
Flexible and Reliable Messaging using Runtime Monitoring

Sylvain Hallé
University of California

Santa Barbara, CA, USA
Email: shalle@acm.org

Roger Villemaire
Universit́e du Qúebecà Montŕeal

Montréal, Canada
Email: villemaire.roger@uqam.ca

Abstract—The asynchronous nature of communications in
message-based systems like service-oriented architectures in-
troduces two major issues: inability to detect lost and out-
of-sequence messages, and unrealizability of some messaging
protocols. We show that these problems are actually different
manifestations of the same phenomenon: communicating peers
ending up with divergent views of the message exchange
in which they are involved. We introduce the concept of
monitor-based messenger (MBM), which processes messages
locally through a runtime monitor enforcing a specific protocol
of interaction, and stamps them with a monitoring token.
We demonstrate that: 1) some unrealizable protocols become
realizable using MBMs; 2) MBMs offer protection against
unreliable messaging, and can decrease delivery time and
required queue size compared to strict messaging solutions.

Keywords-messaging; runtime monitoring; middleware;
asynchronous communications;

I. I NTRODUCTION

An increasing number of systems rely on message-based
exchanges for their means of communication: for example,
the Service-oriented Architecture (SOA) relies mostly on the
exchange of SOAP messages through standard communica-
tion protocols. In most cases, the communication scheme
employed is asynchronous, and allows a sent message to be
picked by the receiver at a later time from a local receiving
queue.

While the asynchronous mode simplifies communication
in situations where blocking is not necessary, it introduces
two new problems. The first one isunreliable messaging:
there is no way for the receiver to detect that a message
never made it to its destination, or that messages in the re-
ceiving queue were actually sent in a different order. Second,
two communicating peers following the same protocol can
deadlock or produce non-compliant traces of messages, even
in the case of perfect channels and infinite queue sizes: this
is calledunrealizability.

In Section II, we describe these seemingly separate issues
and observe that they are actually different manifestations
of the same phenomenon: communicating peers ending up
with divergent “views” of the message exchange in which

We gratefully acknowledge the financial support of the Natural Sciences
and Engineering Research Council of Canada (NSERC) and the Fonds
québécois de recherche sur la nature et les technologies (FQRNT).

they are involved. Consequently, we argue that keeping track
of the state of the conversation on each peer, using some
form of runtime monitoring, and sharing this information
to uncover any discrepancies, should help alleviate both of
these problems.

There already exists a large body of work on runtime
monitoring which can be put to good use. Aruntime monitor
eavesdrops the messages sent and received by a given peer,
and makes sure that the sequence of such messages follows
a set of constraints, called aprotocol. In Section III, we
introducemonitor-based messengers(MBMs), which locally
stamp each outbound message with a token depending on
their state. We first show how divergent views of the same
protocol can be detected by communicating peers; in some
cases, their views can even be made to re-converge to a
common state of the protocol, without the need for a cen-
tralized mechanism. This entails that there exist unrealizable
protocols which become realizable with MBMs.

An interesting side effect of this property is that desyn-
chronizations can also betolerated on purpose when re-
convergence of the protocol views is inevitable. In Section
IV, we show how this behaviour makes MBMs robust
against out-of-sequence messages, and can actually decrease
their waiting time in receiving queues. To illustrate our point,
we describe in Section V the MBMonitor, a messaging layer
in Java that implements these principles. Our results indicate
that, for arbitrarily shuffled message sequences, reliablemes-
saging based on runtime monitoring can decrease delivery
time and required queue size.

II. D IVERGENT V IEWS IN MESSAGE-BASED SYSTEMS

We take aprotocol as a specification of a global pattern
of sequences of messages. These sequences can be thought
as being taken by a global observer, writing down each
message as it issent. Protocols are common place in service
oriented architectures, where they are calledchoreographies
[1] or conversations[2]. They can, for example, represent
constraints on the way a service can be accessed.

A. Asynchronous Communications and Message Protocols

To formalize the notion of protocol, a formal model of
message-based communications is required. We concentrate
our study on bidirectional communications between exactly



1

2

4 5

6

3

A B: a®

A B: a®

A B: b®

B A: b®

B A: c®

Figure 1. A simple protocol specification

two peers. We view each peer as a system composed of
a finite-state control and a message queue. A transition
between two control statesq and q′ can be of two forms:
q→!mq′ indicates that some messagem must be sent (to the
only other peer), whileq→?mq′ indicates that the control
state can go fromq to q′ if m is the first message in the
receiving queue. In such a case, the message is removed
from the queue.

A channel systemL is a state transition system composed
of a set of such peers. The global state of a channel system
is the unique combination of each peer’s control state and
queue contents. Transitions from one global state to another
are the result of exactly one peer either sending or receiving
a message. This channel system represents asynchronous
communications, since the send and receive events in each
channel can be arbitrarily far apart in time.

A protocol is a description of admissible sequences of
send events in a channel system. It can be represented
by a special case of finite-state machine called a guarded
automaton. Each state of the automaton represents a state
in the protocol; a transition between two states represents
the sending of a message, and is augmented by logical
expressions, calledguards, which must evaluate to true for
the transition to be taken. For the sake of simplicity, we omit
guards in our analysis; their introduction is straightforward.
Figure 1 shows an example of a protocol specification
between two peers, A and B. Each transition is noted
X → Y : m, denoting that X sends messagem to Y.

Definition 1. A protocol specificationC is a tuple
〈S, s0, F, M, δ〉 whereS is a set of control states,s0 ∈ S is
the initial state,F ⊆ S is a set of final or accepting states,
M is a set of messages, andδ : S ×M → S is a transition
function.

The transitionδ is assumed to be a partial function; it
maps any pair of state and message to at most one control
state; we writeδ(s, m) = ∅ to indicate that messagem
cannot be sent or received from states. We can now define
what it means for a channel system to follow a protocol
specification:

Definition 2. A channel systemL follows a protocol speci-
fication C if every global trace ofL, trimmed of its receive
events, is a trace ofC.

Examples of message-based protocols abound in the lit-
erature for various contexts. The IBM Conversation Support
[3] provides a library of protocol templates for various
business activities. RosettaNet [4] defines 107 predefined
patterns of interaction between business partners, called
Partner Interface Processes (PIP); Figure 2 shows a portion
of an exchange between a buyer and a seller, following
such a PIP. Moreover, any specification expressed using,
for example, UML Message Sequence Charts [1] or web
service choreography languages such as WS-CDL [5] are
by definition finite, message-based protocols which can be
translated into the above form, and analyzed through the
techniques presented in this paper.

However, the interplay of asynchronous communications
and protocol specifications is the source of two issues, which
we now describe.

B. Unrealizable Protocols

Because of the nature of asynchronous communications,
it is possible that two peers end up in deadlock, or generate
a global message trace outside the specification. This can be
the case, even when both peers individually follow the same
protocol specification.

Figure 1 shows an example of such a protocol. Both
peers A and B have the choice of starting the exchange of
messages. However, if each peer makes this choice without
knowledge of the other’s decision, the following situation
can occur:

1) B sends messageb to A
2) Beforeb reaches A, A sendsa to B
3) The messages cross over the communication link, and

eventually reach their destination, with A mistakenly
believing it is initiating the conversation

4) B wrongly assumes thea it receives is in response to
b, and replies withc

The global trace of messages sent,bac, is not part of the
protocol and constitutes a violation. However, the problem
does not lie in wrongdoing from any of the peers: neither
one took an illegal transition, given their local state and
the content of their queues. The problem rather stems
from the protocol itself, which provokes such unexpected
behaviours when asynchronous communications are used.
A protocol spared of these side effects exhibits a property
called realizability:

Definition 3. A protocol specificationC is realizable if the
possible interactions of each peer produces exactly all the
send traces ofC.

One can see that the protocol in Figure 1 is not realizable.
More precisely:



5

6 7

PIP0A1 PIP3B12

e (DT > 2h)

2

4

3

1

B S: PoReqAct®

S B: ReceiptAck®

S B: PoConAct®

B S: ReceiptAck®

B S: NOK®

Figure 2. A portion of a Partner Interface Process from RosettaNet

Observation 1. The protocol in Figure 1 isunrealizable:
when peer A reaches state and peer B reaches state 3, an
invalid global sequence of messages will be produced.

A concrete example of an unrealizable protocol is pro-
vided by [6]; by studying the RosettaNet PIP shown in
Figure 2, it shows that a failure to deliver a valid message
within its time constraint can cause mutually conflicting
views of an interaction. The problem arises when the seller
sends aNOK message in time, but thatNOK is either lost
or reaches the seller after the two-hour limit. In such a case,
buyer and seller will continue their exchange of messages,
in two different contexts.

Current solutions basically amount to statically analyze
the protocol to determine if it is realizable. In [7], an
algorithm is presented to generate from a protocol local
patterns of interactions for each peer; if the protocol is
realizable (orlocally enforceable), the composition of these
patterns will produce exactly the desired behaviours.

However, there currently does not exist necessary and
sufficient conditions for a protocol to be realizable; it is
not even known whether the general problem is decidable.
[8] provides a set of sufficient conditions for realizability;
these conditions can be statically analyzed on the protocol;
yet, the authors remark that there exist real-world protocols
which fail these realizability conditions.

C. Unreliable Messaging

Since they impose constraints on the sequencing of mes-
sages, protocols are also sensitive to imperfect communica-
tions, where messages can be received out of sequence or
lost. This can be due to different messages taking different
paths in the network, variable network latency or process-
ing time in some of the nodes along the path, a severed

1

2

4 5

76

3

A B: a®

A B: a®

A B: b®

A B: b®

B A: d® B A: c®

Figure 3. A protocol sensitive to message shuffling

communication link or even server downtime.
Figure 2 can be seen as a protocol sensitive to unreliable

messaging, since various message transmission times can
take the receiver to different next states. As an additional
example, Figure 3 shows how the sequence of messagesab,
sent through an unreliable link, can be shuffled and arrive
at its destination as the sequenceba, impacting B’s reply.

Hence, unreliable messaging will have the same con-
sequence as for realizability: messages received out of
sequence can take two peers on different states of the same
protocol.

Observation 2. The protocol in Figure 3 is sensitive tounre-
liable messaging: if messages are received out of sequence,
there exists a message trace which can take peer A to state
4 and peer B to state 5.

There exist approaches which, although not directly re-
lated to the present problem, bear some similarities.Trans-
action processing systems, most prominent in databases,
focus on the atomicity of a sequence of operations, but
not necessarily to the order in which they are performed;
two- and n-phase commit protocols require a centralized
coordinator and additional messages in order to do so.Vir-
tual synchrony[9] is used to synchronize state information
among distributed members of a group; however, it focuses
on broadcast messages and not one-to-one communications.

In [10], various architectures are enumerated to cope with
unreliable messaging. For example, the application itself
can take care of reliable messaging, awaiting confirmation
of reception and retransmitting messages through various
means. Another solution is to add a messaging layer between
the application and the communication link; this so-called
message-orientedmiddlewareinterfaces with the application
and transparently ensures that messages are correctly relayed
to their intended receiver.

For example, to communicate through the WS-
ReliableMessaging (WS-RM) protocol [11], the sender first
opens asequenceon the receiving end; this sequence is
acknowledged by the receiver. The sender can then transmit
messages to the receiver, adding to each SOAP message
an additional WS-ReliableMessaging header. This header



contains a sequence number that increments by 1 for every
new message sent. This operation ensures that any lost
messages are detected and can be retransmitted through
appropriate acknowledgements. In addition, a sequence can
be opened with the property that the message ordering has
to be respected; guided by the unique sequence numbers
stamped with each message, the receiver can temporarily
queue out of sequence inputs, and relay to the application
(albeit with a potential delay) the same sequence that was
sent. There exist a variety of other reliable messaging
middleware and protocols, mostly using similar principles.
Some of them only take care of detecting lost messages;
this is the case of HTTPR [12], an extension of the standard
HTTP protocol which allows additional payload information
to ensure that each message is either delivered exactly
once, or correctly reported as missing. Some of them can
provide guarantees on both ordering and loss, such as IBM
WebSphere MQ1 or Microsoft Message Queuing.2

Reliable messaging has also spawned a fair amount of aca-
demic work. Systems based onharmonized messaging[13]
and HCM3 [14] require a central coordinator for all peers
to ensure proper delivery of messages. Other projects on
reliable protocols guarantee message delivery by periodically
retransmitting messages for which no acknowledgement has
been received [15]–[17]; inversely, some others guarantee
that all messages are received in the exact order they are
sent [18].

III. M ONITOR-BASED MESSAGING

The key point in the observations we previously made
is that both messaging issues are actually a consequence of
the same phenomenon: the possibility for two peers to reach
divergent states in their protocol. This section centers onthe
idea of using a monitor to stamp outgoing messages with
tokens based on the state of some protocol. It distinguishes
itself from previous work in that: 1) no central coordinator
is required; 2) all message sequences preserve the property
of being protocol compliant, which in many cases is a
looser constraint than exact ordering assumed by existing
approaches.

Definition 4. A monitor is a tupleA = 〈Q, q0, δ〉 where:Q
is a set ofstates; q0 ∈ Q is the initial state;δ : Q × M →
Q is the transition orupdatefunction from a state and a
message to another state.

Formally, a monitor is a special case of finite-state au-
tomaton. The monitor starts in its initial stateq0; then,
for each messagem that is monitored, the update function
δ(q, m) is called to take the monitor into its updated state
q′. As such, a monitor only follows the conversation without
doing anything about it; it is then up to its user to attach a

1http://www-3.ibm.com/software/mqseries/messaging
2http://www.microsoft.com/msmq

meaning to its different states. A first application of such a
model is to detect non-compliance of a messaging peer to
a protocol specification. To this end, it suffices to define a
functionf : Q → O returning a value from a set of possible
“outcomes”O for each stateq ∈ Q of the monitor. One of
these outcomes, labelled⊥ (meaning “fail”), indicates that
the protocol has been violated; another outcome, labelled>
(meaning “OK”), indicates that the protocol has not (yet)
been violated. This is what was done in [19].

A. Monitor-Based Messenger

In general, a runtime monitor is placed at the interface
between each communicating peer and the outside world,
similarly to messaging middleware. It is therefore ideally
located to perform auxiliary functions in addition to its en-
forcement purpose: its knowledge of the interaction protocol
can be put to use to help protocol-based reliable messaging
between communicating peers.

Rather than simply associating an outcome to each mon-
itor state, we define a tokenizing functionτ : Q → T ,
which associates to a monitor stateq ∈ Q a symbolt ∈ T

called amonitor token. We then define the token outcome
function f : T × T → O as a mapping betweenpairs
of monitor tokens and some outcome. Astampingfunction
σ : M × T → M is a function that takes a message and a
monitor token and returns a new message with the stamp.
The stamp can be read usinĝσ : M → T , and can be
removed usingσ′ : M → M .

In the following, for M a set of messages, we denote
by M∗ the set of finite sequences of messages from the
alphabetM ; such a sequencem0, m1, . . . , mn is writtenm.
Given a messagem ∈ M , m · m (resp.m · m) designates
the concatenation ofm at the end (resp. beginning) ofm;
m1 designates the sequence of messagesm1, m2, . . . , mn.

We writem ∈ m to indicate that there is ai ≥ 0 such that
m = mi; the notationm − m designates the sequence of
messagesm′ identical tom, but where the first occurrence of
m has been removed. Similarly, form′ = mm′′, we define
recursivelym−m′ = (m−m)−m′′. Such notation allows
m to be also manipulated as a multiset of elements inM .

Equipped with these tokenizing and stamping primitives,
we can build amonitor-based messenger(MBM):

Definition 5. An MBM is a tuple〈A, S, τ, f, ∆〉 where:A =
〈Q, q0, δ〉 is a runtime monitor,S ⊆ Q × M∗ × M∗ × M∗

is a set of states,τ is a tokenizing function,f is a token
outcome function, and∆ is a transition function.

A state of the messenger is a tuple(s, qin, qout, win
′) ∈

Q, wheres is a monitor state,qin is an incoming message
queue,qout is an outgoing message queue. In addition,win

is a multi-set of messages received by the messenger, but not
yet relayed to the application layer. The transition relation
is then defined as follows:



Definition 6. The transition function∆ : Q × M ∪ {ε} ×
{in, out} → Q is defined as follows:(s′, qin

′, qout
′, win

′) ∈
∆((s, qin, qout, win

′), m, a) if and only if:
1) m = ε, win

′ = win, and either

a) qin
′ = qin

1, qout
′ = qout

′, s′ = s, or
b) qout

′ = qout
1, qin

′ = qin
′, s′ = s

2) m 6= ε, s′ = s, qin
′ = qin and either

a) a = out, qout
′ = qout · σ(m, τ(s′)), win

′ = win,
s′ ∈ δ(s, m) and f(σ̂(m), τ̂ (win)) = >

b) a = in, win
′ = win ∪ {m}, qout

′ = qout or

3) m = ε, there existsm′ ∈ wout such that s′ ∈
δ(s, m′), qout

′ = qout · σ
′(m′), win

′ = win − {m′},
o(σ̂(m′), s′) = >

Informally, the transition relation works as follows. The
first message in the incoming or outgoing queue can be
removed at any time (cases 1a and 1b). If a message is
to be sent, the messenger checks whether from its current
monitor state, it represents a valid transition; if it is thecase,
the monitor state is updated, the message is stamped with a
monitor token for that new state, and appended to the output
queue —the other queues and sets remain unchanged (case
2a). If a message is to be received, it is simply put in the
waiting multi-set of incoming messages (case 2b).

Finally, for any messagem′ in the waiting multi-set, if
consumingm′ results in a valid transition to a states′ in the
runtime monitor, and thats′ is compatible with the monitor
token in m′, then m′ is removed from the waiting multi-
set and appended to the incoming message queue with its
monitor token removed (case 3).

This model is a generalization of the classical runtime
monitor. Indeed, defining the stamping function asσ(m) =
m for all m, the tokenizing function asτ(s) = ε the empty
string for all statess, and the outcome functionf(s, s′) =
> if and only if s = s′, the monitor-based messenger’s
behaviour reverts to a classical runtime monitor as defined
in [19].

B. Consequences on Realizability

Obviously, a monitor-based messenger can hence perform
runtime monitoring, by raising an error when a message
received or to be sent is forbidden in the current state of
the protocol. However, by redefining the monitor tokens
and outcome functions, such a messenger can accomplish
an additional function.

Definition 7. DefineT = Q and τ(q) = q, i.e. the set of
monitor tokens is exactly the set of its states. Define the
outcome functionf1(q, q

′) = > (meaning “OK”) if and
only if q′ is reachable fromq in C, and⊥ (meaning “fail”)
otherwise.

Following this definition, each peer stamps its outgoing
messages with the current monitor state. By doing so, each
peer can effectively “tell” its partner what state of the

conversation it believes is the global state of the protocol.
A problem arises whenever two peers fork and follow
different paths in the protocol. Since communications are
asynchronous, this can be detected as soon as one of the
peers realizes that, from its current state, it could never catch
up with the state of its partner. This is equivalent to the
outcome function returning⊥ for a pair of states.

Stamping messages with additional information to prevent
desynchronizations of some sort was suggested by [20],
where a timestamp from the sender’s local clock was used
to keep its recipient’s clock synchronized. The goal of
this approach was to provide a total ordering of events in
the absence of a global timekeeping mechanism. However,
the approach assumes reliable messaging and bounds on
message delivery time; moreover, it requires that additional
synchronization messages be sent to all peers involved in a
communication. Our approach rather takes protocol states,
instead of time, as thepartial ordering that is used as a
stamp.

Going back to the unrealizable protocol in Figure 1, we
show how unrealizable sequences can be detected. Suppose
each peer mistakenly believes it initiates the conversation.
Then A sendsa to B, while B sendsb to A, as previously.
However, the messagea is now stamped with the monitor
token 2, while the messageb is stamped with the monitor
token 3. Since state 2 is not reachable from 3 (and vice
versa), thenf1(2, 3) = f1(3, 2) = ⊥, and both peers will
realize, upon receivingb (respectivelya) that their views of
the protocol are divergent.

If we assume perfect communication between the peers,
we can show that this messenger can prevent global traces
violating the protocol from stretching too long. Once two
peers diverge on their view of a protocol, the erroneous
sequence of messages they each send ends as soon as
they receive a new message from their partner. This is the
best that can be done without a central synchronization
mechanism, since the information piggybacks the normal
flow of messages.

We show that MBMs are strictly “safer” messengers than
traditional FIFO queues, in that some unrealizable protocols
become realizable with MBMs:

Theorem 1. Let PFIFO be the set of realizable protocols
with classical, perfect FIFO messengers, andPMBM be
the set of protocols realizable with perfect MBMs. Then
PFIFO ⊂ PMBM.

Proof: If a protocol is realizable with FIFO messengers,
it is trivially realizable by an MBM with an “empty”
monitor with a single states; the outcome function becomes
f(s, s) = >, and the messenger always dispatches messages
as soon as they are received.

To show that the inclusion is strict, we must exhibit a
protocolC unrealizable with FIFO messengers and realizable
with MBMs. Figure 1 shows such a witness. We already



1

2 3

4

5

A B: a®

A B: a®

A B: b®

A B: b®

B A: d®

1

2 3

4

5

A B: a®

A B: c®

A B: b®

A B: b®

B A: d®

Figure 4. Two simple protocol specifications

know thatC is unrealizable with FIFO messengers. For every
trace inC, there exists a global run where A and B behave
synchronously: a message sent by A is received by B in
the next step, and no messages cross over the wire. In such
a case, each of their MBM will follow the same sequence
of states in their runtime monitor, and the trace is hence
realized.

Conversely, we must show that no global trace outside
C can be produced. The only possible such trace isabc;
however, forc to be transmitted by peer B, its MBM must
first be in state 3 and receivea from peer A. In addition, the
monitor tokent on messagea must be such thatf1(3, t) =
>. By definition of f1, this is only possible ift = 5 or
t = 6. We excludet = 6, since it depends on B sendingc,
which has not happened yet. Thereforet = 5. Hence, when
sendinga, peer A was in state 3: it had already received B’s
message, and therefore the global trace isbac.

An important element is that for a protocol to be real-
izable, it must be possible to produce every global trace
of messages. Our MBMs allow every trace of the witness
protocol to be possibly realized. This is different from
approaches that merely trim a protocol to a realizable subset
of its behaviours (for example, the branch 1-2-4) to ensure
no undesirable trace can ever be produced.

IV. M ANAGING DESYNCHRONIZATIONS

MBMs hence provide a safer context for enacting messag-
ing protocols. However, up to now, the only possible way for
two peers to continue a conversation is to follow the same
sequence of visited states in their monitor. If a divergence
is detected, it is assumed that the conversation cannot be
extended by sending new messages. However, consider the
protocol in the left part of Figure 4. Again, the situation
where both A and B believe they initiate the exchange will
be detected, with A reaching state 2, B reaching state 3, and
f1(2, 3) = f1(3, 2) = ⊥. Yet, in this case, this conflicting
view has no harmful consequence, since bothab andba are
valid sequences which eventually converge back to state 4.

A. MBMs with History

It is therefore desirable to relax the definition of the
outcome functionf1, to allow divergent paths in the monitor

to be taken, as long as they eventually “amount to the
same thing”. To this end, from a protocol specificationC =
〈S, s0, F, M, δC〉, let us define a monitorAC = 〈Q, q0, δAC

〉
where the set of states isQ ⊆ S∗. Therefore, the states of
A are (finite) sequences of states ofC; let q0 = s0. For
a messagem, a state ofC s′ ∈ S and two states ofA
q = s1, . . . sk and q′, we have thatq′ ∈ δAC

(q, m) if and
only if q′ = q · m ands′ = δC(sk, m).

The monitorAC is therefore a runtime monitor of the
protocolC, but such that each state keeps track of the history
of previously visited states. For two tracesq = s1, . . . sk

and q′ = s′1, . . . s
′
`, we define the lastsynchronization

point as the highestn ≥ 0 such thatsn = s′n. Define
r = sn, sn+1, . . . , sk and r′ = s′n, s′n+1, . . . , s

′
` the desyn-

chronized suffixes of each token.
Given a sequence of statess1, . . . , sn, a possible message

trace is a sequence of messagesm1, . . . , mn−1 such that
for every 1 ≤ i ≤ n − 1, δ(si, mi) = si+1. Intuitively, it
represents a trace of messages that can be possibly produced
by following a path in the automaton.

Definition 8. Let C = 〈S, s0, F, M, δ〉. For statess, s′ ∈ S

and a sequence of messagesm ∈ M∗, the relation;⊆
S×M∗×S, noteds ;m s′ is defined recursively as follows:

• for ε the empty sequence,s ;ε s′ if s = s′, ands 6;ε s′

if s 6= s′

• if no messagem is such thatm ∈ m andδ(s, m) = s′′

for somes′′ ∈ S, thens 6;m s′, otherwise
• for every messagem and every states′′ ∈ S such that

m ∈ m and δ(s, m) = s′′, we have thats′′ ;m−m s′

In other words, any scrambling of a trace betweens and
s′ can only be reconstructed in ways that reachs′. We are
now ready to define the new outcome function:

Definition 9. Let q = s1, . . . sk and q′ = s′1, . . . s
′
` be two

monitor tokens, andr, r′ be their respective desynchronized
suffixes. For a possible trace of messagesm for r and a
possible trace of messagesm′ for r′, definem̂ = m − m′

and m̂′ = m′ − m. We havef2(q, q
′) = > if and only if

there exists a states such thatsk ;m̂ s and s′` ;m̂′ s,
f2(q, q

′) = ⊥ if no paths fromq and q′ can ever reach the
same states, andf2(q, q

′) = i otherwise.

Informally, the outcome functionf2 checks whether, for
two peer’s divergent states since they last agreed on the
global conversation, there exists a way for both peers to
converge back to a common state with the messages they
each need to process. If yes, the message is delivered;
on the contrary, if the tokens are in two branches of the
protocol that can never be reconciled, the function returns
⊥. Otherwise, the function returns a new value,i (meaning
“wait”), which has for effect of keeping the message in an
internal queue for later processing.

For example, in Figure 4 (left), if peer A receives message
b, stamped with monitor token (1,3), while it is in state



1

2

4 5

6

3

A B: a®

A B: c®

A B: d®

A B: a®

A B: b®

B A: b®

B A: c®

Figure 5. A fixable protocol specification

(1,2), computing the outcomef2((1, 3), (1, 2)) evaluates that
B can processa and reach state (1,3,4), while A can process
b and reach state (1,2,4); both peers are in sync again, and
therefore the outcome function returns>. On the contrary, in
Figure 4 (right), if peer A receives messageb, stamped with
monitor token (1,3), while it is in state (1,2), computing the
outcomef2((1, 3), (1, 2)) evaluates that A can processb and
reach state (1,3,4), but B cannot reach state protocol state
4 with a as its message to be processed, and therefore the
outcome function returns⊥, thereby producing the desired
behaviour.

Moreover, when a desynchronization is detected between
two peers, the MBM automatically forbids any behaviour
that will prevent the peers from converging back to a
common state. For example, in Figure 5, if A (resp. B)
reaches states 2 (resp. 3), the MBM allows it to consume
the received message and reach state 4 (resp. 5). Once there,
the MBM allowsc to be sent by A, which will reconcile A
and B to state 6; however, the outcome function forbidsd
from being sent, as in B’s branch,d does not lead to state
6. Hence, the MBM not only detects desynchronizations, it
also “repairs” them whenever possible.

B. Consequences on Unreliable Messaging

This new definition of the outcome function has an inter-
esting side effect. By allowing temporary desynchronizations
between two peers, the MBM also becomes robust against
desynchronizations caused by unreliable messaging. Indeed,
f2 serves messages to the application layer, even if it
sends the peers on different paths, but ensures they will re-
converge to the same state at some point in the future.

In all related approaches surveyed earlier, no high-level
messaging protocol can be specified; therefore, it is impos-
sible to take advantage of the knowledge of the protocol
to relax the constraints on the delivery of messages. Yet,
Figure 6 shows a situation where such a behaviour would
be appropriate. Consider a protocol where A can send to
B either the sequenceabd or the sequencebad. Receiving
the sequencebda is obviously a violation of the protocol;
however, the receiver can assume that the sequence was
scrambled by the transmission.

Strict ordering Protocol ordering

...b b b...b1

d d...b d ...d2

a aa a...b d ...d3

...b d...d4

d...5

Figure 6. Processing of a scrambled message sequence by messaging
components ensuring strict (left) and protocol-compliant(right) ordering.

Using an MBM, the receiver will be able to relay a
protocol-compliant sequence to its application layer, as
shown in the right part of Figure 6. Messageb is first
received, and relayed immediately to the application layer;
thend is received; the outcome functionf2 returnsi and the
message is placed in the MBM’s waiting queue. Whena is
received, however, it can be relayed, which in turn unlocks
d. By comparison, the left part of Figure 6 shows how a
receiver enforcing a strict ordering of the messages operates
on the same scrambled sequence.

In average, each message spends 2 time steps waiting
in the queue, compared to only 0.67 time steps with the
MBM. The key point is that the definition of the outcome
functionf2 allows messages to be deliveredfaster(i.e. with
lower queueing time) than traditional messaging such as
WS-RM, taking into account the protocol specification to
deliver messages using an alternate, yet protocol-compliant,
sequence. This can be formalized as follows:

Theorem 2. Let C be a protocol specification, andm be
a sequence of messages, which ends into a states of the
specification. For any permutationm′ of m received by an
MBM R, there exists a permutationm′′ such that:m′′ is
a path in C, m′′ ends in s, and m′′ is delivered to the
application layer.

Proof: Let m1, m2, . . . be the sequence of messages of
m′. Ensuring that the sequence delivered to the application
layer is a sequence ofC is trivial, sinceR does not deliver a
message unless it can extend the existing conversation with
a valid transition. What remains to be shown is that the
situation where some messages are “stuck” in the waiting
queue at the end of the trace, or where the conversation
ends in a different state thans, never happens. Suppose
either does. Then there exists a prefixm′′

p of the sequence
of messages delivered to the application layer, leading into
some control states′, such thatm′′

p is a path inC, but
either no permutation ofm′ − m′′

p can be completed into
a path inC, or some path does not lead tos; in other words,
s′ 6;m′−m′′

p
s. This contradicts Definition 8, which should

have preventedR from reaching that point.



The previous client therefore ensures that any received
sequence will be delivered as a protocol-compliant sequence,
provided that messages are shuffled but not lost. The speed-
up result follows immediately from the fact that the exact-
ordering sequences are a subset of the protocol-compliant
sequences.

As a side remark, we shall stress that the messenger
delivers sequences of messages that are protocol-preserving;
they preserve the semantics of a message exchange only as
far as the underlying protocol specification does. The case
where two sequences of messagesab andba are both valid,
but meandifferent things, orperform different actions and
therefore should not be confused, is only partially coveredby
our approach. In such a case, a sound protocol specification
should have the pathsab and ba reach two distinct states,
indicating that two different outcomes result from these
sequences.

V. I MPLEMENTATION AND RESULTS

To illustrate our point, we implemented the MBM as a
middleware tool in Java. The MBMessenger is a simple
object that simulates a communication channel. It offers two
methods,put() andget(), to respectively send an XML
message to and receive from an arbitrary communication
channel.

When theMBMessenger is instantiated, a protocol au-
tomaton can be specified. Thereafter, when a message is
required to be sent throughput(), the messenger sends it
as soon as the protocol allows it, stamping it with its current
monitor token. When new messages are requested through
get(), the messenger empties its communication channel
into its waiting multi-set, and then processes each message
according to our approach.

A. Methodology

We tested the performance of the MBMessenger by
performing a series of experiments. A sender A sends a
sequence of messages generated through a random walk
in some protocol specificationC. To simulate imperfect
communication, messages are then randomly shuffled before
reaching a receiver B, where they are read one by one.
Two cases are then considered. In the first case, A and B
communicate through an MBM where protocol monitoring
is disabled: the sent messages are stamped with a sequential
number, and the received messages are possibly delayed so
that they are delivered in the exact order they were sent.
This effectively simulates WS-RM’s operation when strict
ordering is imposed and no messages are lost. In the second
case, A and B use the MBM described in this paper: each
message is stamped with a monitor token.

We assume that in each discrete time step, at most one
message can be added to the messenger, and at most one
message can be consumed by the receiver’s application layer.
In each of these cases, we measured the average waiting time

(in time steps) of each message in the messenger’s waiting
queue, and the maximum size reached by the messenger’s
waiting queue during the processing of each trace. In order
for results to be comparable, the sender in each case gen-
erated the same set of traces, and each individual trace was
shuffled in the same way in the two scenarios. Therefore,
each receiver dealt with the same shuffled sequences of
messages, stamped according to either messaging method.

B. Results and Discussion

We then performed these tests, using forC the protocol
for each of two scenarios.

The first one is the Internet Open Trading Protocol (IOTP)
[21] which supports commerce on the Internet by providing
a familiar trading model and global interoperability. Multiple
transactions can be conducted in parallel; however, the
IOTP specification lists several dependencies for messages
belonging to the same transaction. For example:

1) If the consumer starts the exchange, the first message
must be one of either Inquiry, Ping, Authentication

2) The authentication request can only be sent once
3) Once a transaction has been completed, a Cancel

message can no longer be sent
4) Two payments sequences cannot overlap, i.e. once a

payment request has been issued, the payment must
be confirmed before a new payment request be issued

The second scenario is the NetConf protocol [22] which
defines a simple mechanism for sending and receiving con-
figuration information for network devices such as routers
and switches. NetConf uses XML messages to encapsulate
configuration commands and responses and is supported by
a wide range of devices. It is possible, for example, to
configure a Virtual Private Network (VPN) through the use
of XML-PI. Unless otherwise mentioned in Cisco’s docu-
mentation [23], these commands are atomic and independent
of each other. However, the documentation elicits sequential
dependencies between some of them:

1) Commands rd, route-target and
ip vrf forwarding must be entered in the
VRF configuration mode, afterip vrf

2) The remaining commands must be entered in the BGP
configuration mode, afterrouter bgp

3) The commands route-target and
ip vrf forwarding must be applied to a
table already created by the commandrd

4) The commandneighbor update-source must
be applied to an address already included in the routing
table with the commandneighbor remote-as

5) The commands neighbor activate and
neighbor send-community must called
after both neighbor remote-as and
neighbor update-source

Table I shows that, for the IOTP scenario, the average
waiting time per message is decreased by 52% using MBMs



Strict ordering Protocol ordering
Waiting time 1.42 0.69
Queue size 5.58 2.49

NetConf protocol

Strict ordering Protocol ordering
Waiting time 0.42 0.38
Queue size 1.81 1.77

IOTP protocol

Table I
AVERAGE WAITING TIME PER MESSAGE AND AVERAGE QUEUE SIZE FOR

TWO SCENARIOS.

with protocol ordering. This confirms that providing more
flexible conditions on message delivery can reduce the
delaying of messages required to preserve an acceptable
ordering. Consequently, since messages spend less time in
the waiting queue, the average size reached by that queue
during an execution is also decreased, by approximately
49%.

However, for the NetConf scenario, waiting time is de-
creased by 10%, and queue size by 2% only. This can
be explained by the fact that in the VPN configuration
routine, only two messages can be served first (the two mode
commands); as long as either of these message has not been
received, the messenger must delay all the others; this does
not leave room for the MBMessenger to improve over a
strict ordering solution.

In addition, the MBMessenger can be made fully compat-
ible with WS-ReliableMessaging. WS-ReliableMessaging
allows for undefined extra elements to be added to a SOAP
header. These elements are simply ignored by standard im-
plementations of WS-RM, but MBM-based implementations
can take advantage of this additional information to improve
over message transmission. This WS-RM “compatibility
mode” also accounts for lost messages: these messages can
be detected, and retransmissions can be asked, by using the
operations provided by WS-RM.

VI. CONCLUSION

In this paper, we have shown how runtime monitors
monitoring constraints on the sequence of messages ex-
changed by two peers can be used to alleviate two issues
related to asynchronous messaging. By stamping messages
with a suitably defined monitor token, some desynchro-
nizations between communicating peers can be detected
before non-compliant messages are exchanged. This has
for effect that some unrealizable protocols can become
realizable with MBMs. Moreover, MBMs are at the same
time protected against some effects of unreliable messaging
and can perform reliable messaging that is flexible, i.e.
where delivering a protocol-compliant sequence is sufficient,
even if its order is not the exact sending sequence. We have

shown experimentally that for arbitrarily shuffled message
sequences, reliable messaging based on runtime monitoring
can decrease delivery time and required queue size compared
to strict messaging. These results, however, heavily depend
on the underlying protocol. MBMs appear to be best suited
for protocols situated midway between those imposing a
unique order for their messages, and others where ordering
is irrelevant. The results obtained empirically indicate that
this principle could be furthered in future work; this includes
studying a symbolic representation of the protocol automa-
ton, extending the communication to request-response and
multi-party protocols, as well as including “data-aware”
protocol constraints.

REFERENCES

[1] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-
based analysis of obligations in web service choreography,”
in AICT/ICIW. IEEE Computer Society, 2006, p. 149.

[2] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation specifi-
cation: a new approach to design and analysis of e-service
composition,” inWWW, 2003, pp. 403–410.

[3] “IBM conversation support project,” 2002,
http://www.research.ibm.com/convsupport. [Online]. Avail-
able: http://www.research.ibm.com/convsupport

[4] “RosettaNet implementation framework, overview: seg-
ments, clusters and PIPs, version v02.06.00,” January 2009,
http://portal.rosettanet.org.

[5] N. Kavantzas, “Web service choreography de-
scription language 1.0,” 2004. [Online]. Available:
http://www.w3.org/TR/ws-cdl-10/

[6] C. Molina-Jiménez, S. K. Shrivastava, and N. Cook, “Imple-
menting business conversations with consistency guarantees
using message-oriented middleware,” inEDOC. IEEE
Computer Society, 2007, pp. 51–62.

[7] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and
G. Decker, “Service interaction modeling: Bridging global
and local views,” inEDOC. IEEE Computer Society, 2006,
pp. 45–55.

[8] X. Fu, T. Bultan, and J. Su, “Synchronizability of conver-
sations among web services,”IEEE Trans. Software Eng.,
vol. 31, no. 12, pp. 1042–1055, 2005.

[9] K. P. Birman and T. A. Joseph, “Exploiting virtual synchrony
in distributed systems,”SIGOPS Oper. Syst. Rev., vol. 21,
no. 5, pp. 123–138, 1987.

[10] S. Tai, T. A. Mikalsen, and I. Rouvellou, “Using message-
oriented middleware for reliable web services messaging,”in
WES, ser. Lecture Notes in Computer Science, C. Bussler,
D. Fensel, M. E. Orlowska, and J. Yang, Eds., vol. 3095.
Springer, 2003, pp. 89–104.



[11] R. Bilorusets, D. Box, L. F. Cabrera, D. Davis,
D. Ferguson, C. Ferris, T. Freund, M. A. Hondo,
J. Ibbotson, L. Jin, C. Kaler, D. Langworthy, A. Lewis,
R. Limprecht, S. Lucco, D. Mullen, A. Nadalin,
M. Nottingham, D. Orchard, J. Roots, S. Samdarshi,
J. Shewchuk, and T. Storey, “Web services reliable messaging
protocol (WS-ReliableMessaging),” February 2005. [On-
line]. Available: http://specs.xmlsoap.org/ws/2005/02/rm/ws-
reliablemessaging.pdf

[12] A. Banks, J. Challenger, P. Clarke, D. Davis, R. P. King,
K. Witting, A. Donoho, T. Holloway, J. Ibbotson, and S. Todd,
“HTTPR specification,” Tech. Rep., April 2002. [Online].
Available: http://www.ibm.com/developerworks/library/ws-
httprspec/

[13] S. W. Sadiq, M. E. Orlowska, W. Sadiq, and K. A. Schulz,
“Facilitating business process management with harmonized
messaging,” inICEIS (1), 2004, pp. 30–36.

[14] P. Huifang, Z. Xingshe, Y. Zhiyi, and G. Jianhua, “A flexible
hybrid communication model based messaging middleware,”
in ISADS. IEEE Computer Society, April 2005, pp. 289–294.

[15] A. Erradi and P. Maheshwari, “wsBus: QoS-aware middle-
ware for reliable web services interactions,” inEEE. IEEE
Computer Society, 2005, pp. 634–639.

[16] P. Maheshwari, H. Tang, and R. Liang, “Enhancing web
services with message-oriented middleware,” inICWS. IEEE
Computer Society, 2004, pp. 524–531.

[17] S. Parkin, D. Ingham, and G. Morgan, “A message oriented
middleware solution enabling non-repudiation evidence gen-
eration for reliable web services,” inISAS, ser. Lecture Notes
in Computer Science, M. Malek, M. Reitenspies̈, and A. P. A.
van Moorsel, Eds., vol. 4526. Springer, 2007, pp. 9–19.

[18] A. Charfi, B. Schmeling, and M. Mezini, “Reliable messaging
for BPEL processes,” inICWS. IEEE Computer Society,
2006, pp. 293–302.

[19] S. Hallé and R. Villemaire, “Runtime monitoring of message-
based workflows with data,” inEDOC. IEEE Computer
Society, 2008, pp. 63–72.

[20] L. Lamport, “Time, clocks, and the ordering of events ina
distributed system,”Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[21] D. Burdett, “Internet open trading protocol (IOTP),” August
2000. [Online]. Available: http://www.ietf.org/rfc/rfc2801.txt

[22] R. Enns, “Netconf configuration protocol, IETF
Internet draft,” p. 103, February 2006. [On-
line]. Available: http://www.ietf.org/internet-drafts/draft-ietf-
netconf-prot-12.txt

[23] “Configuring a basic MPLS VPN, Cisco systems document
13733,” Cisco Systems, Tech. Rep., 2005.


