
Runtime Monitoring of Web Service Choreographies Using
Streaming XML

Sylvain Hallé
∗

University of California, Santa Barbara
Department of Computer Science
Santa Barbara, CA 9310-65110

shalle@acm.org

Roger Villemaire
Université du Québec à Montréal

C.P. 8888, Succ. Centre-ville
Montreal, Canada H3C 3P8

villemaire.roger@uqam.ca

ABSTRACT
A wide range of web service choreography constraints on
the content and sequentiality of messages can be translated
into Linear Temporal Logic (LTL). Although they can be
checked statically on abstractions of actual services, it is
desirable that violations of these specifications be also de-
tected at runtime. In this paper, we show that, given a
suitable translation of LTL formulæ into XQuery expres-
sions, such runtime monitoring of choreography constraints
is possible by feeding the trace of messages to a streaming
XQuery processor. The forward-only fragment of LTL is in-
troduced; it represents the fragment of LTL supported by
available streaming engines.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
monitors; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic—temporal logic; H.3.5 [In-
formation Storage and Retrieval]: Online Information
Services—web-based services; I.7.2 [Document and Text
Processing]: Document Preparation—XML

General Terms
Theory, verification

Keywords
Runtime monitoring, web services, streaming XML

1. INTRODUCTION
A web service choreography specification can loosely be

seen as a set of constraints on the messages exchanged by

∗This work was done when Sylvain Hallé was at Univer-
sité du Québec à Montréal. We gratefully acknowledge the
financial support of the Natural Sciences and Engineering
Research Council of Canada on this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

web services. Since most web services exchange XML mes-
sages, one can refer to a recorded trace as an XML “docu-
ment” that can be analyzed using standard XML tools, us-
ing for example the XML Query Language (XQuery) [19,28].
However, most works attempting to tap on the resources
available in XQuery engines operate in a post mortem fash-
ion: an instance of a choreography must be finished be-
fore analysis can take place on a complete XML document.
While in some cases, a post mortem analysis on recorded
traces is appropriate, there exist situations where violations
of a specification must be addressed as soon as they are
discovered.

The recent years have seen the rise of a new form of XML
evaluation called streaming XML: an XML stream is a linear
sequence of events generated by the parsing of a document.
Streaming XML engines evaluate XPath or XQuery expres-
sions by taking as input only that stream of events. These
engines have been developed with the intent of processing
very large XML documents that could not fit in the memory
of traditional tools. In this paper, we show how streaming
XML engines can be used for a second, perhaps unexpected
purpose, by turning them into runtime monitors for web
service interactions. In Section 2, we show by means of a
simple e-commerce example how a trace of XML messages
exchanged by web services can be fed progressively to an
XQuery engine, which reads and processes it as a streaming
“document”.

This principle is formalized in Section 3, where we recall
how Linear Temporal Logic can be used to express a wide
range of interaction properties. We then provide a mapping
between LTL and XQuery expressions suitable for streaming
XML, and study some extensions of LTL that can also be
translated into XQuery at no additional cost.

We put a special care in porting our runtime monitor-
ing approach to a practical context; this is why in Section
4, we survey readily-available XQuery engines with respect
to their streaming capabilities and show that most existing
products cannot be used to monitor full-fledged Linear Tem-
poral Logic. We introduce LTL→, the forward-only fragment
of LTL, which corresponds to the “least-common denomina-
tor” that can be monitored on engines with limited stream-
ing capabilities. Experimental findings indicate that the use
of a streaming XQuery engine to perform runtime monitor-
ing of LTL→ can be implemented with negligible additional
load on existing web service execution environments, while
providing for immediate, real-time detection of a substantial
class of choreography violations.



2. MOTIVATION
In this section, we provide an example of a web service sce-

nario where choreography constraints must be monitored at
runtime. In particular, we focus on the subset of choreogra-
phies which constrain the sequence of messages exchanged
by one specific partner with its peers. This form of interac-
tion can be seen as a “contract” to be locally monitored and
enforced. Assuming that web services interact by exchang-
ing structured XML messages, as is the case for a substantial
portion of existing resources, we then show informally how
streaming XML engines can be used to perform that moni-
toring.

2.1 Runtime Monitoring of Web Services
Consider an e-commerce scenario where a shop offers users

to buy products through a web service interface. A client
service first logs into the system by providing a user name.
The shop offers a discount if a user connects with the com-
mitment to buy at least one product, which is signalled with
the commitToBuy element. The shop responds to the login
with a loginConfirmation, providing a unique ID for the
session. Additionally, if the user’s commitment to buy a
product has been accepted by the shop, a maximum delay
in minutes before which the first transaction must take place
is given in the expiration element.

The user can then retrieve the product list, ask for details
about specific products, and eventually send a buyOrder

message indicating the products and respective quantities
that it wishes to buy. Several such messages can be sent, and
the transaction is concluded by sending a confirmPayment

message, providing as a safety measure the unique ID given
by the shop at the start of the session.

There exist several interaction constraints that should be
monitored at runtime under such a scenario. For example,
from the online shop point of view, one might want to make
sure that users committing to buy actually do so eventually.

Contract Specification 1. A user whose commitment
to buy has been accepted by the shop will eventually send a
buyOrder message.

To prevent clients from buying products with outdated
information, the shop might require that no buyOrder be
sent before first asking for the latest product listing:

Contract Specification 2. No buyOrder can be sent
before first receiving a product list.

To make sure that the safety measure is enforced, one
might also want to monitor that the unique session ID sent
at the start of the session be present in every confirmation.

Contract Specification 3. The same unique ID must
be present in all confirmation messages.

The shop can also monitor that clients that commit to
buy actually do so before the timeout sent by the shop:

Contract Specification 4. The first buyOrder of a client
whose commitToBuy has been accepted by the shop must oc-
cur within x minutes of the login, with x the timeout value
sent when the session was opened.

2.2 In-memory vs. Streaming XML
There exist two main modes of representing and process-

ing XML documents by XPath and XQuery engines. In the
Document Object Model (DOM) [2], the nested tag struc-
ture of the original document is translated in memory into
a tree model; to process a query, the engine can retrieve ar-
bitrary parts of of the document by specifying the path to
the desired nodes. Although relatively straightforward, this
method suffers from the fact that the whole document must
be loaded in memory in order to be processed. Experimen-
tal benchmarks showed that, as a consequence, DOM-based
XQuery engines are unable to process large documents [22].

An alternate approach consists of representing an XML
document as a sequence of events generated as it is parsed.
Only this sequence of events is fed to the engine, which
consumes them in their order of arrival and updates its state
to compute the desired query result.

Streaming XML shifts the processing burden from the
parser, which is relieved from building a tree structure from
XML code, to the query engine, which is forced to update
its state based on a linearized version of the document. De-
veloping such an engine is generally more complex than for
a DOM-based solution: it involves tracking the nesting of
elements and carefully memorizing whatever parts of the
document are required to compute a result. In counterpart,
because streaming query engines do not require the whole
document to be loaded at once in memory, they can process
documents orders of magnitude larger than DOM engines.

2.3 Monitoring With Streaming XML
A second, crucial advantage of streaming XML is that the

query results are also streamed: whenever possible, the en-
gine sends its results progressively to an output pipe, while
the input document is being read, and without having to
wait until the end of document has been reached. This fea-
ture of streaming XML can be put to good use to perform
basic monitoring of web service choreographies at runtime.

For example, suppose a sequence of messages M1,M2, . . .
is streamed to an XQuery engine as the following “docu-
ment”: <trace> <message> M1 </message><message>
M2 · · · < /message> · · · < /trace>, where Mi is the XML
body of the i-th message. Then consider the following ex-
pression Q:

every $x in /trace/message[2] satisfies

(not($x/commitAccepted = “true”) or

some $y in $x/following-sibling::* satisfies

$y/name = “buyOrder”

An XQuery engine computing Q on the above stream will
send true on its output pipe if the second message of the
trace does not contain an element commitAccepted with a
value of “true”, or otherwise as soon as a buyOrder mes-
sage is encountered. If the stream is closed by reading the
</trace> element, false is sent on the output pipe.

Based upon that observation, a streaming XQuery pro-
cessor can be used as a crude web service runtime monitor:
as shown in Figure 1:

1. From a monitoring constraint, build an XQuery query
Q such that Q returns false if and only if the constraint
is violated



Streaming XQuery
engine

Output pipe

Message sequence

Q

M1
...M2

Figure 1: Runtime monitoring through streaming
XML

2. Compute the result of Q with a streaming XQuery en-
gine on a “document” formed by progressively stream-
ing the messages exchanged by the service

3. Raise an error as soon as false is read on the output
pipe; stop monitoring as soon as true is read on the
output pipe.

The use of XQuery engines to perform various forms of
validation and monitoring on web services has been little
studied. [8] suggested the implementation of web service
stubs that intercept in- and outbound messages and validate
structural properties expressed in a language called CLiX.
In that framework, every message is validated independently
of each other; there is no streaming involved and properties
like expression Q above are out of reach of the approach.
The validation of web service message traces with XQuery
was sketched in [19,28]. However, the approach only applied
to the post mortem validation of recorded traces; moreover,
it was restricted for [28] to special cases of Hoare’s event-
condition-action and request-response patterns, and not to a
full temporal logic as it is done in this paper. In both cases,
the resulting XQuery expressions cannot be evaluated by ex-
isting XQuery engines in streaming mode. Therefore, as far
as the authors could check, this work is the first application
of the streaming capabilities of XQuery engines to perform
runtime monitoring of web service message traces.

The motivation for using XQuery engines for runtime mon-
itoring is to leverage existing resources available in pro-
duction environments. Many existing solutions for runtime
monitoring require changes to the web service execution en-
vironments; for example, runtime monitors in [5,20] require
the implementation of their own monitoring algorithms. In
contrast, most web service execution environments provide
XML processing capabilities natively, thus providing a min-
imally intrusive way of adding a runtime monitoring capa-
bility with existing technologies.

3. FORMALIZATION
We now systematize the approach suggested above by

rephrasing it into a formal model. More specifically, we
show how the web service constraints of Section 2.1 can be
expressed in Linear Temporal Logic (LTL), and then how
LTL formulæ can be mapped into XQuery expressions suit-
able for streaming processors.

3.1 Linear Temporal Logic
We start by briefly recalling how Linear Temporal Logic

(LTL) can be used to formally express the previous inter-

action requirements. LTL has been introduced to express
properties about states and sequences of states in systems
called Kripke structures [11]. In the present case, the states
to be considered are messages inside a conversation. A se-
quence of messages M1,M2, . . . is called a message trace.

The basic units of LTL formulæ are called ground terms;
in the present case, a ground term is any path expression
π = “d” on a single message that evaluates to true when the
value at the end of π is equal to d. LTL formulæ are built
up from ground terms and the constants true and false using
the classical connectors: ∧ (and), ∨ (or), → (implies) and
¬ (not). LTL further provides temporal operators that can
be used on top of traditional propositional logic formulæ to
specify conditions on the ordering of the messages.

The first of these operators is G, which means “globally”.
For example, the formula Gϕ means that formula ϕ is true
in every message from now on. The operator F means “even-
tually”; the formula Fϕ is true whenever ϕ holds for some
future message. The operator X means “next”; it is true
whenever ϕ holds in the next message. Finally, the U oper-
ator means “until”; the formula ϕUψ is true if ψ eventually
holds, and until then ϕ holds for all messages. The “weak
until” W behaves like U but drops the requirement that ψ
eventually holds.

Definition 1 (LTL syntax). A formula ϕ belongs to
LTL if and only if it is formed from the following BNF gram-
mar:

ϕ ≡ ¬ϕ|ϕ ∨ ϕ|ϕ ∧ ϕ|ϕ→ ϕ|G ϕ|F ϕ|X ϕ|ϕU ϕ|π = “d”

Equipped with this logic, the web service constraints of
Section 2.1 can be formalized in LTL.

LTL Contract Specification 1.

(commitToBuy = true) → F (name = buyOrder)

This first formula expresses that when the initial mes-
sage’s element commitToBuy has value “true”, then eventu-
ally, some message will have buyOrder for its name. Inter-
action Specification 2 can be similarly formalized:

LTL Contract Specification 2.

(name 6= buyOrder) W (name = productList)

Translating web service choreography constraints of var-
ious kinds into LTL has been amply covered in the litera-
ture; the reader will find in [13, 15] many other examples.
The choice for LTL is motivated by its relative closeness
to XQuery from a formal semantics standpoint, a property
that will be crucial in the next subsection. Moreover, we
shall see that other choreography description languages can
also be translated into LTL.

3.2 Translating XQuery into LTL
Remark that a message trace σ = σ1σ2 . . . can be seen as

an XML document by itself. It suffices to encapsulate each
message sequentially into a global trace element as follows:



<trace>
<message>
M1

<message>
M2

. . .
</message>

</message>
</trace>

The recursive nesting of the messages within each other is
voluntary. We shall see in Section 4 why putting messages
side-by-side under the root element, as was shown in Section
2.3, is not an appropriate choice although it seems more
natural. Note that this nesting implies that each message

element has no sibling and at most one direct child.
Throughout the following definitions, we shall repeatedly

use the “[1]” construct, which designates in XQuery the
first sibling satisfying the path expression. When used for
message elements, which have no sibling by construction,
this has for effect of telling the XQuery engine not to wait
until the closing parent tag before returning its result, since
only the first message element needs to be considered. Oth-
erwise, all the query results would be output to the pipe
at the end of the document, which defeats the purpose of
runtime monitoring.

We develop a recursive translation function ωρ, which
takes as input an LTL formula and produces an equiva-
lent XQuery expression. The function also carries a pa-
rameter ρ, which is a pointer to the current message of the
trace. When starting the translation, ρ must point to the
first message of the trace document. The XPath expression
/trace/message[1] can be used to designate this first mes-
sage.

It suffices to define ωρ for each of the constructs given in
Definition 1. The translation of XML path expressions is
direct: for π a path in a message and d ∈ D a value at the
end of that path, the following FLWOR expression gives an
equivalent Boolean result:

ωρ(π = d) ≡ for $x in ρ/π[1] return $x = “d”

It is important to remark that the path π is relative to the
current message of the trace; hence π must be appended
to ρ. XQuery allows all logical connectors, therefore, the
translation of ¬, ∨ and ∧ is also straightforward; it has,
though, to be encapsulated within a FLWOR expression.

ωρ(ϕ ∨ ψ) ≡ for $x in ρ return (ω$x(ϕ) or ω$x(ψ))

ωρ(ϕ ∧ ψ) ≡ for $x in ρ return (ω$x(ϕ) and ω$x(ψ))

ωρ(¬ϕ) ≡ for $x in ρ return not((ω$x(ϕ))

In this translation, $x is a fresh XQuery variable, bound
to the every statement. By construction, there is only one
candidate for $x; hence the FLWOR expression returns only
one Boolean value, and not a sequence of Booleans.

It remains to translate the temporal operators into equiv-
alent XQuery code. We consider first the case of the G
operator. According to the semantics of LTL, a formula of
the form G ϕ is true on the trace which starts at the cur-
rent message, if and only if all subsequent messages (includ-
ing the current one), satisfy ϕ. Since ρ is a pointer to the

current message, then the path expression ρ//message[1] de-
notes all the messages starting from ρ and following it. The
XQuery formula must then express that each message in
this set satisfies the remaining formula ϕ, or more precisely,
the translation of ϕ into XQuery. We obtain the following
expression:

ωρ(G ϕ) ≡ every $x in ρ//message[1] satisfies ω$x
(ϕ)

Remark that since ϕ must be true on each such message,
the root on which ϕ is evaluated is $x.

The translation of the “next” (X) operator, can be seen
as a special case of G, where the set of desired messages
contains only the immediate successor to ρ:

ωρ(Xϕ) ≡ every $x in ρ/message[1] satisfies ω$x
(ϕ)

The translation of Fϕ states that some message in the
future satisfies ϕ:

ωρ(Fϕ) ≡ some $x in ρ//message[1] satisfies ω$x
(ϕ)

We postpone the translation of the remaining LTL oper-
ator, U, until Section 4.3.

As an example, applying ω to LTL Interaction Specifica-
tion 1 yields the following XQuery expression:

for $x in /trace/message[1] return
(for $u in $x/commitToBuy[1] return not($u = ”true”))
or
(some $y in $x//message[1] satisfies

(for $v in $y/name[1] return $v = ”buyOrder”))

An interesting consequence of this mapping is that any
other notation translatable into LTL can also be validated
using XPath. This includes UML Sequence Diagrams (or
more specifically Message Sequence Charts), since various
algorithms to translate them into LTL have been developed,
for instance in [9, 16]. This also includes SSDL’s Message
Exchange Patterns (MEP) and Rules protocol frameworks
[23], and the Let’s Dance choreography description language
[12].

3.3 Extensions to LTL
The mapping provided above covers a subset of XQuery:

there exist valid XQuery expressions which do not corre-
spond to any LTL formula. We can take advantage of the
greater expressive power of XQuery to introduce a few exten-
sions to classical LTL, which can be verified by an XQuery
engine at no additional cost.

3.3.1 Data Correlations Between Messages
The first of these extensions allows for the expression of

data-aware correlations. A data-aware web service property
is a constraint on the pattern of message exchanges where
the order of messages and their data content are interdepen-
dent, as was suggested by [20].

For example, Interaction Specification 3 cannot be ex-
pressed with classical LTL, for it compares the value of two
message elements at two different moments in time. The



only solution, as pointed out by [13], is to include first-order
quantification over message elements, yielding a logic called
LTL-FO+.

Definition 2 (LTL-FO+ syntax). Let ψ be an LTL
formula. An LTL-FO+ formula is obtained by the following
grammar:

ϕ ≡ ψ|∃πx : ϕ|∀πx : ϕ

Informally, an expression of the form ∀πx : ϕ(x) states
that, for all possible values k taken at the end of path π,
ϕ(k) holds. Similarly, ∃πx : ϕ(x) requires ϕ to hold for one
value taken at the end of π.

The translation of first-order quantification in XQuery be-
comes straightforward.

ωρ(∀πx : ϕ) ≡ every $x in ρ/π satisfies ωρ(ϕ)

ωρ(∃πx : ϕ) ≡ some $x in ρ/π satisfies ωρ(ϕ)

It is now possible to express Interaction Specification 3 in
LTL-FO+:

LTL-FO+ Contract Specification 3.

X ∃uniqueIDx :

G (message = confirmPayment →

∃uniqueIDy : x = y)

3.3.2 Metric Temporal Logic
Metric temporal logic (MTL) is an extension of regular

temporal logic for expressing time delays in business con-
tracts [3,18]. For example, Interaction Specification 4 speci-
fies that some event (the first buyOrder message) must occur
before some timeout whose value is specified dynamically at
runtime.

Such constraints can be handled by allowing formulæ to
access the value of a global clock τ provided by the exe-
cution environment. A quantification on τ simply amounts
to fetching the current timestamp from that internal clock;
metric temporal logic then becomes a particular case of data
parameterization. Interaction Specification 4 can hence be
translated into LTL-FO+ as follows:

LTL-FO+ Contract Specification 4.

X (commitAccepted = true→

∀τ t∀expirationk : F (name = buyOrder

∧ ∀τ t
′ : t′ − t < k))

4. PORTING TO EXISTING ENGINES
As was mentioned, evaluating XQuery expressions in stream-

ing mode is generally more difficult to implement than for
DOM. The efficient evaluation of XQuery on streaming XML
is still an open problem subject to a large amount of re-
search; the reader is referred to [21, 22, 24] for a sample of
relevant works on that topic. Consequently, the support for
XQuery in streaming mode is still partial and varies greatly
from tool to tool.

One can observe that the structure of the trace file shown
in the motivating example of Section 2.3 is different from
the one we retained in our formal presentation in Section

3.2: the former aligns all messages as siblings under the
root trace element, while the latter nests them as descen-
dants. Consequently, the formal translation of Interaction
Specification 1 is also different from the example given at
the beginning of this paper. Although both methods are
logically equivalent, only the second can be evaluated by
streaming engines. No XQuery tool currently supports the
following-sibling and previous-sibling axes in stream-
ing mode.

Therefore, we must take care that the translation we pro-
vide be supported by actual XQuery engines, and in par-
ticular the following three features: quantifiers some and
every, descendant (//) axis and sibling position ([1]) func-
tion. In this section, we survey the streaming capabilities
of currently available engines with respect to these features
and adapt our methodology to make the best out of them.

4.1 Available Streaming Capabilities
The W3C maintains a list of XQuery implementations1

which can be classified into three categories.

4.1.1 Insufficient streaming support
In this category fall all XQuery engines that must be dis-

carded for various reasons:

• Some do not support streaming XML processing at all:
these include Galax [27] and XMLTaskForce [17]

• Some XQuery engines support only XPath 1.0 in stream-
ing mode, such as TwigM [10], XSQ [25], TurboX-
Path [4] and XAOS [6].

• Some streaming XQuery engines only support a frag-
ment of the language: GCX [26] does not support the
quantifiers every and some, Nux2 forbids the use of the
descendant axis.

4.1.2 Sufficient streaming support
In this category, we find the XQuery engines that pro-

vide full streaming support for all the language features re-
quired by our translation. Tools in this category are mostly
academic and experimental, such as XQPull [14] and MX-
Query [7]. Both provide full access to the source code.

4.1.3 Partial streaming support
Although they support streaming processing of XQuery

expressions with quantifiers and descendant axes, the tools
in this category impose restrictions on the way in which they
can be used.

By definition, a streaming XML source can only be read
in the forward direction, and this can be done only once.
This entails that any XQuery result that requires some form
of backtracking in the source document cannot be handled.
Fully streaming engines circumvent this problem by care-
fully memorizing the parts of the stream which will need to
be used later in the computation of a result, so that rewind-
ing in the source is not required. On the contrary, “partial”
engines perform no memorization and cannot evaluate some
queries in streaming mode, even though they are formed of
language constructs supported by the streaming engine.

1http://www.w3.org/XML/Query/#implementations
2http://dsd.lbl.gov/nux



Although a few tools fully support our translation of LTL
to XQuery, engines with partial support are more represen-
tative of the streaming capabilities likely to be found in an
actual web service execution environment. The remainder
of this paper therefore concentrates on tools from this cat-
egory. Notable proponents include Saxon3 and DataDirect
XQuery4 (DDXQ), two commercial products that we tested
under an evaluation license.5

4.2 The Forward-Only Fragment of LTL
We study in this section the fragment of LTL that can be

supported within the limits of XQuery engines with partial
streaming support. We call it the forward-only fragment
of LTL, noted LTL→, since it corresponds to formulæ which
can be evaluated without backtracking in the message trace.
We shall first identify a set of syntactical conditions on the
structure of an LTL formula which are sufficient to prevent
backtracking.

1. No temporal operator can be in the scope of G . In-
deed, evaluating a formula of the form G♠ϕ, with
♠ ∈ {G ,F ,U,X } on a message trace M1,M2, . . . re-
quires first evaluating ♠ϕ on M0. However, evaluating
the temporal operator ♠ will require reading M1 and
possibly M2, M3, and so on. Once ♠ϕ has been de-
cided for M1, it needs to be evaluated again starting
at M2, yet due to the previous evaluation of ♠ϕ on
M1, we can no longer guarantee that the source has
not been read past M2.

6 By a similar reasoning, no
temporal operator can be in the scope of F or U .

2. In contrast, a temporal operator can be in the scope
of Xϕ. The LTL “next” operator simply has for effect
of jumping to the next message and evaluating ϕ from
there; no backtracking is needed.

Since temporal operators express properties about the se-
quence of messages, it is natural that some restrictions apply
when a trace can only be read in one direction. More surpris-
ingly however, the forward-only consumption of a message
trace also restricts the use of the Boolean connectives:

3. In a formula of the form ϕ ∧ ψ, no temporal opera-
tor can be in the scope of ϕ. It suffices to realize that
both ϕ and ψ must be evaluated from the same starting
point; therefore, the presence of a temporal operator
in ϕ can possibly consume messages which will need
to be rewound when the evaluation of ψ takes places.
Remark that the opposite works: if ϕ does not con-
tain any temporal operator, then the source is still at
M1 when the evaluation of ψ starts, and the source
can then be consumed as much as we want. A similar
reasoning can be made to forbid temporal operators in
the left member of a disjunction (∨). It follows that
in the forward-only fragment of LTL, Boolean connec-
tives are not commutative.

4. The negation has no restriction attached to it.

3http://www.saxonica.com
4http://www.datadirect.com
5An open source version of Saxon is also available, but as of
July 2008, it did not allow streaming XML processing.
6These conditions are sufficient, but not necessary. For ex-
ample, G (Gϕ) ≡ Gϕ and G (Xϕ) ≡ X (Gϕ).

Finally, when we extend LTL with the first-order quanti-
fiers introduced in Section 3.3, the forward-only fragment of
LTL also imposes restrictions:

5. No temporal operator can be in the scope of a univer-
sal quantifier. Indeed, evaluating ∀πx : ϕ on a message
trace M1,M2, . . . requires checking that ϕ is respected
for all values of x admissible for π. When a first value
for x is picked, if ϕ is contains a temporal operator,
then messages M1,M2, . . . might be consumed before
deciding on the value (true or false) of ϕ. Once this
is done, a second value for x must be chosen, and ϕ
must be checked again, starting from M1. As previ-
ously, we cannot guarantee that further messages from
the source have been consumed. A similar reasoning
can be made to forbid temporal operators under an
existential quantifier.

6. We can, however, introduce a weaker version of the
quantifiers, noted ∃1

π and ∀1
π, that assume that, in ev-

ery message, there exists at most one possible value
for the variable. Hence, the quantifier ∃1

px : ϕ is true
when the value of the single element “p” in the current
message satisfies ϕ. Since no backtracking is involved
to decide the quantifier, temporal operators can be
present in its scope, provided they respect the above
rules.

Based on these limitations, we can now define the BNF
grammar of the forward-only fragment of LTL(-FO+) as fol-
lows:

Definition 3 (Forward-only fragment). A formula
ψ is in the forward-only fragment of LTL if it is generated
by the following grammar.

ψ ≡ ϕ|G ϕ|F ϕ|ϕU ϕ|ϕWϕ|X ψ|∃1
πx : ψ|∀1

πx : ψ|

ϕ ∧ ψ|ϕ ∨ ψ|¬ψ

ϕ ≡ ∃πx : ϕ|∀πx : ϕ|∃1
πx : ϕ|∀1

πx : ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|¬ψ|π = “d′′

Specifications 1 and 2 clearly fulfil these restrictions. For
Specification 3, the two occurrences of ∃ can be replaced
by the weakened ∃1, since there is at most one uniqueID

element in every message. The same applies for the two
quantifications over time τ in Specification 4, since there is
only one time value at any moment. Finally, the quantifica-
tion over the expiration element can be weakened too, for
there is only one such element in the login reply. Therefore,
all the Interaction Specifications shown previously belong to
LTL→.

Although restrictive, the forward-only fragment of LTL
presents two advantages:

• The logic is bottom-up: it is defined from the stream-
ing capabilities of existing engines and therefore con-
stitutes a least common denominator for runtime mon-
itors.

• The logic is simple: since no memorization of the doc-
ument is required, it can be monitored by an XQuery
engine in a small and constant memory space.



4.3 Mapping the “Until” Operator
Up to now, the translation of the LTL U operator in

XQuery has not been covered. Unlike the other LTL op-
erators, U is more complex, since it asserts two different
things: 1) ψ eventually occurs for some message, and 2) for
every preceding message, ϕ holds. A classical result in tem-
poral logic shows that G and F are particular cases of until;
more specifically, Fϕ ≡ true U ϕ and Gϕ ≡ ¬(true U¬ϕ).

There exist two possible ways of translating ϕU ψ into
XQuery. The first one consists in giving an equivalent XQuery
expression:

some $x in ρ/descendant::*/message satisfies ωρ(ϕ) and

every $y in (ρ/descendant::*/message intersect

$x/ancestor::*/message) satisfies ωρ(ψ)

However, the function explicitly requires computing a set
of messages by reading backwards because of the ancestor
axis on the second line. Although the ancestor axis could
be evaluated in a streaming fashion by carefully memorizing
appropriate pieces of the source, at the moment we found
no tool capable of doing so.

A second possibility is to define a recursive, user-defined
function that computes the Boolean value of the operator,
as follows:

declare function local:until(ρ) {
if (ωρ(ψ)) then true else
if (ωρ(ϕ)) then local:until(ρ/message)
else false };

The translation of an LTL formula using this version of the
“until” does not require any backward computation. The
translation method becomes a little more involved: one new
untili function must be declared for every occurrence of U in
the formula, since ψ and ϕ, which both translate as XQuery
expressions, cannot be passed as arguments to an XQuery
function and must therefore be translated directly into the
body of the function. Yet again, we found no tool capable
of handling recursive user-defined functions.

This does not mean that U does not belong to the forward-
only fragment —indeed, we just showed that there exists a
way to compute U without memorizing or backtracking.
The problem is rather linked with current implementations
of XQuery engines.

At the moment, the only workaround we can suggest is
to support the “until” operator at the top level of a for-
mula only. When the LTL→ formula to evaluate is of the
form ϕU ψ, we monitor two formulæ separately: Gϕ on
one side, and Fψ on the other. It suffices to keep the moni-
tors running until either Fψ announces true (in which case
ϕU ψ is fulfilled), or G ϕ announces false (in which case
ϕU ψ is violated). This solution is a reasonable compro-
mise: it allows the use of U and extends the range of useful
properties that can be expressed with LTL→, but since this
operation is done only if U is the top-level operator, the
constant space requirement still holds.

4.4 Experimental Results
To assess the tractability of runtime monitoring using

XML methods, we performed a series of experiments on
partial XQuery engines. There have been ample discussions
about benchmarking issues of various XQuery engines [1];

Table 1: Average and maximal processing time
in milliseconds per message, for each of the four
web service interaction specifications, and each of
the four XQuery engines tested: (S)axon, (D)DXQ,
(M)XQuery and (X)QPull.

Spec. #
1 2 3 4

S 1.4 (8.6) 2.6 (16.1) 1.5 (8.8) 1.5 (11.3)
D 1.0 (5.6) 2.0 (11.8) 1.0 (5.7) 0.9 (4.3)
M 2.2 (12.7) 4.4 (18.0) 18.3 (32.7) 4.3 (28.7)
X 233 (2477) 455 (4934) 259 (2763) 1.0 (5.8)

the purpose of our experiments is not to benchmark query
engines, but rather to get an early empirical validation of the
translation provided in Section 3 in choreography scenarios
similar to the one presented in Section 2.1.

To this end, we produced 100 trace files of length rang-
ing from 10 to approximately 800 messages, each containing
a randomly created sequence of the messages described in
the above scenario. Each of these traces was then sent to
two commercial XQuery engines with partial streaming sup-
port (Saxon and DataDirect XQuery) and two academic en-
gines with full streaming support (XQPull and MXQuery).
These engines evaluated the XQuery translation of Interac-
tion Specifications 1–4 in streaming mode. We then com-
puted the processing overhead required by measuring the
average and maximum CPU elapsed time per message. A
summary of the results is shown in Table 1.

These results show that for the two commercial tools, it
took in average 1 to 2 milliseconds, and never more than 16
milliseconds, to process one message of a trace. This tends
to show that monitoring web service choreographies through
streaming XML engines can actually be done in real time.

As a fully streaming engine, MXQuery performed rea-
sonably well on most properties, especially compared with
commercial engines with partial streaming support. One
notable exception is Specification 3: for 38 of the 100 trace
files (those with more than 470 messages), the engine failed
to complete the evaluation of the query as it ran out of
the 128 MB of memory allowed to the Java virtual machine
(these traces are not included in the computation of the av-
erage time). The three other tools we tested did not take
more time or memory to evaluate Specification 3 compared
to the others. The experimental XQPull performed more
slowly than the other tools. It computed Specification 4
very quickly compared to the three other properties; how-
ever it returned results which differed from the other three
engines for some of the trace files; therefore, the very small
validation times reported cannot be trusted.

These results show that, for the moment, fully streaming
engines are more experimental and fragile in nature than
commercial-grade products with limited streaming support.
The forward-only fragment of LTL can therefore be seen as a
“safe zone” where more stable tools can be used to perform
runtime monitoring.

5. CONCLUSION
We have shown in this paper how web service choreogra-

phy specifications formalized in Linear Temporal Logic can
be monitored at runtime using XQuery engines with capa-
bilities for streaming XML. To our knowledge, this is the



first application of streaming XML features to perform run-
time monitoring. This approach has the advantage of taking
profit of existing machinery already available in web service
execution environments.

However, the processing of XQuery expressions on stream-
ing XML is still an open problem, and many engines pro-
vide only little support for streaming. The forward-only
fragment of LTL was studied in response to this observa-
tion; it represents the “least-common denominator” that
XQuery engines with limited streaming capabilities can still
support. Experimental tests on existing, off-the-shelf com-
mercial XQuery tools showed that runtime monitoring could
be added with really minimal modifications to existing exe-
cution environments, provided that they include an XQuery
engine with minimal streaming support. These encourag-
ing results open the way to the development of more refined
XML-based methods to perform runtime monitoring, and to
a more precise characterization of the forward-only fragment
of LTL.

6. REFERENCES
[1] L. Afanasiev and M. Marx. An analysis of XQuery

benchmarks. Inf. Syst., 33(2):155–181, 2008.

[2] V. Apparao, S. Byrne, M. Champion, S. Isaacs,
I. Jacobs, A. L. Hors, G. Nicol, J. Robie, R. Sutor,
C. Wilson, and L. Wood. Document object model
(DOM), W3C Recommendation, 1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

[3] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund,
M. R. Lowry, C. S. Pasareanu, G. Rosu, and
W. Visser. Experiments with test case generation and
runtime analysis. In Abstract State Machines, volume
2589 of Lecture Notes in Computer Science, pages
87–107. Springer, 2003.

[4] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the
memory requirements of XPath evaluation over XML
streams. In PODS, pages 177–188. ACM, 2004..

[5] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-time monitoring of instances and classes of web
service compositions. In ICWS, pages 63–71. IEEE
Computer Society, 2006.

[6] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josifovski. Streaming XPath
processing with forward and backward axes. In ICDE,
pages 455–466. IEEE Computer Society, 2003.

[7] I. Botan, P. M. Fischer, D. Florescu, D. Kossmann,
T. Kraska, and R. Tamosevicius. Extending XQuery
with window functions. In VLDB, pages 75–86. ACM,
2007.

[8] D. Cacciagrano, F. Corradini, R. Culmone, and
L. Vito. Dynamic constraint-based invocation of web
services. In WS-FM, volume 4184 of Lecture Notes in
Computer Science, pages 138–147. Springer, 2006.

[9] M. Caporuscio, P. Inverardi, and P. Pelliccione.
Compositional verification of middleware-based
software architecture descriptions. In ICSE, pages
221–230. IEEE Computer Society, 2004.

[10] Y. Chen, S. B. Davidson, and Y. Zheng. An efficient
XPath query processor for XML streams. In ICDE,
page 79. IEEE Computer Society, 2006.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[12] G. Decker, J. M. Zaha, and M. Dumas. Execution
semantics for service choreographies. In WS-FM,
volume 4184 of Lecture Notes in Computer Science,
pages 163–177. Springer, 2006.

[13] A. Deutsch, L. Sui, V. Vianu, and D. Zhou.
Verification of communicating data-driven web
services. In PODS, pages 90–99. ACM, 2006.

[14] L. Fegaras, R. K. Dash, and Y. Wang. A fully
pipelined XQuery processor. In XIME-P, 2006.

[15] X. Fu, T. Bultan, and J. Su. Synchronizability of
conversations among web services. IEEE Trans.
Software Eng., 31(12):1042–1055, 2005.

[16] Y. Gan, M. Chechik, S. Nejati, J. Bennett,
B. O’Farrell, and J. Waterhouse. Runtime monitoring
of web service conversations. In CASCON, pages
42–57. ACM, 2007.

[17] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing XPath queries. In VLDB,
pages 95–106. Morgan Kaufmann, 2002.

[18] G. Governatori, Z. Milosevic, and S. W. Sadiq.
Compliance checking between business processes and
business contracts. In EDOC, pages 221–232. IEEE
Computer Society, 2006.

[19] S. Hallé and R. Villemaire. XML methods for
validation of temporal properties on message traces
with data. In CoopIS/DOA/ODBASE, volume 5331 of
Lecture Notes in Computer Science, pages 337–353.
Springer, 2008.

[20] S. Hallé, R. Villemaire, O. Cherkaoui, and
B. Ghandour. Model-checking data-aware temporal
workflow properties with CTL-FO+. In EDOC, pages
267–278. IEEE Computer Society, 2007.

[21] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. FluXQuery: An optimizing XQuery
processor for streaming XML data. In VLDB, pages
1309–1312. Morgan Kaufmann, 2004.

[22] X. Li and G. Agrawal. Efficient evaluation of XQuery
over streaming data. In VLDB, pages 265–276, ACM,
2005.

[23] S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and
P. Greenfield. SOAP service description language
(SSDL). Technical Report CS-TR-899, University of
Newcastle, Newcastle upon Tyne, 2005.

[24] J. H. Park and J.-H. Kang. Optimization of XQuery
queries including for clauses. In ICIW, page 37. IEEE
Computer Society, 2007.

[25] F. Peng and S. S. Chawathe. XPath queries on
streaming data. In SIGMOD Conference, pages
431–442. ACM, 2003.

[26] M. Schmidt, S. Scherzinger, and C. Koch. Combined
static and dynamic analysis for effective buffer
minimization in streaming xquery evaluation. In
ICDE, pages 236–245. IEEE, 2007.

[27] M. F. J. Siméon, C. Chen, B. Choi, V. Gapeyev,
A. Marian, P. Michiels, N. Onose, D. Petkanics,
C. Rath, C. Ré, M. Stark, G. Sur, A. Vyas, and
P. Wadler. Galax, an XQuery implementation.
http://www.galaxquery.org.

[28] M. Venzke. Specifications using XQuery expressions
on traces. Electr. Notes Theor. Comput. Sci.,
105:109–118, 2004.


