
Constraint-Based Invocation of Stateful Web Services: The Beep Store (Case Study)

Sylvain Hallé
Université du Québec à Chicoutimi

Roger Villemaire
Université du Québec à Montréal

Abstract—Shopping cart manipulations are a prime example
of web services exhibiting stateful behaviour. The Beep Store
is a web service synthesizing past work on the study and
formalization of stateful interface constraints, and presenting
many of the characteristics found in real-world web services,
such as Amazon’s and PayPal shopping carts.

Keywords-temporal constraints; stateful web services; shop-
ping cart; Amazon web services

I. INTRODUCTION AND MOTIVATION

Asynchronous JavaScript and XML (Ajax) refers to a
collection of technologies used to develop rich and interactive
web applications. A typical Ajax client runs locally in
the user’s web browser and refreshes its interface using
JavaScript according to user input. Popular Ajax applications
communicate in the background with a remote server; in many
cases, the server’s functionality is made publicly available as
an instance of a web service, which can be freely accessed
by any third-party Ajax application.

While web services were originally expected to be stateless,
web application backends are generally more complex
in nature. To be properly understood by their respective
recipients, each request and each response is expected to
follow a specific structure, where the possible operations,
parameters and values are precisely defined. In many cases,
the browser-server exchange also moves forward according
to a protocol, where the validity of a request depends on
past events.

For such applications to work, the communication between
the browser and the server must exactly follow an agreed-
upon “contract” encompassing all these aspects. We present
a demo application called the Beep Store, which synthesizes
in a single environment many characteristics of real-world
web application contracts that we studied in previous work.

II. THE BEEP STORE BUNDLE

Our case study provides a stand-alone, client-server web
application, implemented in PHP and JavaScript, that allows
registered users to browse a fictional collection of books and
music, and to manage a virtual shopping cart made of these
elements.1 It runs out-of-the-box in any modern web browser
pointed at the store’s URL, which itself can be installed into
any standard Apache web server with default settings.

We acknowledge the financial support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

1http://beepbeep.sourceforge.net/examples/beepstore/bundle.zip

Figure 1. The Beep Store’s web interface.

Figure 1 shows a typical application screen. At any time,
users can use the search box at the top right of the screen to
type any keyword. Similarly, they can click on the “Search an
item” menu element at the left to summon a more complete
search pane, where they can restrict the search to a specific
artist, a specific title, and split the result into pages of a fixed
number of entries.

A typical use case scenario for the Beep Store involves a
user logging in, searching for items, adding and removing
cart items, and eventually logging out. Such a scenario is
a purposefully condensed version of popular commercial
web sites, such as Amazon or eBay. Indeed, although the
Beep Store is a demo application, all its functionalities —and
constraints on its use, as we shall see— have been found in
at least one of the real-world web services we studied in the
past [1]–[4].

III. CONSTRAINTS ON SERVICE INVOCATION

However, without any clear and mutual understanding of
the acceptable requests and responses, an Ajax client might
try to send a message that the server does not recognize,
and vice versa. Indeed, typical of many web applications,
interactions with the Beep Store are subject to numerous
constraints involving data parameters, ordering of requests,
and even combinations of both. The following constraints
are actively enforced by the web service, which will reply
with an error upon reception of any message that violates
the contract.

1) Data Constraints: The first class of properties expresses
constraints over the structure and values inside a single
message at a time.

P1. Every message must carry a SessionKey.

http://beepbeep.sourceforge.net/examples/beepstore/bundle.zip


P2. In any message, each ItemID must appear at most
once.

P3. In the ItemSearch message, the element Page must
be an integer between 1 and 20.

P4. In the ItemSearch message, the element Page is
mandatory only if Results is present; otherwise it
is forbidden.

One can see that further constraints of this kind could be
added to that list, requiring or forbidding the presence of
all possible elements in their respective messages. We stress
that many of these constraints cannot be verified by a simple
comparison with some XML Document Type Definition
(DTD), as they also provide ranges for possible values, and
even state that the presence of some element be dependent
on the presence of another.

2) Control-Flow Constraints: Other restrictions are related
to the sequence in which operations are invoked. Any appli-
cation introducing the concept of session, or manipulating
persistent objects such as a shopping cart, includes control-
flow constraints of that kind. For example:

P5. The Login request cannot be resent if its response is
successful.

P6. All cart operations, such as CartCreate, must follow
a successful LoginResponse.

P7. The Logout request cannot be sent before a successful
LoginResponse.

P8. All requests must be replied with their appropriate
response operation (i.e. a CartAdd must be followed
by a CartAddResponse, etc.).

These constraints introduce the notion of state into the
application: the possible future messages allowed depend
on what has happened in the past. Indeed, it does not make
sense for a user to try to login again after a successful login.
Similarly, since shopping carts must be associated to a logged
user, it is impossible to create such a cart without first logging
in. An attempt at such operations hints at some programming
flaw on the client side, and should be replied by an error
message from the server.

3) Data-Aware Constraints: Furthermore, the Beep Store
includes properties referencing data elements inside ex-
changed messages, such that these data elements are taken
at two different moments in the execution and need to be
compared. Properties having this characteristic have been
dubbed “data-aware” temporal properties [5]. For example:

P9. There can be at most one active cart ID per session
key.

P10. All cart operations must provide a cart ID returned by
some successful CartCreateResponse.

P11. An item to delete must first have been added in a
previous CartAdd or CartCreate message.

P12. You cannot add the same item twice to the shopping
cart.

It has been shown how these constraints can be formalized
using a first-order extension of Linear Temporal Logic called
LTL-FO+ [6].

IV. POSSIBLE USES OF THE BEEP STORE BUNDLE

The Beep Store is a simple and well-understood web
application; however, since the client-server interaction is
subject to numerous, real-world constraints, the code bundle
can be put to numerous uses.

• Runtime monitoring: contract compliance can be
checked at runtime; the Beep Store hence provides
a suitable test environment for evaluating various de-
sign choices regarding code instrumentation, monitor
location, etc.

• Model checking: the service’s code is a single, stand-
alone PHP file where each contract constraint is explic-
itly verified and each error emitted by the service is
clearly marked. This makes it a fertile test environment
for the automated model checking of behavioural
constraints on service invocation.

• Trace validation: in addition to the web application,
the bundle also includes a trace generator, which can
produce any number of randomly-built, parameterizable
request-response sequences. A set of such sequences
can be used as a benchmark for offline trace validation
algorithms of stateful properties.

REFERENCES

[1] Amazon e-commerce service. http://solutions.
amazonwebservices.com.

[2] Paypal web service API documentation. http://www.paypal.com.

[3] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire.
Runtime verification of web service interface contracts. IEEE
Computer, 43(3):59–66, 2010.

[4] S. Hallé, G. Hughes, T. Bultan, and M. Alkhalaf. Generating
interface grammars from WSDL for automated verification
of web services. In L. Baresi, C.-H. Chi, and J. Suzuki,
editors, ICSOC-ServiceWave, volume 5900 of Lecture Notes in
Computer Science, pages 516–530, 2009.

[5] S. Hallé and R. Villemaire. Runtime monitoring of message-
based workflows with data. In EDOC, pages 63–72. IEEE
Computer Society, 2008.

[6] S. Hallé and R. Villemaire. Runtime verification for the web -
a tutorial introduction to interface contracts in web applications.
In H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,
G. J. Pace, G. Rosu, O. Sokolsky, and N. Tillmann, editors,
RV, volume 6418 of Lecture Notes in Computer Science, pages
106–121. Springer, 2010.

2

http://solutions.amazonwebservices.com
http://solutions.amazonwebservices.com
http://www.paypal.com

	Introduction and Motivation
	The Beep Store Bundle
	Constraints on Service Invocation
	Data Constraints
	Control-Flow Constraints
	Data-Aware Constraints


	Possible Uses of the Beep Store Bundle
	References

