunOS or TL1. Recent alternatives like SNMPConf,
COPS and Netconf have not yet succeeded in bringing a standard configu-
ration solution. This situation is due to numerous causes: security
(SNMPv3), absence of an adequate configuration information model, pro-
prietary equipment instrumentation semantics. Another overlooked factor
is the absence of a simple transactional model between agents and manag-

2 Modelling the Temporal Aspects of Network Configurations

ers allowing for the association between management protocol operations
(SNMP, COPS and Netconf) and management information.

When configuring a network service that involves multiple equipments,
there is an important temporal aspect of complexity of the network service
configuration. There are many sequences of configuration commands or
operations that must be performed on multiple network elements or
equipments, temporal dependencies among these sequences, semantic con-
straints among their parameters. Moreover, specific groups of commands
and parameters belong to the same service or sub-service and must thus be
performed together, in an atomic way, even though they affect multiple
components or network elements form different network devices. The
atomic character of the configuration operations involving a number of pa-
rameters is relevant both at device and at network levels.

In this paper, we propose a mathematical framework based on lattice
theory allowing the structuring of configuration operations in terms of con-
figuration dependencies. The concepts of component and milestone that
we define in terms of paths in the lattice structure help us to simplify the
analysis of possible solution paths and provide us with a sound criterion
for dividing the deployment of a service into natural macro-steps that serve
as validation checkpoints.We will illustrate the model by two examples of
configuration operations: the deployment of a VLAN service through
SNMP and the deployment of a VPN service through the Netconf protocol,
and show preliminary results for validation checkpoints for the latter of
these cases.

In section 2, we show by two examples why current management ap-
proaches are inedaquate for dealing with the sequential aspect of network
configuration. In section 3, the lattice-based mathematical framework for
modelling temporal constraints is detailed, and polynomial-time algo-
rithms for studying the resulting structures are presented. Section 4 shows
possible applications of this framework and preliminary results obtained
for the case of simple Virtual Private Networks, while section 5 concludes
and indicates further directions of work.

2 Motivation and Related Work

The deployment of a service over a network basically consists in alter-
ing the configuration of one or many equipments to implement the desired
functionalities. We can presuppose without loss of generality that all prop-
erties of a given configuration are described by attribute-value pairs hierar-
chically organised in a tree structure [13].

Possible alterations to the configuration typically include deleting or
adding new parameters to the configuration of a device, or changing the
value of existing parameters. In most cases, the parameters involved in
such modifications are both syntactically and semantically interdependent.
For instance, the value of some parameter might be required to depend in a
precise way on the value of another parameter; the simplest example of
such dependency is the fact that an IP address must match the subnet mask
that comes with it. More complex dependencies might constrain the exis-
tence of a parameter to the existence of another. Recent works have shown
how such dependencies can be automatically checked by logical tools on a
given configuration snapshot [13].

However, the situation becomes more complex when one wants to actu-
ally deploy a service from scratch. In addition to constraints on the values
of parameters, the dependencies may also impose that the modifications be
performed in a specific order. When done in an uncoordinated way, chang-
ing, adding or removing components or data that implement network ser-
vices can bring the network in an inconsistent or undefined state. This fact
becomes acutely true in the case where operations must be distributed on
multiple network elements, as they cannot be modified all at once. More-
over, while a single inconsistent device can ultimately be restarted when
all else fails, there is no such “restart” option when an entire network con-
figuration becomes inconsistent.

However, one of the main issues with the existing management para-
digms is the absence of a transactional model, which should allow the
network configuration data to retain their integrity and consistence during
the configuration process.

The network community has proposed different approaches for ensuring
the consistence and integrity of the network configuration during the man-
agement of network services. The policy-based management using the
Ponder language [6] incorporates OCL (Object Constraint Language) [19]
to express the dependencies among configuration parameters. Other ap-
proaches, based on ontologies [17, 18], use the Protégé Axiom Language
and Toolset (PAL) [5] for expressing configuration parameter constraints
and queries. Many other constraint languages and tools are also available
and can be used to express configuration parameter dependences, such as
the Alloy language [16] and the constraint analyser based on it, Alcoa [15].
However, these approaches use constraint languages borrowed from other
domains, designed for other purposes. Therefore, they are not adequate to
the specifics of network configuration, and they do not tackle the transac-
tional aspect of network configuration.

We will study two examples of configuration management using differ-
ent paradigms, and stress their weaknesses in this regard. Based on this

4 Modelling the Temporal Aspects of Network Configurations

evidence, we will show what the transactional model can accomplish and
what its benefits are in the area of network configuration.

2.1 VLAN Configuration with SNMP

The deployment of a Virtual Local Area Network (VLAN) [3, 11] on a
network involves a number of configuration operations falling into four
categories:

• specification of the Virtual Trunk Protocol (VTP) domain and operation

mode
• VLAN creation
• port allocation
• trunk creation

However, these operations cannot be performed in any order. Some or-
dering constraints are imposed.

Clearly, the operations belonging to the first group (VTP) are prepara-
tion operations on which the operations of the second group (VLAN crea-
tion) rely. In the same fashion, the port allocation cannot be done before
the VLAN has been created (for the sake of simplicity, we exclude here the
case where the port is reserved in advance or dynamically allocated from a
pool). This leads to the formulation of a first set of two temporal con-
straints:

Temporal Constraint 1 All VTP operations must have been done be-
fore any VLAN creation parameter is added to the configuration.

Temporal Constraint 2 All VLAN creation parameters must have been
added to the configuration before any port allocation or trunk creation pa-
rameters are added.

These two constraints entail that the VLAN be created in an atomic
way: the name, number and other parameters must be specified together
and the editing must be done by one manager at a time. If the configuration
were to be modified by means of the command line interface, this atomic
property would be achieved by having both number and name parameters
mandatory within the same command (for example, the Cisco IOS com-
mand vlan <number><name>). A similar reasoning can be done for the
other modification operations, leading to more temporal constraints.

However, despite these temporal constraints, the SNMP paradigm [2]
allows the parameters to be configured independently and has no seman-
tics for the configuration operations. It does not have a transactional model
and thus allows inconsistent evolution of the network configuration. The
way SNMP ensures atomicity is by providing an editing buffer for VLAN
creation (the vtpVlanEditingTable) within the VLAN Management
Information Base (MIB) [3]. Only one manager at a time is allowed to own
and edit this buffer.

This example illustrates several facts. First, the temporal constraints im-
pose that some of the VLAN parameters be grouped; SNMP does not ele-
gantly enforce this and rather uses an ad-hoc editing buffer mechanism for
this purpose.

Second, there are two levels of validation: the first level makes sure that
each operation has been correctly made by confirming that the apply buffer
operation has succeeded; the second level validates the overall operation
and checks whether the VLAN has actually been created.

2.2 Example 2: VPN Configuration with Netconf

In this section we analyse the problems encountered by the Netconf pro-
tocol, when dealing with network services that involve multiple equip-
ments and introduce a transactional model that solves these problems.

We illustrate this with an example of an MPLS Virtual Private Network
(VPN) service deployment [20]. A VPN is a private network constructed
within a public network such as a service provider’s network. A customer
might have several sites, which are contiguous parts of the network, dis-
persed throughout the Internet and would like to link them together by a
protected communication. The VPN ensures the connectivity and privacy
of the customer’s communications between sites.

Such a service consists of multiple configuration operations that involve
setting the routing tables and the VPN forwarding tables, setting the
MPLS, BGP and IGP connectivity on multiple equipments having various
roles, such as the customer edge (CE), provider edge (PE) and provider
core (PC) routers. In total, a minimum of about 30 parameters must be
added or changed in each device involved in the deployment of the VPN.
As an example, Figure 1 shows two leaf nodes that must be added, each in
its own position, to the configuration tree of a PE router.

Leaf node A is one of the configuration parameters that contributes to
the creation of the VPN routing and forwarding tables on the PEs of the
service provider. It cannot be added to the configuration of a PE router be-
fore the corresponding interface has been configured, which entails, among

6 Modelling the Temporal Aspects of Network Configurations

other things, the addition of leaf node B. Therefore, one can extract a tem-
poral constraint from this relation:

Node A Node B

node

name value child

ip_vrf_
forwarding vrf_name

node

name value child

interface interface_nb

Fig. 1. Two configuration nodes that must be added for deploying a VPN

Temporal Constraint 3 The node ip_vrf_forwarding cannot be
added to a configuration tree before node interface/number has been
set.

Similar dependencies can be extracted for many other pairs of nodes
among the 30 parameters involved, based on

• the semantic dependencies among the various components and parame-

ters of the configuration;
• the spatial distribution of the configuration components and parameters;
• the choices of topology and technologies (protocols, device roles and

types, vendor software, etc.).

These interdependencies imply a logically simultaneous configuration
of the respective parameters on all these equipments. Since these equip-
ments are spatially distributed and configuration operations can only be
performed sequentially, this goal can only be achieved by “synchronizing”
the configurations on different equipments by carefully setting up valida-
tion points during the configuration procedure.

The Netconf protocol [12] defines a simple mechanism for network de-
vice management. However, its transactional model, which includes a
Validation capability, is device-centered, and does not provide a mecha-
nism to ensure the consistence of the configuration that involves correlated
configuration steps on multiple devices.

Netconf provides two phases of a successful configuration transaction
during a service configuration procedure: preparation and commitment.

During preparation, the configurations are retrieved from the network de-
vices. When all the configurations have been retrieved, the edition starts at
service level. The validation at this stage ensures that the network configu-
ration is consistent before the proposed modifications required by the ser-
vice. To ensure the integrity of the configuration edition, the device con-
figurations are locked, edited and subsequently unlocked. When the
service edition has been successfully accomplished, the commitment
starts. The validation at this stage ensures that the network configuration
remains consistent after the respective modification of the network con-
figurations.

Therefore, taken as is, Netconf does not provide any indication as to
where and what to validate.

The previous examples have shown that many configuration operations
must be done in a specific sequence, others must be performed together
notwithstanding the order and others are mutually exclusive. Therefore, we
need a clear temporal representation of the operations to be performed,
which will describe all the temporal dependencies, indicate the possible
procedural order of operation for various groups of configuration parame-
ters on various devices and indicate the optimal temporal order and distri-
bution of these operations.

3 A Theoretical Model

In this section, we present a theoretical study of the temporal issues de-
scribed in section 2 by providing a theoretical model of the situation.

3.1 States and Transitions

Let S be a set of “states” representing a unit situation at a given time. In
the case of network configuration, states are labelled trees described in sec-
tion 2.

We call transition from a state s1 to a state s2 the structural modifications
that transform s1 into s2. Formally, transitions can be defined as a subset of
tuples T ⊆ S×S; there exists a transition from s1 to s2 if and only if (s1, s2) ∈
T. The tuple (S, T) forms a directed graph G that we call a transition dia-
gram.

In the case of the labelled trees we use for modelling device configura-
tions, structural modifications are limited to addition of a labelled node to
a leaf, or deletion of a leaf node in the tree. These modifications intuitively
refer to addition, deletion or modification of a parameter in the configura-

8 Modelling the Temporal Aspects of Network Configurations

tion of a device. Therefore, it is possible that no transition exists in either
way between two given states: this explains why T is only a subset of all
possible pairs of states.

A path is a finite sequence of states <s1, ..., sn> such that, for any si, si+1,
there exists a t ∈ T such that t = (si,si+1). The distance between two states,
noted ∆(s1,s2) is the length of the shortest directed path linking them.

The configuration problem of the previous section becomes in this sys-
tem the study of all paths that start from a given configuration, ss, and end
at a target configuration st. In addition, one might want to find the shortest
of such paths.

However, this system, taken as is, is too general for any practical use. In
particular, we must make sure that only solutions that progress towards the
target are possible.We hence use path constraints to limit our study to se-
quences of states that have a meaning and are not degenerate.

A solution is to remove all tuples (s1,s2) ∈ T such that ∆(s1,st) < ∆(s2, st).
This condition makes sure that the parameters that are actually added

are part of the solution, but not of the start state, and that parameters that
are removed are part of the start state, but not part of the solution. Any
other modification is out of the way of an acceptable solution. This dis-
tance restriction also has for effect of removing any loops in the paths.

3.2 Temporal Constraints

Now that G has been trimmed of any nonsensical states and paths, we
can add further restrictions by imposing on the remaining transitions the
semantic constraints related to the situation we are trying to model.

For example, in order to respect Temporal Constraint 3 in the case of the
VPN deployment exposed in section 2.2, we must remove all transitions
that lead to states where node A of Figure 1 is added while node B is not
present.

More semantic constraints can be added to further trim the state graph
from unwanted states and transitions. The remaining paths satisfy to all de-
fined constraints. Intuitively, these so-called acceptable paths can be seen
as a semantically desirable candidate solution for transforming the start
state into the target final state.

3.3 Structuring Operations

In the minimal VPN example described previously, containing only two
provider edge and two customer edge routers, the resulting state graph is

composed of over 15,000 states spanning a proportional number of paths.
These figures suggest that raw state graphs are far from being meaningful
and manageable by hand. However, it is possible to simplify further this
graph by studying patterns that can be found in it.

First, we can observe that the remaining graph G = (S’, T’), induces a
partial ordering m in S’ defined in the following way:

x m y y (x, y) ∈ T

The tuple L = (S, m) forms a bounded lattice [8]; the graph G can also be

seen as the Hasse diagram of L. This lattice of possible states and transi-
tions on states can then be studied for interesting properties. It is from
these properties that a global procedure describing legal transformations to
the configurations will be deduced.

Components

The first step is to recognize the presence of components, i.e. of closed
groups of interweaved actions. For instance, the parameters that contribute
to the creation of the VPN routing and forwarding tables on the PEs of the
service provider are bound by constraints 1 and 2. They impose that all
VRF actions on a router be done before passing on to another router, and
that all VRF configuring must be done before going on to another aspect of
the configuration.

Therefore, all actions of VRF configuration on a single router may be
done in any order, but must all be done before doing anything else. Such
set of n actions thus forms a component and appears as a Boolean n-
dimensional cube in the Hasse diagram of the lattice, as shown in Figure 2.
The left structure shows a component where three actions, α, β and γ, can
be performed in any order, resulting in 6 different paths. The right struc-
ture shows a similar Boolean cube for 4 different actions.

α

α α

β
γ

β β

γ α

γ

β

γ

Fig. 2. A closed set of interchangeable operations forms a component

10 Modelling the Temporal Aspects of Network Configurations

These components act as a “capsule” of operations that must be per-
formed atomically (i.e., that must not be mixed with any other operation).

P1

P2

P6

P7

P3

P4

P5

P1

P2

P3

P4

P5

P6

P7

Fig. 3. A complete state graph and its associated reduced state graph

We see that identifying components is an important tool to reduce the
complexity of the state graph. Each component has a unique start and end
point, and can therefore be assimilated to the single edge linking these two
points.

Identification of such components leads to the construction of a reduced
state graph where some edges no longer represent a single transition, but
rather whole sets of transitions (Boolean cubes) that can be performed in
arbitrary order. Figure 3 shows how a reduced state graph can be obtained
from a state graph. One can identify 2, 3 and 4-dimensional Boolean cubes
that are linked together. For example, points P1 and P2 are the endpoints
of a component: all states between P1 and P2 have no contact with any
other state. Since these cubes represent components made of swappable ac-
tions, they can be identified as such and be identified with their endpoints
to form a reduced state graph, as shown on the right part of the picture.

Milestones

The notion of component naturally leads to that of a milestone. A mile-
stone is an element x ∈ S such that for all y ∈ S, either x m y or y m x. For
example, in Figure 3, states P0, P6 and P7 are milestones.

Milestones can be thought of as unavoidable steps in the path from start
to solution, since all acceptable paths must eventually pass by those

points, in the order they appear. Therefore, milestones are good candidates
to divide the modelled process into natural macro-steps of which they are
the boundaries. In the case of Figure 3, two macro-steps can be identified:
the transition from the start state P0 to state P6, and the transition from P6
to P7. The word “natural” is used here, since these milestones emerge from

the set of temporal constraints imposed on the lattice. Different temporal
constraints generally lead to different milestones.

The concept of milestone can also be applied to any sublattice of L. In
particular, inside each macro-step, there can be local milestones that may
be viewedas natural sub-steps. The process can be recursively repeated and
yield a natural, hierarchical decomposition of the whole process into
nested natural blocks of swappable operations. Hence, states P1-P5 are
sub-milestones, or milestones of order 2.

3.4 Computing Components and Milestones

In order to be efficient, the structures defined in the previous section
must be able to be found easily and automatically by means of algorithms.
In this section, we provide algorithms for finding milestones and for iden-
tifying components, and give an overview of their complexity.

Finding Milestones

The first algorithm we present is aimed at finding milestones in a lattice.
Its principle is easy: for a state s, we can mark all states reachable from s
by a (depth-first or breadth-first) graph traversal starting at s. Similarly, the
set of states from which we can reach s can be computed and marked by a
traversal of the transpose graph (going “up” instead of “down”). The cho-
sen vertex is a milestone if and only if all vertices of the lattice are marked
at the end of the algorithm.

A brief analysis of this algorithm shows that determining whether a
given vertex is a milestone takes no more execution steps than the total
number n of vertices in the lattice. Therefore, for finding all milestones, it
suffices to repeat the algorithm starting at each vertex; the resulting com-
plexity is therefore in O(n2).

Finding Components

In the same way as the definition of milestones is linked to that of com-
ponents, the algorithm for finding components relies on the milestone-
finding algorithm. We proceed to the same reachability analysis than in the
previous section, except that instead of merely marking a vertex as visited,
we explicitly state from which original vertex it was reached. At the end of
the process, each node has a list of the nodes from which it is reachable, ei-
ther forwards or backwards. A vertex m is a milestone if all the vertices in
L have m in their list.

12 Modelling the Temporal Aspects of Network Configurations

Then, for each milestone m1 and its immediate milestone successor m2,
we consider the subgraph of all points between m1 and m2. This subgraph is
divided into a number of disjoint sublattices L1, L2, . . . , Ln. If one of these
Li has no milestone (which can be easily obtained by analysing the lists a
second time), then the sublattice Li ∩ {m1,m2} is a component.

As we can see, the overall complexity of this procedure depends on the
maximum level of nesting where milestones can be found. However, a
rough worst case can be calculated by supposing there can be no more
nesting levels than there are elements in L. At the first step, it takes O(n2)
operations to find the milestones of the first level. It again takes a time
proportional to the square of their size to find all sub-milestones found in
these sublattices. However, all nested sublattices found after removing the
first-order milestones are disjoint. Therefore, the total time needed to find
all second order sub-milestones is again in O(n2), where n is still the total
size of L. Since the nesting level of any component is at most n, the total
number of steps required is in O(n3).

4 Applications

The main advantage of the analysis of the lattice that arises from tempo-
ral constraints is that it induces a way of synthesising a protocol for the
implementation of a service. By placing validation points at milestones, we
ensure such checkpoints are optimally placed in semantically sound loca-
tions throughout the deployment process. Since these checkpoints reflect
the structure imposed by the temporal constraints, they also make optimal
points to roll back in case a failure occurs.

We have succeeded in analysing the deployment of a Virtual Private
Network for the basic case of four routers and identified six main mile-
stones. This is helpful in practice. For instance, in an existing tool called
NetconfMaker [1], the user must manually set validation point in order to
obtain a transactional model on top of the Netconf protocol. Due to the
large number of possible solution, this is not an easy task. However, by us-
ing the approach presented in this paper, it is possible to feed Net-
confMaker with scripts enabling it to proceed automatically to the discov-
ery of these validation points.

The granularity of the configuration components and validation opera-
tions depends on how tightly the semantic dependences are coupled within
the components and the complexity of these components. For instance, in
the case of the VPN example, the BGP component can be split into two
subcomponents: the first dealing with the creation of the BGP process and

the second with the neighbour information configuration. Another compo-
nent refers to the mutual redistribution of the routing information between
the IGP, the static routing used, or the connectivity between PE-CEs and
the BGP process. If we take into account the initial underlying sub-
services (establishing the connectivity between PE-CEs, between PE-PCs
and MLPS), we obtain six components, to which we add the initial con-
straints, obtained form the customer and the service provider choices.

One aspect of establishing validation points takes into account the hier-
archy existing among the configuration transactions. Establishing the net-
work-level validation points ensures the consistence and integrity of the
configuration transactions that involve multiple equipments, roles and con-
figuration parameters.

Moreover, the knowledge of milestones and components for a given
service allows for the creation of more structured Management Informa-
tion Bases (MIBs) and Policy Information Bases (PIBs), where the access
mechanisms to configuration parameters could be designed according to
the temporal dependencies discovered.

5 Conclusion

In this paper, we have shown by examples that configuration parameters
in network devices are subject to syntactical and semantic dependencies
which, when deploying a network service, may impose that some of the
configuration operations be done in a specific order. We also explained
how a mathematical framework using lattice theory can model these order-
ing constraints. The concepts of components and milestones, defined in
terms of paths in the lattice structure, help us to simplify the analysis of
possible solution paths and provide us with a sound criterion for dividing
the deployment of a service into natural macro-steps that serve as valida-
tion checkpoints.

In particular, a deeper study of the implementation of an MPLS VPN in
a simple case was found to be divided into six ordered main natural com-
ponents whose internal configuration operations are mutually swappable.
These results are in accordance with the intuitive vision of the deployment
of this service.

Further work on this concept can lead to a thorough study of the de-
ployment of a number of network services that could allow us to suggest
the location of optimal validation points.

14 Modelling the Temporal Aspects of Network Configurations

References

1. Cherkaoui O, Bétouret F, Deca R (2004) On the Transactional Issues of the
Netconf Protocol. Université du Québec à Montréal, unpublished report.

2. Case J, Fedor M, Schoffstall M, Davin J (1990) Simple Network Management
Protocol, STD 15. RFC 1157

3. Cisco SNMP Object Navigator. http://tools.cisco.com/Support/SNMP/
4. Clarke EM, Grumberg O, Peled DA (2000) Model Checking. MIT Press,

Cambridge
5. Crubézy M (2002) The Protégé Axiom Language and Toolset (“PAL”). Pro-

tégé Project, Stanford University http://protege.stanford.edu/
6. Daminaou N, Dulay N, Lupu E, Sloman M (2001) The Ponder policy Specifi-

cation Language. In Sloman M, Lobo J, Lupu EC. (eds) Policy’2001,
Springer, Berlin Heidelberg New York, pp 29–31

7. D’Antonio S, D’Arienzo M, Pescapè A, Ventre G (2004) An Architecture for
Automatic Configuration of Integrated Networks. In NOMS 2004

8. Davey BA, Priestley HA (1990) Introduction to Lattices and Order, Cam-
bridge University Press, Cambridge

9. Deca R, Cherkaoui O, Puche D (2004) A Validation Solution for Network
Configuration. In CNSR 2004

10. Deca R, Cherkaoui O, Puche D (2004) Configuration Model for Network
Management. In Gaiti D, Galmes S, Puigjaner R (eds) NetCon 2004

11. Draft Standard for Virtual Bridge Local Area Networks, IEEE Draft
P802.1Q/D1, May 16, 1997

12. Enns R (2004) Netconf Configuration Protocol. Internet draft, June 2004.
http://www.ietf.org/internet-drafts/draft-ietf-netconf-prot-03.txt

13. Hallé S, Deca R, Cherkaoui O, Villemaire R (2004) Automated Verification
of Service Configuration on Network Devices. In Vicente J, Hutchison D
(eds) MMNS 2004, Springer, Berlin Heidelberg New York, LNCS 3271, pp
176-188

14. Hallé S, Deca R, Cherkaoui O, Villemaire R, Puche D (2004) A Formal Vali-
dation Model for the Netconf Protocol. In Sahai, A, Wu F (eds) DSOM 2004,
Springer, Berlin Heidelberg New York, LNCS 3278, pp 147-158

15. Jackson D, Schechter I, Shlyakhter I (2000) Alcoa: the Alloy Constraint Ana-
lyzer, In ICSE 2000

16. Jackson D (2000) Alloy: A Lightweight Object Modelling Notation. Techni-
cal Report 797, MIT Laboratory for Computer Science

17. López de Vergara JE, Villagrá VE, Berrocal J (2002) Semantic Management:
advantages of using an ontology-based management information meta-model.
In HP-OVUA 2002

18. Noy NF (2001) Managing Multiple Ontologies in Protégé-2000. In Fifth In-
ternational Protégé-2000 Workshop

19. Object Constraint Language (OCL) http://www.omg.org/docs/ptc/03-10-
14.pdf

20. Rosen E, Rechter Y (1999) BGP/MPLS VPNs. RFC 2547

