
Runtime Verification for the Web

A Tutorial Introduction to Interface Contracts in Web
Applications

Sylvain Hallé1 and Roger Villemaire2

1 Université du Québec à Chicoutimi, Canada
shalle@acm.org

2 Université du Québec à Montréal, Canada
villemaire.roger@uqam.ca

Abstract. This tutorial presents an introduction to the monitoring of
web applications. These applications run in a user’s web browser and
exchange requests and responses with a server in the background to up-
date their display. A demo application, called the Beep Store, illustrates
why complex properties on this exchange must be verified at runtime.
These properties can be formalized using an extension of Linear Tempo-
ral Logic called LTL-FO+. The tutorial concludes with the presentation
of BeepBeep, a lightweight runtime monitor for web applications.

1 Introduction

In the past decade, numerous applications, such as Facebook and Google Mail,
have become part of popular culture. These so-called “web” applications come
into the scope of a programming paradigm called cloud computing, where the
user’s web browser is responsible for loading from a server and displaying the
various elements of the application’s page. The user can interact with some of
these elements, which in turn trigger the browser to send further requests to the
server, and update the display.

To be properly understood by their respective recipients, each request and
each response is expected to follow a specific structure, where the possible oper-
ations, parameters and values are precisely defined. In many cases, the browser-
server exchange also moves forward according to a protocol, where the validity
of a request depends on past events.

The technologies over which web applications are built were not designed
with complex interactions in mind. Consequently, they do not provide facilities to
define or enforce such an “interface contract”. Ensuring a correct match between
the browser’s and the server’s behaviour is an open problem, currently left as the
developer’s sole responsibility. Recording the sequence of requests and responses,
and providing a means of preventing contract violations from occurring is an
appealing prospect in this regard.

The present tutorial summarizes our experiments in the enforcement of in-
terface contracts in web applications. Its interest lies primarily in providing a

G. Rosu and O. Sokolsky (Eds.): RV 2010, LNCS 6418, pp. 106–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Runtime Verification for the Web 107

self-contained introduction to a domain that meets many favourable conditions
for the application of runtime verification techniques. To this end, Section 2
presents a running web application typical of many real-world web services we
studied in the past; Section 3 discusses the interface contract for this applica-
tion. Section 4 introduces a formal language, LTL-FO+, expressive enough for
the constraints encountered, and describes how BeepBeep, a lightweight LTL-
FO+ runtime monitor, can be integrated into the initial application to effectively
enforce the contract.

2 Anatomy of a Web Application: The Beep Store

For the purpose of this tutorial, we designed a simple web application called
the Beep Store that will be used as a running example to illustrate web-based
runtime verification concepts.

2.1 End-User Perspective

The Beep Store allows registered users to browse a fictional collection of books
and music, and to manage a virtual shopping cart made of these elements. It
runs out-of-the-box in any modern web browser pointed at the store’s URL.1

Fig. 1. The Beep Store’s web interface

Figure 1 shows a typical application screen. At any time, users can use the
search box at the top right of the screen to type any keyword. Similarly, they
can click on the “Search an item” menu element at the left to summon a more
complete search pane, where they can restrict the search to a specific artist, a
specific title, and split the result into pages of a fixed number of entries.

Pressing the “Go” button retrieves from the server the list of all relevant
entries. Optionally, users have the option of adding an item from that list into
1 http://beepbeep.sourceforge.net/examples/beepstore

http://beepbeep.sourceforge.net/examples/beepstore

108 S. Hallé and R. Villemaire

a personal inventory called a “shopping cart”. To do so, they must first log into
the application (using the “Sign in” link at the top of the page) and provide
their username and password. A shopping cart is automatically created when
users add their first item into it.

Once a cart is created, a “Your Cart” button (not shown) appears at the
right of the search box. Clicking this button opens the cart pane, which displays
the list of all items currently in the user’s cart, their quantity and total price.
Buttons allow the user to edit the quantity for an item, or remove it altogether.
Each action updates the cart’s list on the fly.

Such a scenario is a purposefully condensed version of popular commercial
web sites, such as Amazon or eBay. Indeed, although the Beep Store is a demo
application, all its functionalities —and constraints on its use, as we shall see—
have been found in at least one of the real-world web services we studied in
the past [14]. This includes in particular the User-Controlled Lightpath Ser-
vice [7], the Amazon e-Commerce Service [1], and the PayPal Express Checkout
Service [2].

2.2 Internal Workings

Asynchronous JavaScript and XML (Ajax) refers to the collection of technologies
used to develop such rich and interactive web applications. The execution of an
Ajax application in a web browser is a straightforward process. First, the client’s
browser loads the application’s page, beepstore.html. It uses it to render the
page’s content by interpreting its markup elements: text boxes, buttons, menu
elements, headings, images. The header of this HTML file contains a link to a
JavaScript document hosted in the same directory, called beepstore.js.

The JavaScript functions it contains are used for three purposes. First, it asso-
ciates snippets of code to some page elements. For example, a button in the HTML
file can be linked to a JavaScript function through the onClick event; any click on
this button triggers the execution of the associated JavaScript function. Second,
the web browser provides a JavaScript object, called document, whose methods
can be used to access the HTML page’s elements and modify their content and
appearance dynamically. Hence, the button’s onClick event can toggle the visi-
bility of some page section that was previously hidden, producing an effect similar
to a pop-up window. With proper coding, JavaScript can reproduce in the browser
most of the look-and-feel of a traditional desktop application.

The last use of JavaScript is for the handling of requests and responses over
the network. This is done through a standard object called XMLHttpRequest,
also provided by the local browser.2

2.3 Interaction through XML

The second part of an Ajax application is a script running on the server side,
and answering to requests initiated by the local browser’s XMLHttpRequest

2 An exception is Internet Explorer, which exposes the same functionalities under a
different object called MSXML. Their differences are superficial.

Runtime Verification for the Web 109

object. In the case of the Beep Store, a PHP script called beepstore.php acts
as the application’s front door on the server. Data is exchanged using a standard
markup called XML. Each XML document sent and received is called a message,
and the communication between the browser and the server hence generates a
message sequence.

Figure 2 shows the structure of two typical request-response pairs of messages
sent by the Beep Store’s application to its server. For instance, Figure 2(a)
shows the message sent by the browser when a user clicks on the Login button:
it includes an element called Action whose value indicates the name of the
action to be executed by the server, and two additional parameters providing a
Username and Password. The actual values inserted inside these two elements
are dynamically fetched by the JavaScript function responsible for sending the
Login message on the browser.

<Message>

<Action>Login</Action>

<Username>Sylvain</Username>

<Password>banana</Password>

</Message>

<Message>

<Action>LoginResponse</Action>

<SessionKey>123456</SessionKey>

</Message>

(a) Login (request) (b) Login (response)

<Message>

<Action>CartCreate</Action>

<SessionKey>123456</SessionKey>

<Items>

<Item>

<ItemId>123</ItemId>

<Quantity>1</Quantity>

</Item>

...

</Items>

</Message>

<Message>

<Action>CartCreateResponse</Action>

<SessionKey>123456</SessionKey>

<CartID>789123</CartId>

<Items>

<Item>

<ItemId>123</ItemId>

<Quantity>1</Quantity>

<Price>12.00</Price>

<Author>The Beatniks</Author>

<Title>Yelp!</Title>

</Item>

...

</Items>

</Message>

(c) Create a cart (request) (d) Create a cart (response)

Fig. 2. Examples of XML messages for the Beep Store

The server’s PHP script processes this request by checking that the name-
password pair is contained in its user database. In such a case, it creates and
records a new unique session key, and produces the response message shown
in Figure 2(b). The JavaScript code on the client side parses it and keeps the
session key in local memory for future requests.

110 S. Hallé and R. Villemaire

Request and response messages for cart creation, shown in Figure 2(c)-(d),
are more complex. In addition to the Action and SessionKey, the creation
request includes a compound element, Items, itself made of one or more Item
elements. Each item specifies an item ID (taken from the store’s catalogue) and
the quantity of this item to be included in the cart. The response returned by
the server repeats that information, provides a unique ID to the newly created
cart, and adds pricing, title and author information for each item, as obtained
from the store’s database.

2.4 The Beep Store as a Web Service

One can see how the exchange of XML messages outsources the application’s core
functionalities to the server over the network, leaving the client with only the
lighter, GUI-related processing. For example, database search and cart manipu-
lations are handled by the server, which only sends the results of these operations
to the browser for proper display. This architecture is appealing, if only for prac-
tical reasons: a browser-side search for an item would involve downloading the
whole store’s catalogue on the client.

As a matter of fact, the server’s functionality is not limited to this particular
web client: it is made publicly available as an instance of a web service. Any third-
party developer can produce a working pair of HTML/JavaScript files and send
requests to the Beep Store’s PHP script; provided that the requests are properly
formed and sent in a reasonable sequence, the store’s script will serve them.

Similarly, a different server, accepting the same messages as the Beep Store,
could be used indifferently by the web client. A web service can even send re-
quests to another service. Ultimately, the vision of web services is to separate
functionalities into simple, stand-alone units, communicating over the network
through standardized mechanisms such as XML messaging. A web application
is a particular case of this scenario consisting of a single browser-server pair.

3 Interface Contracts in Web Applications

The appealing modularity of web services is the source of one major issue: how
can one ensure the interaction between each application and each service pro-
ceeds as was intended by their respective providers? Without any clear and
mutual understanding of the acceptable requests and responses, an Ajax client
might try to send a message that the server does not recognize, and vice versa. A
correct interoperation between a client and a service is only guaranteed if both
partners follow a well defined and enforceable interface contract.

3.1 The Beep Store Interface Contract

The source for such an interface contract invariably comes from the service’s
documentation, intended for developers. The online documentation for the Beep
Store3 is modelled after that of real-world web services, in particular the Amazon
E-Commerce Service.
3 http://beepbeep.sourceforge.net/examples/beepstore/documentation

http://beepbeep.sourceforge.net/examples/beepstore/documentation

Runtime Verification for the Web 111

The first observable part of an interface contract that this documentation
provides consists of the description of all the XML request and response messages
for each operation, in a way similar to Figure 2. Any client and service must
produce messages following the structure mentioned there.

In addition, accompanying text explains the semantics of each operation, and
lists a number of conditions that must be fulfilled for each operation to be
properly processed and return a response. Some of these constraints have been
purposefully integrated into the Beep Store to faithfully reproduce behaviour
found in some real-world web service we studied. Our prior work led us to divide
these constraints into three categories:

Data Constraints. The first class of properties expresses constraints over the
structure and values inside a single message at a time. For example, in the
ItemSearch message:

P1. The element Page must be an integer between 1 and 20.
P2. The element Page is mandatory only if Results is present; otherwise it is

forbidden.

These requirements go beyond the specification of a rigid XML structure:
they also provide ranges for possible values, and even state that the presence of
some element be dependent on the presence of another. Further data constraints
could, for example, impose possible values for some element as a function of the
value in another element —an example of such a constraint can be found in the
Amazon E-Commerce Service [12].

Control-Flow Constraints. Other restrictions are related to the sequence in
which operations are invoked. Any application introducing the concept of session,
or manipulating persistent objects such as a shopping cart, includes control-flow
constraints of that kind. For example:

P3. The Login request cannot be resent if its response is successful.
P4. All cart operations, such as CartCreate, must follow a successful Login-

Response.

These constraints introduce the notion of state into the application: the pos-
sible future messages allowed depend on what has happened in the past. Indeed,
it does not make sense for a user to try to login again after a successful login.
Similarly, since shopping carts must be associated to a logged user, it is impossi-
ble to create such a cart without first logging in. An attempt at such operations
hints at some programming flaw on the client side, and should be replied by an
error message from the server.

Data-Aware Constraints. Furthermore, the Beep Store includes properties
referencing data elements inside exchanged messages, such that these data el-
ements are taken at two different moments in the execution and need to be
compared. Properties having this characteristic have been dubbed “data-aware”
temporal properties [15]. For example:

112 S. Hallé and R. Villemaire

P5. There can be at most one active cart ID per session key.
P6. You cannot add the same item twice to the shopping cart.

Property 5 obviously forbids a client to involve a CartCreate operation twice.
However, it also requires that at any time, the CartId value found in a message
be the same for all subsequent messages. This must be respected both by the
client (which cannot try to sneak information about another cart by simply
providing a different ID) and the server (which cannot change a cart’s ID after
it has been communicated to the client).

Property 6, although seemingly counter-intuitive, has actually been found in
the Amazon E-Commerce Service, as reported in [14]. The service requires that,
to add one more of an existing item into a cart, the CartEdit operation be
invoked on that item instead of repeating a CartAdd message. Therefore, this
property entails that any ItemId appearing in a CartAdd message no longer
appears in a future CartAdd (unless the item is found in a CartRemove message
in between).

The reader is referred to the Beep Store documentation for a list of all con-
straints in the interface contract; further examples of constraints in other sce-
narios can be found in our earlier papers [13, 15, 14].

3.2 Issues with Current Technologies

The examples shown above represent a small portion of all the constraints im-
posed by the Beep Store. The interface contract for a typical web service is
made of dozens of such properties. However, as numerous and well-documented
as these properties are, the technologies over which web applications are built
bring a number of issues when it comes to handling them.

Free-Form Messages. As such, there is no “web service protocol”. The closest
one gets to such a concept is with the Simple Object Access Protocol (SOAP)
[20], itself built as a special case of the HTTP protocol that web browsers have
been using for decades. A SOAP request is little more than a collection of HTTP
headers, followed by an XML payload formed of two mandatory sections: Head
and Body (the XML documents in Figure 2 are sent inside the Body). Apart
from these conditions, SOAP regards the payload as a free-form document. This
entails that the message structure —the web equivalent of types in a classical
programming language— is not even checked.

Stateful Behaviour, Stateless Protocol. HTTP is also a stateless proto-
col, where each new request processed by the server is detached from previous
ones, and unrelated to those that follow. At the time HTTP was designed, this
characteristic was appealing for its simplicity of implementation and the limited
resources it requires for processing a request. Yet, we have seen how the Beep
Store, typical of many web applications, requires long-running interactions span-
ning multiple requests and responses, and where past requests determine current
valid ones.

Runtime Verification for the Web 113

Since session logic is not carried transparently through the protocol, it must
be explicitly handled by the application itself. This is why the Beep Store must
simulate sessions through a sequence of individual request-response pairs, where
a unique identifier created at the start of a session (the SessionKey) is repeated
in each subsequent message. The session’s state (shopping cart contents, user
name) is written to persistent storage between requests and can be retrieved
using this identifier.

No Standardized Contract Notation. It follows from these observations
that most properties of an interface contract lie at a higher conceptual level
than current web protocols. Their expression and enforcement should therefore
be handled in an extra control layer on top of HTTP and SOAP.

The only part of interface contracts that made it to some form of standard-
ization is the Web Service Description Language (WSDL) [9]. WSDL allows the
creation of an auxiliary document that specifies the XML structure of each re-
quest and response accepted by a service. Existing software frameworks, such
as Apache Axis [3], can generate template functions called stubs for each mes-
sage. By communicating only through these auto-generated stubs, a client or
server can be guaranteed to send only WSDL-compliant messages. The same
stubs can also verify at runtime that any incoming message follows the WSDL
specification.

If the generation of WSDL-based stubs and the runtime verification of message
structures is now considered routine, the Beep Store shows that there is much
more to interface contracts than checking XML message structures: WSDL run-
time verification only traps violations of Property 1. No standardized language
exists to express Properties 2-6; no framework helps building an application that
complies with them, or traps their violations at runtime. A developer needs to
peruse the service’s natural language documentation, and check each constraint
manually with a copious amount of tests.

To illustrate this fact, the Beep Store browser client can be turned into a
deliberately faulty application. Its user interface contains a “Fault Parameters”
pane, shown in Figure 3, that provides the complete list of constraints specified
by the store’s documentation. Normally, the client is robust and performs thor-
ough checks of all these constraints before sending any message to the server. For
example, once a shopping cart is created, it hides the “Create cart” button to
avoid users creating a second one (see P5). Similarly, it hides the Login button
once a user has successfully logged in (see P4). With the Fault pane, the user
can tick the checkbox for any of these constraints, causing the application to
bypass these measures and allow actions at inappropriate moments.

3.3 Particularities of Web Service Interface Contracts

Web service interface contracts bear many resemblances with temporal prop-
erties or contracts found in other domains. In object-oriented languages, some
classes, such as Java’s File or Iterator, also impose constraints on the sequence
of method calls; these class contracts can be checked at runtime using tools such

114 S. Hallé and R. Villemaire

Fig. 3. The Beep Store’s “Fault Parameters” pane allows the application to deliberately
ignore some elements of its interface contract, causing the server to reply with an error
message on purpose

as Java-MOP [8]. Similarly, research on trace validation applied to spacecraft test
sequences unveiled constraints that correlate both data values and ordering of
events [6]. This hints that existing solutions developed for other scenarios could
be ported to the web service realm. However, web services exhibits a combination
of characteristics that makes them unique.

Data-Aware Dependencies. Simplified versions of the contract properties
could be verified using classical Petri nets, finite state automata or propositional
linear temporal logic. However, many constraints can only be faithfully checked
by taking into account dependencies between data parameters. Obviously, the
data elements cannot be enumerated statically: Property 6 would have to be
repeated for every item in the Beep Store’s catalogue, which would be required
to be known in advance.

Data-aware dependencies do not merely require the access to parameters in-
side a message; they also need such values to be kept, and compared at a later
time with values inside another message. Moreover, the time separating these
two messages is unknown in advance, and potentially unbounded; hence it does
not suffice to keep a fixed-size window of past messages.

Complex Message Structure. Not only do most messages contain an action
name and a set of data parameters, these parameters themselves are subject to a
potentially complex XML structure. In the Beep Store, one cannot simply refer
to “the” item ID in a shopping cart, as there can be multiple instances of the
ItemId element in a message. A property can require that all, or only one of
these item IDs fulfils a constraint, hence a form of quantification over message
contents is required.

This is probably the single most distinguishing point with respect to other
verification applications. Most verification solutions that take data dependencies

Runtime Verification for the Web 115

into account work in a context where there is at most one instance of a parameter
in a message (removing the need for quantification).

4 Runtime Verification of Interface Contracts

The previous sections described how the architecture of web applications, cou-
pled with the state of current technologies, calls for a runtime verification so-
lution of interface contracts. This section describes the authors’ attempts at
developing and running a possible solution. It first shows how the properties
in Section 3 can be expressed in a formal language, called LTL-FO+. It then
presents BeepBeep, a Java-based runtime monitor for LTL-FO+. BeepBeep can
be integrated into the Beep Store described in Section 2, and enforce its interface
contract at runtime.

4.1 Formalizing Contracts with LTL-FO+

LTL-FO+ is an extension of Linear Temporal Logic (LTL) developed to address
the characteristics of web application interface contracts. Relating the expres-
siveness of this logic to other solutions has extensively been done in previous
papers [15, 19].

Let Q be a set of queries, M a set of messages, and V a set of atomic values.
A query function π is defined as π : Q×M → 2V . Intuitively, π(q,m) retrieves a
set of values from a message m, given some “filtering criterion” q. We typically
use as π the function that takes as query a path in an XML document (a slash-
separated list of element names) and which returns all the values at the end of
such a path in the current message. For example, in the following message m,
we have π(“message/item”,m) = {A,B}.

<Message>
<Item>A</Item>
<Item>B</Item>
<Client>10</Client>

</Message>

A message trace is a sequence m = m1m2 . . . such that mi ∈M for i ≥ 1; mi

denotes the suffix of mimi+1

Definition 1 (Syntax). The language LTL-FO+ (Linear Temporal Logic with
Full First-order Quantification) is obtained by closing LTL under the following
construction rules:

1. If x and y are variables or constants, then x = y is a LTL-FO+ formula;
2. If ϕ and ψ are LTL-FO+ formulæ, then ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, Gϕ, Fϕ,

Xϕ, ϕUψ, ϕVψ are LTL-FO+ formulæ;
3. If ϕ is a LTL-FO+ formula, xi is a free variable in ϕ, q ∈ Q is a query

expression, then ∃qxi : ϕ and ∀qxi : ϕ are LTL-FO+ formulæ.

116 S. Hallé and R. Villemaire

Definition 2 (Semantics). We say a message trace m satisfies the LTL-FO+

formula ϕ, and write m |= ϕ if and only if it respects the following rules: if ϕ
is of the form ¬ψ, ψ ∨ ψ′, Fψ, Xψ and ψUψ′, the semantics is identical to
LTL’s. Let q ∈ Q be some query expression. The remaining cases are defined as:

m |= c1 = c2 ⇔ c1 is equal to c2
m |= ∃qxi : ϕ⇔ m |= ϕ[b/xi] for some b ∈ π(q,m1)

We define the semantics of the other connectives with the usual identities:
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), ϕ→ ψ ≡ ¬ϕ ∨ ψ, Gϕ ≡ ¬(F¬ϕ), ϕVψ ≡ ¬(¬ϕU¬ψ),
∀qx : ϕ ≡ ¬(∃qx : ¬ϕ).

Equipped with this language, it is possible to revisit the interface contract
described earlier and formalize it with LTL-FO+ formulæ. Properties 1 and 2
are data constraints; they only involve the temporal operator G to specify that
the data constraint applies to all messages. If we define q1 = Message/Action,
q2 = Message/Page and q3 = Message/Results, then Properties 1 and 2 become
respectively equations 1 and 2 below:

G (∀q1a : a = ItemSearch→ (∀q2p : p ≥ 1 ∧ p ≤ 20)) (1)
G (∀q1a : a = ItemSearch→ (∃q3r : � ↔ ∃q2p : �)) (2)

The first property states that globally, if the message’s action is ItemSearch,
then for every Page value p inside that message, p is in the range [1, 20]. Similarly,
the second property states that any ItemSearch message is such that for every
Results element, a Page element must exist (π returns the empty set if no
element with the specified path can be found in a message). The symbol �
stands for “true”; ∃qx : � is true whenever the path q exists.

In a similar way, control-flow properties P3 and P4 become formulæ 3 and 4
below:

G (∀q1a : a = LoginResponse→ (XG (∀q1a
′ : a′ �= LoginResponse)) (3)

(∀q1a : a �= CartCreateW (∀q1a
′ : a′ �= LoginResponse) (4)

Finally, by defining q4 = Message/CartId, q5 = Message/SessionKey and
q6 = Message/Items/Item, data-aware properties 5 and 6 can be formalized
into the following:

G (∀q4c : ∀q5k : G (∀q4c
′ : ∀q5k

′ : (k = k′ → c = c′))) (5)

G (∀q1a : a = CartAdd→
(∀q6 i : X G (∀q1a

′ : a′ = CartAdd→ ∀q6 i
′ : i �= i′))) (6)

Equation 5 states that in every message, the presence of a CartId c and
SessionKey k entails that, from that point on, any other occurrences of a CartId
c′ and SessionKey k′ are such that the same key imposes the same ID. This is
equivalent to P5. The “data-awareness” of this constraint can be observed in

Runtime Verification for the Web 117

the fact that two variables that have been quantified across temporal operators
(such as c and c′) are compared at a later point in the expression.

A particularity of LTL-FO+ lies in its quantification mechanism: note in the
definition how the values over which quantification applies are only those found
in the current message, m1. For example, in equation 6, variables i and i′ both
quantify over catalogue item IDs. If quantification did not depend on the current
message, the previous formula would always be false, as any value c bound to i
would also be admissible for i′, making the assertion i �= i′ false at least once.
The previous formula rather states that at any time in the execution of the
application, for any item ID i appearing in a CartAdd message, then from now
on in any future CartAdd message, any item ID i′ is different from i. Hence,
it will be true exactly when no item appears more than once in any CartAdd
message, which is consistent with Property 6.

LTL-FO+ allows the Beep Store to publicize a formal version of its interface
contract. To this end, an auxiliary file, contract.txt, is hosted along with the
Beep Store’s other files on the server. It contains the list of all LTL-FO+ formulæ
forming that contract, including equations (1)-(6) described above. Figure 4
shows a snippet of the contract file containing a text rendition of Property 1.

% The page element must be an integer between 1 and 20

; G (([a /Message/Action] ((a) = ({ItemSearch}))) ->

([p /Message/Page] (((p) > ({1})) & ((p) < ({20})))))

Fig. 4. A sample contract specification. Each constraint is preceded by a caption.

4.2 The BeepBeep Runtime Monitor

Since LTL-FO+ draws heavily on classical LTL, a runtime verification proce-
dure can be obtained from an algorithm presented in [10], which creates the
Büchi automaton for a given LTL formula. This algorithm performs on the fly
and generates the automaton as the sequence of states unwinds. The LTL-FO+

monitoring procedure, detailed in [15], is an extension of this algorithm, adapted
for first-order quantification on message elements.

LTL-FO+ monitoring can then be implemented into a lightweight tool for web
applications. It suffices that incoming and outgoing messages be intercepted
as “events” and fed to the monitor. The algorithm updates its internal state
according to the processed event, and eventually blocks the actual transmission
or reception if a violation is discovered.

Since a web application is inherently distributed, the location of this monitor
leads to multiple architectural choices, shown in Figure 5. In client-side verifi-
cation, shown in Figure 5(a), contract compliance is checked in the user’s web
browser before any message is allowed to be transmitted over the network: an
outgoing message m is sent to a function δ monitoring a specification ϕ. Incom-
ing messages are filtered in the same way before reaching the application’s code.
Server-side verification 5(b) works on the opposite. A third solution is to use a

118 S. Hallé and R. Villemaire

third-party protocol coordinator (not shown) as suggested by [5]. The coordi-
nator ideally resides neither in the client’s browser nor in the web server, and
acts as a monitoring proxy for both ends of the communication. To illustrate
monitoring on the client side, we developed BeepBeep, a lightweight, Java-based
runtime monitor for Ajax web applications.4

mm

�

OK
�

Application Service

(a) Client-side verification

m m

�

OK
�

Application Service

(b) Server-side verification

Fig. 5. Design choices for runtime verification of web applications

In classical (e.g. Java) programs, intercepting events generally requires instru-
menting the code or resorting to mechanisms such as pointcuts [8]. In the present
case, network operations converge to a single input-output point, the standard
XMLHttpRequest object provided by the local browser. It becomes easy to in-
terpose an extra layer of processing over that object, without resorting to any
other form of instrumentation.

Including BeepBeep into an existing Ajax application is straightforward.
It suffices to host BeepBeep’s two files (beepbeep.jar, the Java applet, and
beepbeep.js, an auxiliary JavaScript file) in the same directory as the Ajax
application. BeepBeep is bootstrapped by adding a single line in the <head>
portion of the application’s HTML page.

When such a BeepBeep-enabled application is started, the procedure de-
scribed in Section 2.2 is followed. BeepBeep’s additional JavaScript include file
dynamically appends the snippet of HTML code instructing the browser to load
the Java applet implementing the LTL-FO+ monitoring algorithm, which ap-
pears as a small rectangle at the bottom of the application’s page. The speci-
fication passed to the applet is automatically retrieved from the contract.txt
file hosted on the server.

The JavaScript code also overloads the methods of the standard XMLHttp-
Request object. When the original application’s JavaScript invokes the send
method of XMLHttpRequest, it actually calls the method implemented by Beep-
Beep first. This way, incoming and outgoing messages, before being actually sent
(or returned), can be deviated to the applet for verification.

4.3 Wrapping Up

We can now return to the Beep Store application and perform runtime monitor-
ing of its interface contract on the client side. Assuming that the store provides
4 BeepBeep and its source code are available for download under a free software license:
http://beepbeep.sourceforge.net

http://beepbeep.sourceforge.net

Runtime Verification for the Web 119

a contract file and hosts the two BeepBeep files, we can then modify its HTML
code to include the additional JavaScript file, as described above.

The monitor-enabled Beep Store application can be started as usual in a
standard browser. As previously, one can open the store’s Fault parameters pane,
and disable, for example, the internal enforcement of property 3 (“don’t login
twice”). This time, however, the rectangle at the bottom of the page tells us
that BeepBeep successfully fetched a contract and is awaiting for incoming or
outgoing XML messages.

The first login attempt can be executed as expected. BeepBeep’s display up-
dates, indicating that it indeed witnessed the corresponding messages, but let
them through as they did not violate any constraint. After successfully logging
in, as expected the faulty client fails to hide the Login link. Clicking on it a
second time summons the Login pane, where one can enter the same credentials
and press on the Login button. Like before, the client attempts to send a Login
XML message; however, this time, BeepBeep intercepts the message, correctly
discovers that it violates property 3, and skips the piece of code that would
normally send it. It also pops a window alerting the user, showing the caption
associated with the violated property in the contract file.

This scenario has also been experimented on a real-world web application
for the Amazon E-Commerce Service [16]. Our findings indicate that on a low-
end computer, monitoring LTL-FO+ contract properties produces an average
overhead of around 3% or 10 ms per message in absolute numbers. As a rule, the
state of the network accounts for wider variations than the additional processing
required by the monitor.

It shall be noted that BeepBeep is independent of any browser-server pair
of applications. Its Java applet is self-contained, and the JavaScript auxiliary
file can be included into any web page and load it at startup. It can correctly
intercept and process any request as long as it is XML-based. Similarly, the
contract to be monitored is hosted in a separate text file that is read each time
the applet is loaded —hence the contract can be changed without changing
the monitor. This way, BeepBeep is a runtime monitoring solution that can be
applied to other scenarios than the Beep Store: it suffices to write an appropriate
contract for the application under study.

5 Conclusion

This tutorial has highlighted the potential for the application of runtime veri-
fication techniques to the field of web services; yet several interesting questions
have been left out from this presentation. For example, since events in web ap-
plications are sequences of XML messages, it is possible to treat a sequence of
such events as one large XML “document” and leverage commercial XML query
processors to perform an equivalent validation of message traces [18]. However,
the monitoring of quantified formulæ presents a potential for unbounded re-
source consumption. The forward-only fragment of LTL is an ongoing attempt
at providing a bounded subset of the logic suitable for limited environments [17].

120 S. Hallé and R. Villemaire

Finally, if the goal of client-side monitoring is to relieve the server from the bur-
den of dealing with faulty clients, how can one be certain that a client indeed
monitors the contract? The concept of cooperative runtime monitoring [11] has
recently been put forward to resolve such an issue.

Finally, it could be very well possible that application developers refrain from
integrating more complex behaviours into their web applications precisely for
lack of tools to deal with them in a systematic way. Hence even a modest contri-
bution from runtime verification to the practitioner’s toolbox could enhance the
quality and ease of development of web applications. In this regard, we hope this
tutorial will encourage researchers in the monitoring and validation community
to consider web applications as a potential field of application to their work.

References

1. Amazon e-commerce service, http://solutions.amazonwebservices.com
2. Paypal web service API documentation, http://www.paypal.com
3. Apache Axis (2010), http://ws.apache.org/axis2
4. ASE 2010, 25th IEEE/ACM International Conference on Automated Software

Engineering, Antwerp, Belgium, September 20-24. IEEE Computer Society, Los
Alamitos (2010)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services, Concepts, Archi-
tectures and Applications, p. 354. Springer, Heidelberg (2004)

6. Barringer, H., Havelund, K., Rydeheard, D.E., Groce, A.: Rule systems for runtime
verification: A short tutorial. In: Peled, D. (ed.) RV 2009. LNCS, vol. 5779, pp.
1–24. Springer, Heidelberg (2009)

7. Boutaba, R., Golab, W., Iraqi, Y., Arnaud, B.S.: Lightpaths on demand: A web-
services-based management system. IEEE Communications Magazine, 2–9 (July
2004)

8. Chen, F., d’Amorim, M., Roşu, G.: Checking and correcting behaviors of java
programs at runtime with Java-MOP. Electr. Notes Theor. Comput. Sci. 144(4),
3–20 (2006)

9. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (WSDL) 1.1, W3C note (2001)

10. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) PSTV. IFIP
Conference Proceedings, vol. 38, pp. 3–18. Chapman & Hall, Boca Raton (1995)

11. Hallé, S.: Cooperative runtime monitoring of LTL interface contracts. In: EDOC.
IEEE Computer Society, Los Alamitos (to appear, October 2010)

12. Hallé, S., Bultan, T., Hughes, G., Alkhalaf, M., Villemaire, R.: Runtime verification
of web service interface contracts. IEEE Computer 43(3), 59–66 (2010)

13. Hallé, S., Ettema, T., Bunch, C., Bultan, T.: Eliminating navigation errors in
web applications via model checking and runtime enforcement of navigation state
machines. In: ASE [4] (2010)

14. Hallé, S., Hughes, G., Bultan, T., Alkhalaf, M.: Generating interface grammars
from WSDL for automated verification of web services. In: Baresi, L., Chi, C.-H.,
Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 516–530. Springer,
Heidelberg (2009)

15. Hallé, S., Villemaire, R.: Runtime monitoring of message-based workflows with
data. In: EDOC, pp. 63–72. IEEE Computer Society, Los Alamitos (2008)

http://solutions.amazonwebservices.com
http://www.paypal.com
http://ws.apache.org/axis2

Runtime Verification for the Web 121

16. Hallé, S., Villemaire, R.: Browser-based enforcement of interface contracts in web
applications with BeepBeep. In: Bouajjani, A., Maler, O. (eds.) Computer Aided
Verification. LNCS, vol. 5643, pp. 648–653. Springer, Heidelberg (2009)

17. Hallé, S., Villemaire, R.: Runtime monitoring of web service choreographies using
streaming XML. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 2118–2125. ACM,
New York (2009)

18. Hallé, S., Villemaire, R.: XML query evaluation in validation and monitoring of
web service interface contracts. In: dvanced Applications and Structures in XML
Processing: Label Streams, Semantics Utilization and Data Query Technologies,
pp. 406–424. IGI Global (2010)

19. Hallé, S., Villemaire, R., Cherkaoui, O.: Specifying and validating data-aware tem-
poral web service properties. IEEE Trans. Software Eng. 35(5), 669–683 (2009)

20. Mitra, N., Lafon, Y.: SOAP version 1.2 part 0: Primer, 2nd edn. (2007),
http://www.w3.org/TR/2007/REC-soap12-part0-20070427

http://www.w3.org/TR/2007/REC-soap12-part0-20070427

	Runtime Verification for the Web
	Introduction
	Anatomy of a Web Application: The Beep Store
	End-User Perspective
	Internal Workings
	Interaction through XML
	The Beep Store as a Web Service

	Interface Contracts in Web Applications
	The Beep Store Interface Contract
	Issues with Current Technologies
	Particularities of Web Service Interface Contracts

	Runtime Verification of Interface Contracts
	Formalizing Contracts with LTL-FO+
	The BeepBeep Runtime Monitor
	Wrapping Up

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

