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Abstract

Two combinatorial identities are proved.
(1) Hu (&) = "B#Mn(ﬁ), where H, (&) denotes the total number of
vertices in all the n-edged rooted planar Eulerian maps and M, (&)
denotes the number of such maps.
(2) Ha(L) = Z5£138E2 37, (L), where H,(£) and Mo (L) are defined
similarly for the class £ of loopless maps. Simple closed formulae for
My (€) and M, (L) are well known, and they correspond to equivalent

binomial sum identities.
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1 Map Enumeration and Identities

1.1. Motivation. Let X stand for a class of rooted planar maps and X,
denote the set of maps in X having n edges. M,, = M, (X) := |X,| denotes
the number of maps in X,,. Finding M, is a classical enumerative prob-
lem initiated by W.T.Tutte, and it has been solved effectively for many
interesting types of maps.

Recently, one of the authors had encountered the problem of enumera-
ting the total number H, = H,(X) of vertices in X, ([11]; cf. also [10]).
This 1s often a trivial or easy question. Such is the case for cubic or,
more generally, s-valent maps and (by Euler’s formula) for triangulations
or, more generally, maps with all faces of valency s > 3. In all these cases,

H, = a,M, (1.1)

for a simple multiplicative constant o, = ay, (X).

For instance, any n-edged triangulation contains 2 + n/3 vertices, so
that for triangulations, H, = ”T%Mn.

Moreover, if X is a self-dual class of maps (i.e. X* = X where X* consists
of the maps topologically dual to the maps in X), then, as can easily be
seen, H, = ’lzﬁMn All (planar) maps, non-separable maps, polyhedral
maps and maps without either loops or isthmuses provide examples of self-
dual classes.

For other types of maps, we do not know any direct inter-connection
between the two quantities that are valid a fortiori, although sometimes
the counting of H, 1s, in a sense, only a technical problem. Namely,
H, = > hyn where hgp, = hg,(X) stands for the total number of

k

vertices of valency k in X,,. As shown in [11], Ay n = 2n - rg n/k, Where
Tkn = Tk n(X) denotes the number of maps with the root vertex of valency

k. Thus,

Hy=205 22 and M, =5 v, 1.2
and one needs only to determine rg,. If, instead, the numbers
Gkn = qen(X) of maps having k vertices and n edges are known,
then we have

H, = Zk’ “qrn and M, = qum. (1.3)

k k

1.2. Enumerative identities. Calculations have suggested, however, that
in at least two non-trivial cases, we can attain much more [10]: there should
exist closed sum-free expressions for H, of type (1.1). Namely, for planar
Eulerian maps (&),

; (1.4)



likewise, for planar loopless maps (L),
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Ha(L) = on”+ 13n 42
2(4n+ 1)

This is the sequence 1,2,8,43,268,1824,13156,...The last formula can be

expressed even more elegantly in dual form (or, equivalently, for the total
number of faces): for isthmusless maps (L*),

Bn+2)(n+1)
2(4n+1)
(of course, M, (X) = M, (X*)). This is equivalent to (1.5) by the relation
an (X) + apn (X*) = n+2, which follows directly from Euler’s formula. Note,

for completeness, that £* represents bipartite planar maps and
2(n+2)
3

My (L), n>1 (1.5)

Ho(L7) = Mo (L), n>1, (1.5%)

Ho(E) = Ma(E%), n>1, (1.4

if identity (1.4) holds.

It is also clear that % = ptn(X) is the mean vertex valency in X,.
Thus, in (1.1), ap, = 2n/ iy, and the expressions above can be reformulated
in terms of .

In turn, there are closed sum-free formulae for M, (&) and M, (L).
Namely, by [15]:

327~ 1(2p)!
M, = — 1.
(€) nl(n +2)! (1.6)
and by [16]:
6(4n + 1)!
My (L) = ———~—. 1.7
(%) n!(3n + 3)! (1.7)
Therefore, from (1.4) we obtain
27 =1(2n)! 1
(€)= =2 _gn-1 1.
(€) nl(n+ 1)! ¢ (18)
where C), = n%l_l(zn") is the n-th Catalan number. Numerically, H, (&) is
the sequence 1,4,20,112,672,4224,... Note also that H,(&*) = 2"C),.
Moreover, for the class of all maps A, M,(A) = %, whence,

H,y(A) = 3"C,,. This is the sequence 1,318,135, 1134, 10206, ...
Similarly, from identities (1.5*) and (1.7),

. (4n)! 1 4n

H,(L") = = . 1.
(£%) n!(Bn+ 1) 3n+1l\n (1.9)

Curiously enough, the latter expression has also quite different interpreta-

tions. For instance, this is the number of pentagonal n-cell dissections of
a (rooted) convex (3n + 2)-gon (and the corresponding generating function




fs(z) is defined by the equation f5(z) = z(1 + f5(z))*), cf. [6].
We note that the three integer sequences given above are lacking in [14];
they are presented in [13] with ID numbers A027836, A003645 and A005159,

resp.

1.3. Binomial coefficient identities. According to [15], the number of
maps in &, with &k vertices is

o) = ik & (ko) (7)o

Summing (1.10) over k we obtain M,(&). So that formula (1.6) gives rise
to the next identity:

S S ) () =

Likewise, by (1.3), formula (1.8) (and, thus, (1.4)) is equivalent to the iden-
tity

e R QUEs s

Now, there is a snnple exact formula for the number of loopless maps
with n edges and root vertex valency k obtained by E. A. Bender and
N. C. Wormald [1]: rg »(L) = Lg p, where

k An — 2k\ (2k 4 2
Lk’n_2(2n—k)(3n—k’—|—1)<n—k’)(k’—i—l)' (1.13)

Formulae (1.7) and (1.13) imply

Z”: k <4n - Qk) (2/<: + 2) ~ 12(4n + 1)! (1.14)

kZO(?n—k)(i%n—k—l—l) n—k E+1/)  nl(Bn+3)7 ’
Moreover, according to [1], the number of rooted 3-connected planar trian-
gulations with 3n 4+ 3 edges and root vertex valency k + 2 is equal to the

number Ly ,. Now, the number of rooted 3-connected planar triangulations
with 3n+3 edges (all with n+3 vertices) is equal to M, (£). Thus, by (1.2),

"k n+1 An — 2k (2k +2\  2(n+ 3)(4n+ 1)!
;k+2(2n—k)(3n—k+l)<n—k)(k—l—l)_ n!(3n + 3)!
(1.15)

(in the last three identities we extended formally the range of summation
to k = 0). We, however, need to prove the identity




n

dn = 2k (2k+2\ _ 3(5n7 + 13n + 2)(4n)!
(2n — k 3n—k’—|—1) —k k+1/) n!(3n + 3)! ’
(1.16)

k:l

which is equivalent to formula (1.5) by (1.2).
Presumably these binomial coefficient identities are new (at least, we
failed to find them in the available literature, including [4], [5] and [12]).

The main aim of the present note is to prove the identities given above:

1.4. Theorem. Combinatorial identities (1.4) and (1.5) are valid. Equiva-
lently: expressions (1.8) and (1.9) and binomial coefficient identities (1.12)
and (1.16) are valid.

For both classes of maps we provide here two different proofs, one an-
alytical (by Lagrange inversion) and the other combinatorial (binomial).
Both proofs can turn out to be useful for possible generalizations, if any, to
other classes of maps or to weight enumerators different from the number
of vertices. Of course, it would be very interesting to deduce a direct (“ex
plaining”) bijective proof of identities (1.4) and (1.5) (or their duals (1.4%)
and (1.5%)).

2 Analytical Proofs
2.1. Eulerian maps. According to [15],
2-n!
L en (2.1)

Kn—k+2)! "

where ¢y ,, is the coefficient of ™ in

(=Y "

Ten(€E) =

From expression (1.3),

n+1
2k - n!
Z k) (2.3)

which simplifies to the coeff|C|ent of ™ in

2 ’i’:l n+1\ [(1—42)"12 -1\
n+1k:0 k 2

(the upper limit can be extended from n to n+ 1 because no Eulerian map




has more vertices than edges)

_ 2 ((1—495)—1/2_1) ((1_496)—1/2_1“)““

n+1 2 2
2 (1—4l‘)_1/2—1 o n+2 (1—4l‘)_1/2—1 o n+1
o+l 2 2 '
(2.4)
As in [15], put y := [1 — (1 — 42)'/?]/(2x), so that
y =1+ zy? (2.5)
and
(1 —4z)~Y2 -1 1
—_—t 1= — 2.
5 tl=5— (2.6)
Lagrange’s inversion formula (see, e.g., [8]) states that if
y=a+ zp(y) (2.7a)
then
n qn— 1
)+ Z P @) el e, (2.71)

where ¢(y) and f(y) are arbitrary formal generating functions. In order
to apply this formula to series (2.4), taking into account expressions (2.5)
and (2.6) we set @ := 1, ¢(y) := y? and

L oy —(n+2) o —(n+1)
) == 2= (2 - )~V (2.8)
Now, applying formula (2.7b) to (2.8), the coefficient of 2" in f(y) is
2 dqn—1!

DT (DT — -
(2.9)

Setting 2 := x — 1, we find that (2.9) is the coefficient of 2"~ in
2

m {(n + 2)(1 — z)—(n+3)(1 + Z)2n _ (n + 1)(1 . Z)—(n+2)(1 n 2)2"} .

(2.10)

Now the coefficient of z2*~1 in (1 — Z)_(n+2)(1 + 2)*" s

S (G ) e s (1)

)



And the coefficient of z”~1 in (1- Z)_(n+3)(1 + Z)Zn s
’il n+k+2 2n
k n—k—1
k=0
_n_l n+k+1 2n +n Cint k41 2n
o k n—k—1 k—1 n—k—1
k=0 k=1
_gn-1 on +n_2 n+k+2 on
- n—1 k n—k—2
k=0
L 2 (2n)! = (n-2
=" 1( )+—Z
n—1 (n—i—?)!(n—?)!kzo k

2n 2n
_ on—1 n—2
=2 (n—1)+2 (n—?)'

Substituting these values into (2.10) and simplifying we obtain (1.8). O

A similar calculation can be used to re-derive formula (1.6).

2.2. Loopless maps. Let

az,y) =YY Ly, (2.11)
n=0k=0
where Ly , is defined by formula (1.13). Then by [1],
ol = G (y+3vy—<1+v>2+<1+v><1+v—y> 1—%),
(2.12)
where
v=2z(l+v) (2.13)
From (1.2) we obtain
Ho(L) = QnZn: L’;—” (2.14)
k=1

-9 N9 )
n; - n=

The first term in formula (2.15) is equal to the coefficient of 2" in

L (2.15)



Qn/ (@ 9) 4y, (2.16)

y

After the change of variables w := /1 — (foy)Q and some tedious calcula-

tions, expression (2.16) evaluates to
n(21n |v] + v® — 2v% — Bu + 2). (2.17)

If functions (2.17) and (2.13) are used for f(v) and ¢(v) respectively,
then from Lagrange’s formulae (2.7) with the variable v instead of y, the

coefficient of 2™ in f(v) is the coefficient of v"~! in

L@+ ot (2.18)

(Note that f’(v) contains the term v~! which has a singularity at
v = 0; however, Lagrangian inversion is independent of any analytical
considerations due to its purely combinatorial proof [8]).

Differentiating function (2.17) and then simplifying, we obtain the co-
efficient of 2" in power series (2.18):

6(4n + 1)!
n!(3n 4+ 31"
which, by (1.7), is just (n 4 2) times the number of rooted loopless maps
with n edges.

The second term in (2.15) is equal to 3n1+1 (47?) according to (1.13).
Together with (2.19) this gives easily

(n+2) (2.19)

4n)!

Ho(L) = 74+1 L 2.2
(L) =3(5n" +13n+ )n!(3n—|—3)!’ (2.20)
which, due to identity (1.6), is equivalent to (1.5) . O

3 Binomial Coefficient Proofs

3.1. Eulerian maps. From (1.3) and (1.10)

H,(€) = Zn: i _ik(nn__lwr? , Z (n_ v ) (k;”) (3.1)

Set j := i+ k. Then the right-hand side of (3.1) becomes

> () S i ()




=ﬁ”y(ﬁfj),§(iii)(2fi) 62
+a

Now, (k 1) is the coefficient of "~ Lin (14+2)/~!, and (Z"'}) is the coefficient

of " ~**2in (1 4 z)"*l. So that in (3.2), the internal sum over k is the
coefficient of 2"t in (14 2)"*7, which is (”""7) Therefore expression (3.2)
1s equal to

2 "/ 2n n+j g—1+1]
n(n—i—l);j(n—j)(n—l—l) (n—l—l n-|—1'z_: (n— NG -1
The last sum is equal to

i (e (00 = (o)

So, (3.3) simplifies to (1.8). d

A similar calculation leads to yet another derivation of formula (1.6), and
one can also deduce (1.12) from (1.11).

3.2. Loopless maps. From (1.13), the first term in (2.15) is

§ n dn —2k\ (2k +2
Z(?n—k)(i%n—k—l—l) n—k k+1)° (34)
k=0

By the binomial theorem, (2:_:—12) is the coefficient of z"*1in (1 — 4z)~1/2,

which is the coefficient of z* in
(1 —4z)~Y2 -1

X

1— (1—41‘)1/2}
2x ’

To evaluate sum (3.4) we look for a generating function in which the

—2(1 - 493)—1/2[ (3.5)

coefficient of "% is
1 4n — 2k
. 3.6
(2n—k)(3n—k+1)<n—k) (3.6)
According to [7] (formulae (16.8) and (16.11)), the following two expansions
are valid:
k
> 2n+k | 1= (1= 4x)t/?
"=(1-4 Pl — 3.7
Z()()[ - (3.7
and
—~ k [(n+k 1— (1—4a)'/?
3 ( " )x" St (3.8)
= 2n+ k n 2x



These are also formulae (5.72) and (5.70) in [5], and in both books these
equalities were deduced in elementary analytical ways. Other analytical
proofs are also known in the literature. At the end we provide another,
purely combinatorial proof of (3.8).

Now, expression (3.6) is 2n times the sum of the following 3 terms:

1 n+2(n—k)
2n—|—2(n—k)< n—k ) (3:92)

1 2n+2(n—k —1)
2n+2—|—2(n—k_1)< n—k—1 ) (3.9b)

1 2+ 142(n—k)
_2n+1—|—2(n—k)< n—k ) (3.9¢)

Dividing (3.8) by k, setting n to n — k, n — k — 1 and n — k, and setting
k to 2n, 2n 4+ 2 and 2n + 1, we find that (3.9a), (3.9b) and (3.9¢) is the

coefficient of £~ %, gr—F-1 n=k respectively, in

and

x and z

11— (1—4dx)t/2\2n
%(—% ) , (3.10a)
11— (1 —4x)l/?\ 2042
2n—|—2( 2z ) (3.10b)
and
1 /1= (1 —4x)t/2\ 21
o+ 1( 2z ) ’ (3.10c)

Multiplying each of these generating functions by function (3.5) we find

that expression (3.4) is 4n times the sum of the coefficients of 2", 2" ~! and
x™, respectively, in
(1 —4x)~1/? (1 —(1— 4x)1/2)2n+1
A11b
2n 2x ’ (3 )
1 —42)~Y2 11— (1 — 4x)1/2\ 2n+3
(1—4z) ( (1= 4z) ) (3.11b)
2n+2 2z
and
1 —4z)~Y2 11— (1 — 42)1/2\ 2042
_1-d) ( (1= 4z) ) . (3.11b)
2n+1 2z

Substituting & := 2n+1, 2n+3 and 2n+2 into power series (3.7), summing
the appropriate coefficients and multiplying by 4n we obtain, after some
simplification, expression (2.20). The proof of (1.5) is then completed as

10



in 2.2. O

Proofs of expansions (3.8) and (3.7). It is well known that the coefficient
of ™ in [1 — (1 —4x)'/?]/(2x) is the nth Catalan number, which is, in turn,
the number of balanced parenthesis systems, or Dyck words, with n left
and n right parentheses (see, e.g., [2]). Thus, the right hand series of (3.8)
counts ordered k-tuples of Dyck words which have a total of n left and
n right parentheses. Now, following [9], we establish a bijection between
these k-tuples and the set of all Dyck words beginning with at least & — 1
left parentheses and containing n — k + 1 parentheses of each sort. Given
such a k-tuple, concatenate the & Dyck words in left-to-right order. Insert a
right parenthesis between every adjacent pair of Dyck words, and then add
k — 1 left parentheses at the very beginning. This yields the required Dyck
word. This construction is reversible. Indeed, given a Dyck word beginning
with at least &k — 1 left parentheses and containing n — k + 1 parentheses of
each sort, consider the mate of each of the first £ — 1 left parentheses as a
‘separator’. Tt is clear that a certain Dyck word lies between the (k — 1)st
left parenthesis and its mate (the first separator), a Dyck word lies between
each pair of adjacent separators and a Dyck word lies to the right of the
last separator, forming jointly the desired k-tuple.

According to [3, p. 70] the number of Dyck words beginning with at
least k —1 left parentheses and containing the total of n—k+1 parentheses
of each sort is just the coefficient of ™ in the left side of (3.8).

To derive (3.7), we note that

= (In+k > n 2n+ k > k 2n+k
n:2 n n
Z( n )x T;Qn—i—k( n )x +;2n+k< n )x

n=0

20 d — k 2n + k > n 2n + k
= —— " " 3.12
kdeQn—l—k( n )x +;2n+k< n )x (3.12)

d
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