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Abstract:  We present a method of deriving non-recursive sequencing and ranking 
algorithms for any list of words which obeys the condition that all the words in the list with 
a common prefix are consecutive in the list.  We also generalize to these lists the Bitner-
Ehrlich-Reingold method of designing loop-free generation algorithms.  We first apply 
these methods to the recursively-described Ruskey-Proskurowski Gray code for balanced 
parenthesis systems.  We thus find two iterative sequencing algorithms, of which one uses 
constant extra space and the other is loop-free, for generating balanced parenthesis systems.  
We also find algorithms which require constant extra space and a linear number of 
arithmetic operations for ranking and unranking balanced parenthesis systems, both in 
lexicographical order and in Gray code order.  Next, we consider some simpler Gray codes: 
the classical Gray code for subsets, the Nijenhuis-Wilf Gray codes for combinations and 
permutations, the Knuth-Klingsberg Gray code for integer compositions and the Knuth-
Kaye Gray code for set partitions (which cannot be made loop-free).  We present a simple 
constant-extra-space constant-time implementation of the Nijenhuis-Wilf algorithm for 
generating the k-subsets of an n-set, and we modify it to obtain a simple constant-extra-
space constant-time algorithm for generating the compositions of an integer.  We also show 
how already-published iterative sequencing algorithms for all these Gray codes could have 
been more simply derived using our method, we design loop-free versions wherever it is 
possible, and we derive new ranking and unranking algorithms.  Finally, we present an 
implementation of the Hinz algorithm for moving the rings of the Towers of Hanoi puzzle 
from one arbitrary legal position to another which uses constant extra space and constant 
time except for a linear number of operations scattered throughout the entire algorithm. 

0. Introduction 

While teaching a graduate course in combinatorial algorithms, in which [NW] and 
[Wi] are required textbooks, I discovered a systematic method of deriving iterative 
sequencing, ranking and unranking algorithms for recursively-described Gray codes which 
was easier to explain to the students than the various methods presented in these texts and 
in some of the articles they reference.  I applied it to all the simpler Gray codes in these 
texts: the classical Gray code for subsets [Gr], the ones for combinations and permutations 
in [NW], and Knuth's recursively-described Gray codes for compositions of an integer and 
partitions of a set which were announced in [NW], and in each case it was an easy matter to 
come up with non-recursive sequencing algorithms which were close to those already in the 
literature (see [Kl] for integer combinations, [Ka] for set partitions, and [NW] for the 
others), to make loop-free versions of these algorithms (except for the set-partition Gray 
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code which uses an array in which arbitrarily many elements can change from one partition 
to the next), to derive efficient ranking and unranking algorithms - and to explain the 
process of deriving these results to the class.  Later I applied it to a more challenging Gray 
code for which only a recursive description was published - the Proskurowski-Ruskey Gray 
code for balanced parenthesis systems [PR] - and obtained similar results which I tested by 
computer. 

In Section 1 of this paper we describe this method and show that it works on any list 
of words in which all the words with a common prefix are consecutive in the list.  This 
condition generalizes the graylex order defined in [Ch] and used there to enable a computer 
to derive Gray codes; here we take the Gray code as a given.  The Bitner-Ehrlich-Reingold 
method of deriving loop-free algorithms for many of the classical Gray codes [BER] was 
generalized in [Wm] and [JWW]; here we generalize it further to all the lists obeying this 
condition and show that it works under only slightly more restrictive conditions.  In Section 
2 we apply these methods to the recursively-described Proskurowski-Ruskey Gray code for 
balanced parenthesis systems [PR].  We thus obtain two non-recursive sequencing 
algorithms of which one uses constant extra space and the other is loop-free.  We also 
derive algorithms which require constant extra space and a linear number of arithmetic 
operations for ranking and unranking balanced parenthesis systems, both in lexicographical 
order (improving the results in [Pa], [Pl], [RH] and [Z]) and in Gray code order.  In Section 
3 we apply this method to the other above-mentioned Gray codes and present constant-
time, constant-extra-space generators of the k-subsets of an n-set and of the k-compositions 
of n which we believe to be simpler than any of their competitors.  We also mention a 
number of other Gray codes in the literature to which the method could be applied.  In 
Section 4 we apply it to the Towers of Hanoi puzzle and two of its generalizations, 
including Hinz' algorithm [Hi] for moving the rings from one arbitary legal position to 
another.  We present a constant-extra-space implementation of Hinz' algorithm which is 
loop-free except for a linear number of operations scattered throughout the entire algorithm.  
In Section 5 we mention a Gray code to which the method cannot be applied and pose an 
open problem.  The Appendix contains a listing of the computer programs for sequencing, 
ranking and unranking the balanced parenthesis systems in the Proskurowski-Ruskey Gray 
code. 

1. The method and the lists on which it works 

Let L=(w0,w1,...,w#(L)-1) be a list of distinct combinatorial objects; #(L) is the 
number of objects in L.  The sequencing problem is: given an object wr in the list, either 
determine that it is the last object w#(L)-1 or else find the next object wr+1.  The ranking 
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problem is: given an object wr in the list, determine its rank r - that is, the number of 

objects which precede it in the list.  The unranking problem is: given a non-negative integer 
r<#(L), determine the object wr. 

If one has an algorithm which solves the sequencing problem for a list L, the entire 
list  can be generated by successively applying the sequencing algorithm to w0.  Suppose a 

given sequencing algorithm maintains some auxiliary variables.  The resumption problem 
is: given an object w in L, determine the values that all the auxiliary variables used by the 
algorithm will have just after w has been generated so that the generation of L can be 
resumed from that point.  For example, suppose L to be the list of positions assumed by the 
rings of the Towers of Hanoi puzzle as the unique minimal-move solution is being 
executed.  To make the next move of the standard iterative sequencing algorithm (see 
Figure 4.2) one has to examine the topmost ring on each peg to find the smallest and the 
second smallest one and to remember if the smallest one is now to be moved.  This last bit 
of information is stored in an auxiliary variable.  If the monk who has been executing this 
algorithm suddenly dies, his successor will have to determine from the current position of 
the rings whether to resume the solution by moving the smallest ring, and this information 
can be determined in O(1) time [Wa1]. 

Suppose now that the objects in L are length-n words: strings g1g2...gn of letters from 

a finite alphabet A (we can remove the restriction that all the words be of the same length 
by padding the shorter ones on the right with blanks). 

A linear order imposed on A (with the blank, if it is used, preceeding the first letter of 
A) induces the following criterion for L to be in lexicographical order: all the words with a 
common prefix g1g2...gi-1 are consecutive in L, and the values assumed by the next letter gi 

increase monotonely as we traverse the interval of words with that prefix.  The distinct 
values assumed by gi are not necessarily consecutive in A: if L is the list of permutations of 
{1,2,...,n} in lexicographical order, then for any prefix g1g2...gi-1, gi traverses the set 
{1,2,...,n}-{g1,g2,...,gi-1} sorted in increasing order (see the last column of Figure 3.2).  In 
this example the set of distinct values assumed by gi is determined by the prefix g1g2...gi-1, 

and this is true for any lexicographical order.  The concept of lexicographical order was 
generalized to graylex order in [Ch]:  all the words with a common prefix g1g2...gi-1 are 
consecutive in L, the values assumed by the next letter gi either increase monotonely or 

decrease monotonely as we traverse the interval of words with that prefix, and the prefix 
determines both the set of distinct values assumed by gi and the direction of motion of gi - 
that is, whether gi increases or decreases (see the first column of Figure 3.2 and Figure 3.5). 
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We generalize further by dropping all restrictions on the values assumed by gi, so that 

A does not even have to be linearly ordered.  We say that L is in generalized 
lexicographical order, abbreviated genlex order, if all the words in L with a common prefix 
are consecutive in L.  This is sufficient to ensure that for any prefix g1g2...gi-1 the sequence 
of distinct values assumed by gi as we traverse the interval of words with that prefix is 
determined by the prefix; so we can treat that sequence as a function s(g1g2...gi-1) of 
g1g2...gi-1.  The list 

11,13,12,14,21,22,23,24,31,33,32,34,41,42,43,44 

is in genlex order but not in graylex order; s(g1g2...gi-1)=(1,2,3,4) if g1+g2+...+gi-1 is even 

and (1,3,2,4) otherwise. 

For any list L in genlex order there is a conceptually simple sequencing algorithm.  
Given any prefix g1g2...gi-1, i<n, we define ai to be the first value in s(g1g2...gi-1), zi to be 
the last value in s(g1g2...gi-1), and h(gi) to be the successor of gi in s(g1g2...gi-1) if gi≠zi 
(bearing in mind that ai, zi, and h(gi) all depend upon g1g2...gi-1).  Then z1z2...zn is the last 
object in L and, given any other object g1g2...gi-1gizi+1...zn, where gi≠zi, its successor in L 
is g1g2...gi-1h(gi)ai+1...an.  The generic sequencing algorithm, then, consists of scanning a 
word g1g2...gn from right to left until we either determine that it is z1z2...zn or else find the 
rightmost gi≠zi in which case we then replace gizi+1...zn by h(gi)ai+1...an.  For this 
algorithm to be practical, of course, the sequence s(g1g2...gi-1) must be an easily 
computable function of g1g2...gi-1.  The design of a simple sequencing algorithm for any 

list in genlex order is thus reduced to finding a simple rule, if one exists, for calculating 
s(g1g2...gi-1) as a function of g1g2...gi-1. 

A Gray code is an infinite sequence of lists L(0),L(1),L(2),... such that L(n) consists 
of length-n words and each word (except the last one) in each list can be changed to its 
successor by changing a number of letters which is bounded by a constant independent of n.  
In this case one can hope to find a constant-time algorithm for replacing gizi+1...zn by 
h(gi)ai+1...an.  The scanning of the current word from right to left to find the rightmost gi≠zi 
can be avoided by maintaining an auxiliary array e0e1e2...en which keeps track of the 
maximal subwords gj+1...gk which are equal to zj+1...zk (we call such a maximal subword a 

z-subword).  This trick was first used by Bitner, Ehrlich and Reingold to design loop-free 
algorithms for generating subsets, combinations, permutations, integer compositions and 
set-partitions ([Eh1],[Eh2],[BER]) and later generalized in [JWW] to any genlex order in 
which s(the successor of g1g2...gi-1) is always the reverse of s(g1g2...gi-1) and is never of 
length 1.  In Figure 1.1 below we generalize it to any genlex order in which ai≠zi for any 
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prefix g1g2...gi-1.
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i:=en; 
IF i=0 THEN (* g1g2...gn = z1z2...zn *) 
  Done := TRUE (* Done is a BOOLEAN variable which says to quit generating 
*) 
ELSE (* i is the index of the rightmost gi≠zi *) 
  Replace gizi+1...zn by h(gi)ai+1...an; 
  Update any other auxiliary variables as needed; 
  en:=n; 
  IF gi=zi THEN 
    ei:=ei-1; 
    ei-1:=i-1 
  END IF 
END IF. 

 
Figure 1.1: Generic loop-free sequencing algorithm. 

(Initially - that is, for the first word - gj=aj and ej=j for all j and Done=FALSE) 

It is clear that if each of the statements of this algorithm can be executed in constant 
time, then so can the entire algorithm.  We prove its correctness by solving the resumption 
problem for the array e0e1e2...en. 

Theorem.  Suppose that L is any list of length-n words in genlex order such that ai≠zi 
for any prefix g1g2...gi-1.  Then the algorithm of Figure 1.1 preserves the property that e0=0 
and for every k>0, ek=j if gj+1...gk is a z-subword and ek=k otherwise. 

Proof.  It is easy to verify that the conclusion is true initially (this follows from the 
initial values and the fact that ai≠zi for each i so that there are no z-subwords), and we 

suppose it to be true at the beginning of a given execution of the algorithm.  In particular, 
setting k=n we find that if en≠0 then it is the index of the rightmost gi≠zi and if en=0 then 
g1g2...gn = z1z2...zn, so that in either case the sequencing is done correctly.  Assume the 
former case to be true.  If i=n the assignment en:=n changes nothing.  If i<n then replacing 
gizi+1...zn by h(gi)ai+1...an destroys the rightmost z-subword zi+1...zn (since ak≠zk for 
i+1≤k≤n) so that the assignment en:=n makes the conclusion true for all k>i (for i<k<n, ei 
was equal to i because gi was not the rightmost member of the z-subword and now it is not 
part of any z-subword).  If gi≠zi none of the other z-subwords are changed, nor is any other 
ek, so that the conclusion is still true for all k≤i.  Suppose now that gi=zi.  If i>1 and 
gi-1=zi-1 then we have extended the z-subword zj+1...zi-1 to zj+1...zi, where j=ei-1, so that 
gi-1 is no longer its rightmost member but gi is, and the two assignments 'ei:=ei-1; ei-1:=i-1' 
make the conclusion true for k=i-1 and k=i.  If i=1 or gi-1≠zi-1 then we have created a new 
z-subword zi, so that ei-1 was already i-1 (even if i=1: e0 is always 0) and this value is 
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correctly assigned to ei, and again the conclusion is true for k=i-1 and k=i.  No ek gets 

changed for any k<i-1, nor does any other z-subword, so that the conclusion is true for all k 
at the end of that execution of the algorithm, QED. 

If we have a way of calculating #(g1g2...gi-1), the number of elements of L with 
prefix g1g2...gi-1, we have a conceptually simple ranking algorithm, which is an adaptation 

to genlex order of the algorithm in [Le] which ranks words in lexicographical order.  It is 
easy to verify the following three formulae: 

rank(g1g2...gi-1giai+1...an) = rank(g1g2...gi-1aiai+1...an)+∑fi precedes gi#(g1g2...gi-1fi)   (1.1) 

rank(g1g2...gi-1gizi+1...zn) = rank(g1g2...gi-1zizi+1...zn)-∑hi follows gi#(g1g2...gi-1hi)   (1.2) 

rank(g1g2...gi-1zi...zn) = rank(g1g2...gi-1ai...an)+#(g1g2...gi-1) -1.                (1.3) 

To compute rank(g1g2...gn) we could move forward through L and assign to a 
variable r the values rank(a1a2...an)=0, rank(g1a2...an), ... , rank(g1g2...gn) obtained by 

successive substitution into (1.1).  If the sum in (1.2) is easier to evaluate, we could move 
backward through L and assign to r the values rank(z1z2...zn)=#(L)-1, rank(g1z2...zn), ... , 
rank(g1g2...gn)  obtained by successive substitution into (1.2).  One of these two 

alternatives is usually used to compute ranks in lexicographical order.  However, for 
graylex or genlex order it may be convenient to evaluate the sum in (1.2) sometimes but 
not all the time, and before switching from one to the other we need to substitute into (1.3): 
we add #(g1g2...gi-1)-1 to r if we are switching from (1.1) to (1.2) and subtract the same 

quantity from r if we are switching from (1.2) to (1.1).  We substitute into (1.1) by adding 
the sum to r or into (1.2) by subtracting the sum from r.  The generic ranking algorithm, 
then, is to initialize r to 0 and assume we will first substitute into (1.1), and then for 
i=1,2,...,n we do the actual substitutions, after which r will be rank(g1g2...gn). 

To find the word g1g2...gn of rank r we maintain a variable q which is always 
assigned the value r-rank(g1g2...gi-1aiai+1...an) if we are going to substitute into (1.1) and 
rank(g1g2...gi-1zizi+1...zn)-r if we are going to substitute into (1.2).  Before switching from 
one to the other we substitute into (1.3) by replacing q by #(g1g2...gi-1)-1-q.  We choose 
the gi which maximizes the sum on the right side of (1.1) or (1.2) subject to the constraint 

that it not exceed q, and we do the substitution by subtracting this sum from q.  The generic 
unranking algorithm is to initialize q to r and assume we will first substitute into (1.1), and 
then for i=1,2,...,n we do the actual substitutions, after which q will be 0 and g1g2...gn will 

be the word of rank r in L. 
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2. The Proskurowski-Ruskey Gray code for balanced parenthesis systems 

A balanced parenthesis system of length 2n is a bitstring of n zeros and n ones such 
that no prefix contains more zeros than ones.  In [PR] a recursive description is given of a 
Gray code in which each system of length 2n is changed to its successor by transposing a 
single pair of bits.  T(n,k) is defined as the list of systems of length 2n with prefix 1k0.  For 
bitstrings x and y=1k0x, the operations flip and insert are defined as flip(y)=1k-101x and 
insert(y)=1k+100x.  Two operations on lists are defined: AοB means A followed by B and 
AR means A reversed.  Then T(n,k) is defined by the following recursion: 

T(n,k) =  
flip(T(n, 2))                                             if k = 1
flip(TR(n, k +1)) o insert(T(n -1,k -1))  if 1 < k < n           (2.1) 
1n0n                                                         if k = n.

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

The first object in T(n,k) is defined as 

first(T(n, k)) =  
101100(10)n-3          if k = 1 and n ≥ 3
1k010k (10)n-k-1        if 1 < k < n or (k = 1 and n = 2)        (2.2) 
1n0n                           if k = n 

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

(we added the conditions 'and n≥3' and 'or (k=1 and n=2)' to make the definition in [PR] 

work for the trivial case when k=1 and n=2). 

Two Gray codes for the set of all systems of length 2n are given: T(n+1,1) with the 
prefix 10 removed, and T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1).  A recursive algorithm is 
given which generates T(n,k) in constant average time.  The authors challenge the reader to 
modify their algorithm so that it generates all the systems of length 2n in constant worst-
case time and we answer their challenge here.  Balanced parenthesis systems is one of 
many representations of binary trees, and for one of these there is already a loop-free 
generation algorithm [vB]; however, we believe that we have the only existing loop-free 
algorithm for generating balanced parenthesis systems. 

First we generate T(n,k) from (2.1) for small values of n (see Figure 2.1). 
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     T(1,1) 
        10 
 
     T(2,2)              T(2,1) 
      1100                1010 
 
     T(3,3)              T(3,2)              T(3,1) 
    111000            110100            101100 
                            110010            101010 
 
     T(4,4)            T(4,3)                T(4,2)             T(4,1) 
  11110000        11101000        11010010        10110010 
                          11100100        11010100        10110100 
                          11100010        11011000        10111000 
                                                  11001100        10101100 
                                                  11001010        10101010 
 
     T(5,5)           T(5,4)                T(5,3)              T(5,2)              T(5,1) 
1111100000    1111010000    1110100010    1101001010    1011001010 
                        1111001000    1110100100    1101001100    1011001100 
                        1111000100    1110101000    1101011000    1011011000 
                        1111000010    1110110000    1101010100    1011010100 
                                                1110010010    1101010010    1011010010 
                                                1110010100    1101110000    1011110000 
                                                1110011000    1101101000    1011101000 
                                                1110001100    1101100100    1011100100 
                                                1110001010    1101100010    1011100010 
                                                                        1100110010    1010110010 
                                                                        1100110100    1010110100 
                                                                        1100111000    1010111000 
                                                                        1100101100    1010101100 
                                                                        1100101010    1010101010 

 
Figure 2.1: T(n,k), the list of balanced parenthesis systems of length 2n with prefix 1k0 

We observe the following pattern for T(n,k).  Given a bitstring in T(n,k), call 1i the 
ith 1 from the left of the bitstring.  By definition, 11,12,...,1k are fixed; we call the other 1s 
free.  In every interval of T(n,k) in which 1k+1, 1k+2, ... ,1i-1 stay in one place, 1i moves 
between its leftmost position adjacent to 1i-1 (except that 1k+1 starts with one zero between 
it and 1k) and its rightmost position at index 2i-1 in the bitstring, moving right if and only if 

the number of free 1s to its left which are not in their rightmost positions is even.  This can 
easily be proved from the recursive definition of T(n,k): the crucial argument in the 
induction step is that if k>2 the flip operator creates a free 1 which is not in its rightmost 
position and is to the left of all the other free 1s, and this is precisely when the reversal 
operator is applied.   Let gi be the index of 1i in the bitstring, and let L be the list of words 
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gk+1gk+2...gn corresponding to T(n,k).  Then L is in genlex order - in fact, graylex order - 

with s()=(k+2,k+3,...,2k+1) and 

s(gk+1gk+2...gi -1) =  
(gi-1 +1,.. ., 2i -1) if gj = 2 j -1 for an even number of j ,  k +1 ≤ j ≤ i -1,
(2i -1,.. ., gi-1 +1) if gj = 2 j -1 for an odd number of j ,  k +1 ≤ j ≤ i -1.
⎧ 
⎨ 
⎩  

Using these observations we can specialize the generic sequencing algorithm to 
T(n,k) without explicitly storing the array gk+1gk+2...gn.  We maintain one bit of auxiliary 

information: the BOOLEAN variable LastRight, which is true if there are an even number 
of free 1s which are not in their rightmost positions (initially LastRight is false if n>2 and 
k<n, since 1max(3,k+1) is the only free 1 which is not in its rightmost position).  We 

initialize another BOOLEAN variable Right, which is true if there are an even number of 
free 1s to the left of the current 1 which are not in their rightmost positions, to LastRight, 
and then we scan the current bitstring from right to left, skipping over the zeros and 
keeping track of the index i of 1i and its position j in the bitstring.  Whenever we come 
across a 1i such that j<2i-1, we negate Right.  If we come to a 1i, i>k, such that j<2i-1 and 
Right is true, or else a 1i which has a 0 on its left and Right is false, then 1i moves (we give 
the details in the next two paragraphs); if we get to 1k first then the current bitstring is the 

last one in T(n,k) and we set a termination flag to true. 

Suppose that we come to a 1i, i>k, such that j<2i-1 and Right is true, so that we must 
move 1i one position to the right.  If i=n then that is all we do, except that if it is now in its 

rightmost position we negate LastRight.  The case when i<n, divided into two subcases 
depending upon whether moving 1i to its right takes it to its rightmost position, is 

illustrated at the top of Figure 2.2: the arrows over the 1s indicate their direction of motion.  
The directions of motion are calculated from the graylex order and the 'before' and 'after' 
positions of the 1s to the right of 1i from the terminal and initial positions, respectively, for 

each 1 given its direction of motion. 
                  .,              . .     .                            .,       . .    . 
BEFORE  1i1 00...0001010...10         BEFORE  1i1 0001010...10 
                     .        , , ,    ,                                 ..   , ,    , 
AFTER        1i00...0101010...10         AFTER        1i1001010...10  (1i at rightmost) 
 
 
                    ,          . . .    .                                ,,     . .    . 
BEFORE     1i00...0101010...10          BEFORE     1i1001010...10  (1i at rightmost) 
                 , .             , ,    ,                            , .      , ,    , 
AFTER     1i1 00...0001010...10          AFTER    1i1 0001010...10 

Figure 2.2. The suffix beginning with 1i before and after 1i moves. 
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Now we suppose that we come to a 1i, i>k, which has a 0 on its left and Right is false, 
so that we must move 1i one position to the left.  If i=n then that is all we do, except that if 

it was in its rightmost position we negate LastRight.  The case when i<n, divided into two 
subcases depending upon whether 1i was originally in its rightmost position, is illustrated at 

the bottom of Figure 2.2. 

Whenever i<n the number of free 1s not in their rightmost positions changes by 1 and 
so we negate LastRight. 

If we are generating all the balanced parenthesis systems by generating T(n+1,1) 
without the prefix 10, the algorithm remains unchanged: 12 which is free but at its 
rightmost position in T(n+1,1) is simply renamed 11 which is now fixed.  A few minor 
changes are made if we are generating T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1).  When we get 
to ik we are at the last bitstring in T(n,k), and we want to change it to the first bitstring in 
T(n,k-1) (or TR(n,1) if k=2).  So, instead of setting the termination flag to true, we move 1k, 
and only 1k, to the right.  This creates a new free 1 not at its rightmost position (or changes 

all the directions of motion in passing from T(n,2) to TR(n,1)); so we negate LastRight.  
Since we are now generating T(n,k-1) or its reversal we decrease k by 1.  When the current 
bitstring is the last one in TR(n,1), this algorithm would instruct us to move 12 to its left; so 
as a special fix we skip over 12.  Finally, we set the termination flag to true when we get to 
11.   

To make the sequencing algorithm run in constant time we specialize the generic 
algorithm of Figure 1.1 to the genlex-order list L of words g1g2...gn, where gi is the index 
of 1i, the ith 1, in the bitstring.  Now we have to store g1g2...gn explicitly as an auxiliary 
array, as well as the array e1e2...en of Figure 1.1 (we don't need e0 because 11 never moves) 
and an array d1d2...dn, where di=1 if 1i is moving right (gi is increasing) and 0 otherwise.  
The array e1e2...en is updated as in Figure 1.1; we know that gi=zi if it is equal to either 2i-1 
or gi-1+1, since gi has just changed and cannot change to ai.  The updating of the bitstring is 

done as in the previous version (see Figure 2.2), and the corresponding change made to the 
position vector g1g2...gn is easy to deduce.  If 1i moves, gi either increases or decreases by 
1, and if k<i<n then gi+1 also changes: if gi decreases by 1 then gi+1 assumes the old value 
of gi, and otherwise gi+1 becomes 2i if gi=2i-1 and 2i+1 otherwise.  The new value of di+1 
should be easy to deduce from the arrows in Figure 2.2: it is 1 unless gi+1 becomes 2i+1.  
From these arrows it would appear that di+2,di+3,...,dn  should all change from 1 to 0, so 
that the algorithm wouldn't run in constant time.  But we don't need to know dj until we 
have to change gj, and since all these changes to dj take place when gj=2j-1 we simply set 
dj to 0 whenever we have to change gj which is equal to 2j-1; the only side-effect of this fix 
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is that 12 would get moved left after generating T(n,1), and we fix that up by modifying the 
termination condition (we set the flag to true if en≤max(2,k)).  The only modifications 
needed to generate T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) is that instead of stopping when 
en=k we move 1k (and only 1k, as in the previous version) and decrease k by 1 and we stop 
when en=1: the passage from T(n,2) to TR(n,1) falls out automatically. 

To express the ranking and unranking problem in terms of formulae (1.1)-(1.3) we 
refer to the position vector g1g2...gn even though we don't have to store it explicitly.  The 
quantity #(g1g2...gi) is the number of balanced parenthesis systems of length 2n with a 
prefix containing i ones and j=gi symbols altogether, so that it has j-i zeros.  The rest of the 

bitstring has n-i ones and n-j+i zeros, and the number of such suffixes [Fe, p70] is 

2n - j
n + i - j
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
-

2n - j
n + i - j +1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
. (2.3) 

To substitute into (1.1) or (1.2) we have to sum these binomial coefficients over j, and 
since the sign in front of j is negative it is more convenient to do so over large j than small 
j; so we will use (1.1) when j=gi is decreasing and (1.2) when it is increasing.  Now the 
direction in which gi changes stays constant as long as gi=2i-1, and in this case the sum in 
(1.1) (when gi=ai) and in (1.2) (when gi=zi) is 0.  The only time we have to actually 
substitute into (1.1) or (1.2) is when gi<2i-1, and then we substitute into (1.3) as well (with 
i replaced by i+1) since gi+1 is going to change in the opposite direction.  Combining these 

two substitutions, we are going to add or subtract the sum of (2.3) over j from its current 
value to 2i-1, which is 

 

2n - j +1
n + i - j

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
-
2n - j +1
n + i - j +1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
. (2.4)

 

Simplifying (2.4) and subtracting 1 (as in (1.3)), we obtain the algorithm of Figure 
2.3 for ranking the balanced parenthesis system p1p2...p2n in T(n,k). 



 
13 

  
Rank:=

2n-k-1

n-1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
k
n
-1;

 
Dir:=TRUE; (* the current 1 is moving right *) 
j:=k+2; 
FOR i:=k+1 TO n DO    
  WHILE pj=0 DO j:=j+1 END; (* find 1i *) 
  IF j<2i-1 THEN 

      
Term:=

2n-j+1

n+i-j
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
2i-j

n -j+i+1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
−1;

 
    IF Dir THEN Rank:=Rank-Term ELSE Rank:=Rank+Term END IF; 
    Dir:=NOT Dir; 
  END IF; 
  j:=j+1; 
END FOR. 

 
Figure 2.3. Ranking the balanced parenthesis system p1p2...p2n in T(n,k). 

 

To rank p1p2...p2n in T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1), we must first find which 

T(n,k) it is in.  We search for the first 0, and the number of 1s we skip over is k.  If k>1 we 
initialize Rank to #(T(n,n)οT(n,n-1)ο...οT(n,k)) - 1, which is  

2n - k
n

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
k +1
n +1
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
−1

 

and proceed from the second line of the algorithm.  If k=1, we set it to 2, add 1 to the above 
initial value of Rank, set Dir to FALSE and proceed from the third line of the algorithm.  
To rank p1p2...p2n in T(n+1,1) with the prefix 10 removed, we set n to n+1 and k to 1 and 
then start the algorithm from the first line except that in the WHILE loop we test pj-2 
instead of pj. 

Of course, if we are actually programming this algorithm we neither calculate the 
binomial coefficients individually (which wastes time) nor precompute them and store them 
in a table (which wastes space).  We calculate the one necessary to initialize Rank (in 
Figure 2.3) - call it f - and then we calculate the others from their predecessors: before 
increasing j in the WHILE loop we multiply f by n+i-j and divide it by 2n-j+1 and before 
increasing j at the end of the FOR loop we multiply f by n-i+1 and divide it by 2n-j+1 
(since i is going to increase too).  This makes the whole ranking algorithm run in O(n) 
arithmetic operations and O(1) extra space. 

The same optimization can be applied to the unranking algorithm of Figure 2.4. 
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FOR i:=1 TO k DO pj:=1 END FOR; 
pk+1:=0; 

  
Rank:=

2n-k-1

n-1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
k
n
−1− Rank;

 
j:=k+2; 
FOR i:=k+1 TO n DO 

    
WHILE 

2n-(j+1)+1

n+i-(j+1)
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
2i-(j+1)

n -(j+1)+i+1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
> Rank DO

 
    pj:=0; 
    j:=j+1; 
  END WHILE; 
  pj:=1; 
  IF j<2i-1 THEN 

      
Rank:=

2n-j+1

n +i-j
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
2i−j

n-j+i+1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
−1 − Rank;

 
  END IF; 
  j:=j+1; 
END FOR; 
FOR i:=j TO 2n DO pi:=0 END FOR. 

Figure 2.4: Constructing the parenthesis system p1p2...p2n of a given Rank in T(n,k). 

If we are working with T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) we set k to the smallest 
integer such that Rank is not less than 

2n - k -1
n

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
k + 2
n +1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭  

and subtract this value from Rank, and then we begin the algorithm from the first line 
except that we skip the third line if k=1.  If we are working with T(n+1,1) with the prefix 
10 removed, we set k=1 and n=n+1 and begin the algorithm from the third line except that 
we subtract 2 from every subscript of p. 

We have programmed optimized versions of the ranking and unranking algorithms 
and both sequencing algorithms (the loop-free one and the one which uses no auxiliary 
arrays) in Modula-2 and tested them by generating T(n,k), 
T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) and T(n+1,1) with the prefix 10 removed, ranking each 
parenthesis system generated and constructing the parenthesis system of that rank for 
comparison with the original.  Listings appear in the appendix. 
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The above optimization trick is well known but not well published: for example, it is 
not included in the lexicographical-order ranking of balanced parenthesis systems in [Pa], 
[PL], [RH] or [Z]; so we include it below. 

From [PL] (or by substituting (2.4) into (1.1)) we have 

Rank(g1g2.. .gn ) =
2n - gi

n + i - gi -1
⎛ 

⎝ 
⎜ ⎞ 

⎠ i=2

n
∑ 2i - gi -1

n + i - gi

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

.                                     (2.5)
 

Applying the same optimization trick we have the ranking and unranking algorithms 
of Figure 2.5 (which can be further optimized to avoid recomputing products and 
quotients). 

Rank:=0;  f:=1;  j:=2n-1; |f:=Binomial_Coeff(2n-2,n-1); 
FOR i:=n DOWNTO 2 DO |p1:=1;  j:=2; 
  WHILE  pj=0 DO DO |FOR i:=2 TO n DO 
    f:=f*(2n-j+1)/(n+i-j); |  WHILE f*(2i-j-1)/(n+i-j)>Rank 
DO 
    j:=j-1  |    pj:=0;  j:=j+1; 
  END WHILE; |    f:=f*(n+i-j)/(2n-j+1); 
  Rank:=Rank+f*(2i-j-1)/(n+i-j); |  END WHILE; 
  f:=f*(2n-j+1)/(n-i+2); |  Rank:=Rank-f*(2i-j-1)/(n+i-1); 
  j:=j-1; |  pj:=1; j:=j+1; 
END FOR. |  f:=f*(n-i+1)/(2n-j+1) 
 |END FOR; 
 |FOR i:=j TO 2n DO pi:=0 END FOR. 

 
Figure 2.5. 

Ranking and unranking the balanced parenthesis system p1p2...p2n in lexicographical order. 
 

3. Other Gray codes 

a)  The classical binary reflected Gray code 

In this Gray code [Gr], L(n) consists of all the 2n strings g1g2...gn of n bits and each 
one differs from its successor in a single bit.  It was shown in [Ch] that s(g1g2...gi-1)=(0,1) 
if g1g2...gi-1 contains an even number of 1s and (1,0) otherwise (see Figure 3.1).  For the 

sake of completeness we give a sketch of a proof which is easy to explain to students.  The 
recursive description of this Gray code is given by 

L(0) is the empty word and L(n)='0'L(n-1)ο'1'LR(n-1) for n>0.           (3.1) 
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The inductive step follows from the fact that the reversal operator is applied when the first 
symbol changes from 0 to 1, reversing the parity of the number of 1s in any non-null prefix. 
      i  g1 g2 g3 g4     e0 e1 e2 e3 e4  (b0)b1 b2 b3 b4 
 
         0  0  0  0      0  1  2  3  4    0  0  0  0  0 
      4  0  0  0  1      0  1  2  3  3    0  0  0  0  1 
      3  0  0  1  1      0  1  2  2  4    0  0  0  1  0 
      4  0  0  1  0      0  1  2  3  2    0  0  0  1  1 
      2  0  1  1  0      0  1  1  3  4    0  0  1  0  0 
      4  0  1  1  1      0  1  1  3  3    0  0  1  0  1 
      3  0  1  0  1      0  1  2  1  4    0  0  1  1  0 
      4  0  1  0  0      0  1  2  3  1    0  0  1  1  1 
      1  1  1  0  0      0  0  2  3  4    0  1  0  0  0 
      4  1  1  0  1      0  0  2  3  3    0  1  0  0  1 
      3  1  1  1  1      0  0  2  2  4    0  1  0  1  0 
      4  1  1  1  0      0  0  2  3  2    0  1  0  1  1 
      2  1  0  1  0      0  1  0  3  4    0  1  1  0  0 
      4  1  0  1  1      0  1  0  3  3    0  1  1  0  1 
      3  1  0  0  1      0  1  2  0  4    0  1  1  1  0 
      4  1  0  0  0      0  1  2  3  0    0  1  1  1  1 
      0  Done=TRUE 
 

Figure 3.1 
The classical Gray code for bitstrings: the Gray code word g1g2g3g4 , the index i such that 
gi gets changed, the binary ranking function b1b2b3b4 with sentinel b0=0, and the auxiliary 

array e0e1e2e3e4 used in Ehrlich's loop-free algorithm. 

We demonstrate the pedagogical value of our method by showing how easily the 
classical sequencing algorithm [NW, p16] and ranking algorithm [Wi] can be derived from 
the graylex order of L(n).  It follows from this order that gi=zi if and only if g1g2...gi 
contains an odd number of 1s.  If g1g2...gn has an even number of 1s, gn≠zn; so by the 
generic sequencing algorithm we change gn.  If g1g2...gn has an odd number of 1s, then the 
rightmost gi≠zi comes immediately to the left of the rightmost 1 (unless the string is 
10...0=z1z2...zn) and we change gi which converts the suffix 10...0 from zi+1...zn to ai+1...an 

as required.  This algorithm becomes more efficient if we maintain an auxiliary BOOLEAN 
variable which is true if g1g2...gn has an even number of 1s.  The loop-free version in 
[BER] and [RND, p179] is a special case of Figure 1.1, where the test 'if gi=zi' never has to 
be made because once gi is changed it must be zi.  To rank a bitstring we observe that 
#(g1g2...gi)=2n-i; so that by (1.1) 2n-i will get added to the rank for each i such that g1g2...gi 
has an odd number of 1s (so that gi=zi and the sum in (1.1) is #(g1g2...gi-1ai)=2n-i).   This 
means that if b1b2...bn is the binary expansion of the rank of g1g2...gn, then bi=g1+g2+...+gi 

mod 2, which gives a ranking algorithm which requires O(n) arithmetic operations.  
Solving for gi we obtain gi=bi+bi-1 mod 2, where b0 is taken to be 0, which gives an 
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unranking algorithm which requires O(n) arithmetic operations.   Note that gi=zi if and only 
if bi=1, and that (see Figure 3.1) ei=j if bj+1...bi is a maximal string of 1s, and otherwise 
ei=i. 

b) The Nijenhuis-Wilf Gray code for permutations. 

Given a permutation p1p2...pn of {1,2,...,n}, let g1g2...gn-1 be its inversion vector: gi 
is the number of elements of pi+1...pn which are smaller than pi.  If we impose upon the list 
of inversion vectors the order given in [Wm, p112], where s(g1g2...gi-1)=(0,1,...,n-i) if 
g1+g2+...+gi-1 is even and (n-i,...,1,0) otherwise, then the permutations are ordered (apart 

from left-right reversal) as in the Gray code of [NW, p58], where each permutation differs 
from its successor by a single transposition but not always of adjacent elements (see Figure 
3.2, where the direction of motion of gi is stored in its sign). 
 
 p1 p2 p3 p4   g1 g2 g3   e0 e1 e2 e3  j   b1 b2 b3   lex 
order 
 
 1  2  3  4    0  0  0    0  1  2  3   4   0  0  0   1  2  3  
4 
 1  2  4  3    0  0 -1    0  1  2  2   4   0  0  1   1  2  4  
3 
 1  3  4  2    0  1 -1    0  1  2  3   4   0  1  0   1  3  2  
4 
 1  3  2  4    0  1  0    0  1  2  2   4   0  1  1   1  3  4  
2 
 1  4  2  3    0 -2  0    0  1  1  3   4   0  2  0   1  4  2  
3 
 1  4  3  2    0 -2 -1    0  1  2  1   4   0  2  1   1  4  3  
2 
 2  4  3  1    1 -2 -1    0  1  2  3   4   1  0  0   2  1  3  
4 
 2  4  1  3    1 -2  0    0  1  2  2   4   1  0  1   2  1  4  
3 
 2  3  1  4    1 -1  0    0  1  2  3   4   1  1  0   2  3  1  
4 
 2  3  4  1    1 -1 -1    0  1  2  2   4   1  1  1   2  3  4  
1 
 2  1  4  3    1  0 -1    0  1  1  3   4   1  2  0   2  4  1  
3 
 2  1  3  4    1  0  0    0  1  2  1   3   1  2  1   2  4  3  
1 
 3  1  2  4    2  0  0    0  1  2  3   4   2  0  0   3  1  2  
4 
 3  1  4  2    2  0 -1    0  1  2  2   4   2  0  1   3  1  4  
2 
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 3  2  4  1    2  1 -1    0  1  2  3   4   2  1  0   3  2  1  
4 
 3  2  1  4    2  1  0    0  1  2  2   4   2  1  1   3  2  4  
1 
 3  4  1  2    2 -2  0    0  1  1  3   4   2  2  0   3  4  1  
2 
 3  4  2  1    2 -2 -1    0  1  2  1   2   2  2  1   3  4  2  
1 
 4  3  2  1   -3 -2 -1    0  0  2  3   4   3  0  0   4  1  2  
3 
 4  3  1  2   -3 -2  0    0  0  2  2   4   3  0  1   4  1  3  
2 
 4  2  1  3   -3 -1  0    0  0  2  3   4   3  1  0   4  2  1  
3 
 4  2  3  1   -3 -1 -1    0  0  2  2   4   3  1  1   4  2  3  
1 
 4  1  3  2   -3  0 -1    0  1  0  3   4   3  2  0   4  3  1  
2 
 4  1  2  3   -3  0  0    0  1  2  0       3  2  1   4  3  2  
1 
 

Figure 3.2 
The permutations p1p2p3p4 generated in the Nijenhuis-Wilf Gray code order.  Abs(gi) is the 
number of elements pj such that pj<pi but j>i; the sign of gi is the direction in which abs(gi) 
is moving.  The array e0e1e2e3 is used to find the value of i=e3 such that pi and pj, j>i, get 

swapped.  The rank of the permutation is 3!b1+2!b2+1!b3, and the permutation whose 
inversion vector is b1b2b3 is given to its right. 
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IF EvenPerm THEN           (* g[1]+...+g[n-1] is even; so g[n-1] can change *) 
  Swap(p[n-1],p[n]); EvenPerm:=FALSE; RETURN 
ELSE 
  i:=n-1; Rise:=FALSE;                 (* Rise means that g[i] is rising. 
*) 
  Max:=p[n]; Min:=p[n];                  (* Max/Min of a[i+1]...a[n] *) 
  LOOP 
    IF p[i]<Min THEN                     (* g[i]=0. Rise stays fixed. *) 
      Min:=p[i];  
      IF Rise THEN                      (* g[i] should and can rise. *) 
        EXIT 
      ELSE                             (* g[i] should fall but can't. *) 
        i:=i-1; IF i=0 THEN Done:=TRUE; RETURN END IF 
      END IF 
    ELSE IF p[i]>Max THEN                           (* g[i]=n-i. *) 
      Max:=p[i]; 
      IF n-i is odd then Rise:=NOT(Rise) END IF; 
      IF NOT(Rise) THEN                 (* g[i] should and can fall. *) 
        EXIT 
      ELSE                             (* g[i] should rise but can't. *) 
        i:=i-1; IF i=0 THEN Done:=TRUE; RETURN END IF 
      END IF 
    END IF;                  (* g[i] can rise or fall, but we must update Rise 
*) 
    FOR k FROM i+1 TO n DO 
      IF p[k]<p[i] THEN Rise:=NOT(Rise) END IF 
    END FOR; 
    EXIT;        (* so we only execute the FOR loop once within the other loop *) 
  END LOOP;              (* Now we know i and Rise, and must calculate j. *) 
  IF Rise THEN                         (* We search min p[j] >p[i]. *) 
    Min:=n+1; 
    FOR k FROM i+1 TO n DO 
      IF (p[k]>p[i]) AND (p[k]<Min) THEN j:=k; Min:=p[k] END 
IF 
    END FOR 
  ELSE                                 (* We search max p[j]<p[i]. *) 
    Max:=0; 
    FOR k FROM i+1 TO n DO 
      IF (p[k]<p[i]) AND (p[k]>Max) THEN j:=k; Max:=p[k] END 
IF 
    END FOR 
  END IF; 
  Swap(p[i],p[j]); EvenPerm:=TRUE; RETURN 
END IF. 

Figure 3.3 
A linear-time constant-extra-space algorithm for finding the next permutation in the 
Nijenhuis-Wilf Gray code (initially p[i]=i for all i, EvenPerm is TRUE and Done is 

FALSE). 
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The sequencing algorithm given in [NW, p58] consists essentially of calculating the 
inversion vector from the permutation directly from the definition from right to left until 
one finds the rightmost gi≠zi (which takes quadratic time in the worst case), then finding 
the pj which is the nearest integer to pi, in the direction in which gi is moving, among 
pi+1...pn, and swapping pi with pj.  The algorithm can be made to run in linear time if we 
store the inversion vector as an auxiliary array, but we can find the rightmost gi≠zi in linear 
time without an auxiliary array (see Figure 3.3) by observing that if pj<pi for some j>i then 
gi>0 and can fall, and if pj<pi for some j>i then gi<n-i and can rise. 

We can also use the loop-free algorithm of [Wm, p112] for generating the Cartesian 
product of integer intervals (a generalization of the Bitner-Ehrlich-Reingold method and a 
special case of Figure 1.1) to design a loop-free algorithm for generating permutations in 
this order.  We store the inversion vector and the direction vector (or we store the direction 
of motion of gi in its sign - see Figure 3.2) as well as the array e0e1...en-1.  We update 
e0e1...en-1 as in Figure 1.1 (with n replaced by n-1); we know that gi=zi if it is equal to 0 or 
n-i.  If we are storing the direction of motion as a sign, then updating gi consists of adding 1 

and then changing its sign if it is equal to n-i.  To update the permutation itself we must 
swap pi with pj for the appropriate j, and it remains to find this value of j in constant time. 

Suppose gi has to rise, so that g1+...+gi-1 is even.  Then we want to find j such that pj 
is the smallest of the integers pi+1,...,pn which are larger than pi. 

By the definition of inversion vector, gi of the integers pi+1,...,pn are smaller than pi, 
so that the desired value of j will be known once we have sorted pi+1...pn.  Since gi is the 
rightmost integer which is not at its last value, the suffix gi+1...gn is at its last value and so, 
therefore, is the suffix pi+1...pn.  If gi+1 is supposed to fall, gi+1...gn is 0...0, so that the 
integers pi+1,...,pn are in increasing order.  It remains to sort the suffix pi+1...pn in the case 
when gi+1 is supposed to rise. 

To this end we first find the last string g1...gn-1 and the corresponding permutation 
p1...pn.  Since g1 rises from 0 to n-1, it is n-1.  If n is even, n-1 is odd; so g2 falls and is 0.  
Then g1+g2 is also odd, so that g3 is also zero, and so on.  Thus the last inversion vector is 
n-1 0...0 and the last permutation is n1234..n-1.  If n is odd, n-1 is even; so g2 rises and is 
n-2.  Now g1+g2 is odd; so g3 falls and is 0, and all subsequent gi are 0.  Thus the last 

inversion vector is n-1 n-2 0...0 and the last permutation is n n-1 123...n-2.  It follows that 
when gi+1 is supposed to rise, pi+1...pn is sorted with the largest integer first, then the 

second largest if n-i is odd, and then the rest in increasing order. 
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We recall that we have supposed that g1+...+gi-1 is even.  If gi is odd, gi+1 is supposed 
to fall, and so the integers pi+1...pn are all in increasing order, and gi of them are smaller 
than pi; so the next one, in position j=i+gi+1, is the smallest one which is larger than pi. 

Suppose that gi is even, so that gi+1 is supposed to rise.  There are 2 cases to consider, 

depending on whether n-i is odd or even. 

If n-i is even, pi+2<...<pn<pi+1.  Now pi<pn<pi+1: if pi were greater than pi+1, gi 
would be n-i and would be unable to rise, and if pi were between pn and pi+1, gi would be 
n-i-1, which is odd.  This means that the gi integers among pi+1,...,pn which are smaller 
than pi all follow pi+1, and the smallest one which is larger than pi is in position j=i+gi+2. 

If n-i is odd, pi+3<...<pn<pi+2<pi+1.  If i+gi=n-1, only pi+1 is greater than pi, so that 
j=i+1.  Now i+gi cannot be n-2 because n-i is odd and gi is even; so if i+gi<n-1, pi<pn.  
Then all the gi integers among pi+1,...,pn, all follow both pi+1 and pi+2, so that the smallest 
one which is larger that pi is in position j=i+gi+3. 

The loopless algorithm of Figure 3.4 finds j so that (pi,pj) should be swapped. 

Recall that we have supposed that gi is to rise.  If gi is about to fall, then to pass from 
the next string to the current one, gi rises.  So to compute j, we use the same algorithm 
except that instead of the old value of gi we use the new one, which is gi-1. 

 
IF g[i] is odd THEN 
  j:=i+g[i]+1 
ELSE IF n-i is even THEN 
  j:=i+g[i]+2 
ELSE 
  IF i+g[i]=n-1 THEN j:=i+1 ELSE j:=i+g[i]+3 END IF 
END IF. 
 

Figure 3.4 
A loopless algorithm which finds j so that (pi,pj) should be swapped if gi is to rise; 

otherwise gi is decreased by 1 before the algorithm is executed. 
 

If we are coding the direction of motion of gi in its sign, we replace g[i] by abs(g[i]) 

throughout. 

We note that there already exist loop-free versions ([Eh1],[Ds]) of the Trotter-
Johnson Gray code for permutations ([Tr],[Jo]), in which each permutation differs from its 
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successor by a transposition of adjacent elements, and the graylex analysis of that Gray 
code has already been done [Ch].  The reason for including this loop-free permutation 
generator is to show that our method is general enough to work on one's favourite order. 

To rank and unrank permutations according to this Gray code, we observe (see figure 
3.2) that the inversion vector g1g2...gn-1 is related to b1b2...bn-1, the inversion vector of the 

same rank generated in lexicographical order, by the following well-known formula, which 
can easily be proved by the same line of argument used to rank the classical Gray code. 

gi =    
bi if g1+...+gi -1 is even ,
n - i - bi         otherwise .

⎧ 
⎨ 
⎩ 

                                  (3.2)
 

One can pass between these two inversion vectors in linear time using (3.2) and between 
b1b2...bn-1 and its rank (n-1)!b1+(n-2)!b2+...+1!bn-1 in linear time; so that the complexity of 

ranking and unranking permutations in this Gray code order, as in lexicographical order, is 
dominated by the complexity of passing between a permutation and its inversion vector.  
There are O(n log n) algorithms in [Kn, p. 578-579 (answers to exercises 5 and 6, p. 19)], 
and I have been told that asymptotically faster ones exist, but I have never been able to find 
them. 

c) The Nijenhuis-Wilf (Tang-Liu) Gray code for combinations 
                        -  +  -  + 

g1 g2 g3 g4   i 
1  2  3  4    4 
1  2  4  5    2 
2  3  4  5    1 
1  3  4  5    3 
1  2  3  5    4 
1  2  5  6    2 
2  3  5  6    1 
1  3  5  6    2 
3  4  5  6    1 
2  4  5  6    1 
1  4  5  6    3 
1  2  4  6    2 
2  3  4  6    1 
1  3  4  6    3 
1  2  3  6    5 

 
Figure 3.5 

The 4-combinations g1g2g3g4 of {1,2,3,4,5,6}.  The signs indicate the direction of motion 
of the integers and i is the index of the leftmost integer gi≠zi. 
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A k-combination, or k-subset, of {1,2,...,n} is coded by listing its members in 
increasing order.  The Gray code given in [NW, p28] lists all these combinations for fixed n 
and k in such an order that each combination differs from its predecessor by the inclusion 
of one element and the exclusion of one other element.  Apart from left-right reversal, the 
lists are in graylex order [Ch]: for each suffix gi+1...gn, s(gi+1...gn) runs through 
consecutive integers from a minimum of i to a maximum which is gi+1-1 if i<k and n if i=k, 

rising if k-i is even and falling otherwise (see Figure 3.5). 

For the sake of completeness we present a sketch of a proof of the Graylex order from 
the recursive definition of this Gray code [NW] given in formula (3.3) 

G(n,k) = G(n-1,k)οGR(n-1,k-1)'n' for n>0 and k>0,                  (3.3) 

anchored by setting G(n,k) to the empty list if n=0 and k>0 or n>0 and k=0 and G(0,0) to 
the singleton consisting of the empty word.  The inductive step follows from the fact that 
after the concatenation operator both the direction of motion of each gi changes and the 
parity of k-i changes, gk-1 has n-1=gk-1 as its maximum value, and gk increases from n-1 to 

n. 

The generic sequencing algorithm leads to the iterative algorithm given in [NW, p. 
32], and the derivation of this algorithm from the graylex order is considerably simpler than 
the derivation directly from the recursive definition using the revolving door method [NW, 
p. 29].  The algorithm itself takes linear worst-case time to pass from one combination to 
the next because the search for the leftmost gi≠zi always begins at g1.  But it can be made to 

run in constant worst-case time without using an auxiliary array, because the index i of the 
leftmost gi≠zi varies by at most 2 from one combination to the next, as the following 

theorem will show. 

Theorem. Given a k-combination g1g2...gk, let i be the index of the leftmost gi which 
is not at its final value zi.  Then for the next combination the corresponding value of i will 

lie between i-2 and i+1 if k-i is even or between i-1 and i+2 if k-i is odd. 

Proof.  We first prove the upper bound.  We assume that i<k-1; otherwise the result is 
trivial.  If k-i is even, gi increases; so gi+1 must decrease.  If gi+1 were at its final value of 
i+1, gi would be bounded by i, its minimum value, and would have no room to increase, but 
since gi is not at its final value, neither is gi+1.  But gi+1 does not change in passing to the 

next combination; so it can still decrease, and the new value of i is bounded above by i+1.  
The same argument shows that if k-i is odd the new value of i is bounded above by i+2, 
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since now gi+2 decreases and could not be at its final value of i+2 without bounding gi by 

its minimum value of i. 

We now prove the lower bound, assuming that i>2.  If k-i is odd, gi decreases; so gi-1 

was supposed to increase and is instead set to its first value of i-1 for the next combination.  
This means that gj=j for all j<i-1, and since gi-2 is supposed to decrease, these integers are 
all at their final values, so that the next value of i is bounded below by i-1.  If k-i is even, gi 
increases; so gi-1 was supposed to decrease but must have been at its final value of i-1, so 
that again gj=j for all j<i-1.  In passing to the new combination, gi-1 is raised to its first 
value of gi-1, so that gi-2, which is supposed to increase, is not necessarily at its final value.  

However, all the integers to its left are at their final values; so the next value of i is bounded 
below by i-2.  This completes the proof. 

We use this theorem to derive from the graylex order an algorithm which generates 
the combinations in constant worst-case time with no auxiliary array.  Aside from the 
combination itself, there are only 4 variables: i (the index of the current integer), m (the 
maximum value of gi), Rise (a BOOLEAN variable which is true if k-i is even so that gi 

should be increasing), and Done (which is true if we have reached the last combination).  A 
pseudo-code for an algorithm which updates all the variables in constant time is given in 
Figure 3.6. 
 
LOOP                             (* iterated AT MOST FOUR TIMES *) 
  IF Rise THEN                              (* g[i] should increase *) 
    IF i=k THEN m:=n ELSE m:=g[i+1]-1 END IF; 
    IF g[i]<m THEN                             (* g[i] can increase 
*) 
      g[i]:=g[i]+1; 
      IF i>1 THEN 
        g[i-1]:=g[i]-1;                          (* its first value *) 
        IF i=2 THEN i:=1; Rise:=FALSE ELSE i:=i-2 END IF; 
      END IF; 
      RETURN; 
    END IF                 (* otherwise g[i] cannot increase so we increase i 
*) 
  ELSE                       (* Rise is FALSE and g[i] should decrease *) 
    IF i>k THEN Done:=TRUE; RETURN END IF; 
    IF g[i]>i THEN                            (* g[i] can decrease *) 
      g[i]:=g[i]-1; 
      IF i>1 THEN 
        g[i-1]:=i-1;                            (* its first value *) 
        i:=i-1; Rise:=TRUE 
      END IF; 
      RETURN; 
    END IF                (* otherwise g[i] cannot decrease so we increase i *) 
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  END IF; 
  i:=i+1; Rise:=NOT(Rise) 
END LOOP. 
 

Figure 3.6 
An algorithm for generating the next k-combination of {1,2,...,n} in constant worst-case 
time and constant extra space.  For the first combination, gj=j for each j from 1 to k, i=k 

(since only gk can change), Rise is TRUE and Done is FALSE. 

The essential difference between this algorithm and the one in [NW, p. 32] is that in 
the latter, i is always initialized to 1 and Rise to TRUE if n is odd and FALSE otherwise, 
whereas in this one, i is updated to its lower bound according to the above theorem and 
Rise is adjusted accordingly.  The comments explain how the algorithm follows from the 
graylex order. 

We note that there are other loop-free combination generators.  The one in [BER] and 
[RND, p186] uses an auxiliary array and generates the Liu-Tang Gray code [LT] which is 
the same as the one in [NW] except for left-right and first-last reversal and the 
representation of combinations by bitstrings.  The one in [Eh1] uses an auxiliary array, and 
the one in [Ch] does not; they both create the graylex order on the fly, and it is a 
challenging exercise to determine just what this order turns out to be (for [Eh1], try 
generating the position-vectors of the zeros in the bitstring).  We present the above 
algorithm to show that our method finds efficient algorithms without sacrificing 
aesthetically pleasing orders. 

To find Rank(g1g2...gk) we use (1.1)-(1.3), modified by replacing n with k and 

applying left-right reversal (since the graylex order is expressed in terms of suffixes rather 
than prefixes).  For i=k down to 1 we substitute into (1.1) and then (1.3) when k-i is even 
and into (1.2) and then (1.3) when k-i is odd.  The sum in (1.1) or (1.2) combines with the 
appropriate term in (1.3) (with i replaced by i+1) to give the number of combinations of gi 

objects taken i at a time; so we have 

Rank(g1g2...gk ) = ( (-1)k-i

i=1

k
∑

gi
i

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
) -  k mod 2.                          (3.4)

 

To substitute efficiently into (3.4), we note that its binomial coefficient takes i 
multiplications and divisions to compute individually and gi-gi-1 of them to compute from 

its predecessor, and we choose the shortest path for each i, so that the total number of 
multiplications and divisions is bounded by k(k-1)/2 (if we never use the previous value) 
and also by gk≤n (if we always do).  For unranking, for i from k down to 1 we let gi be the 
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smallest integer x such that b=Binomial_Coeff(x,i)-1≥Rank and replace Rank by b-Rank; 
by computing each binomial coefficient from its predecessor we can do this in O(n) 
arithmetic operations. 

d) The Knuth-Klingsberg Gray code for integer compositions 
 and a simpler one 

A k-composition of n is a string of k non-negative integers whose sum is n.  In a 
personal communication to H. Wilf [Wi], D. Knuth presented a Gray code for these 
compositions such that each composition differs from its predecessor in that one integer is 
increased by 1 and one integer is decreased by 1.  The recursive description given by Knuth 
for his Gray code is 

G(n,k+1) = G(n,k)'0'οGR(n-1,k)'1'οG(n-2,k)'2'οGR(n-3,k)'3'ο...οGR?(0,k)'n'    (3.5) 

where GR? means G if n is even and GR if n is odd.  This recursion is anchored by G(n,1) = 
'n'.  An iterative version is contained in [Kl]. 

This Gray code is in the following graylex order apart from left-right reversal (see 
figure 3.7 for the case when n=5 and k=4).  For each integer gi, let Si=gi+1+...+gk.  Then 
g1=n-S1, and for each index i>1, the extreme values of gi are 0 and n-Si, and gi rises if Si is 
even and falls if Si is odd. 

       g1 g2 g3 g4     g1 g2 g3 g4     g1 g2 g3 g4 
           5  0  0  0      0  0  4  1      3  0  0  2 
           4  1  0  0      1  0  3  1      2  1  0  2 
           3  2  0  0      0  1  3  1      1  2  0  2 
           2  3  0  0      0  2  2  1      0  3  0  2 
           1  4  0  0      1  1  2  1      0  2  1  2 
           0  5  0  0      2  0  2  1      1  1  1  2 
           0  4  1  0      3  0  1  1      2  0  1  2 
           1  3  1  0      2  1  1  1      1  0  2  2 
           2  2  1  0      1  2  1  1      0  1  2  2 
           3  1  1  0      0  3  1  1      0  0  3  2 
           4  0  1  0      0  4  0  1      0  0  2  3 
           3  0  2  0      1  3  0  1      1  0  1  3 
           2  1  2  0      2  2  0  1      0  1  1  3 
           1  2  2  0      3  1  0  1      0  2  0  3 
           0  3  2  0      4  0  0  1      1  1  0  3 
           0  2  3  0                      2  0  0  3 
           1  1  3  0                      1  0  0  4 
           2  0  3  0                      0  1  0  4 
           1  0  4  0                      0  0  1  4 
           0  1  4  0                      0  0  0  5 
           0  0  5  0 
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Figure 3.7 

The 4-compositions g1g2g3g4 of 5 in Gray code order. 

The inductive step necessary to prove this proposition from (3.5) by induction on k is 
the fact gk+1 always rises, and for each i from 2 to k, the parity of Si is the same for 
G(n,k)'0' as for G(n,k) and is reversed, together with the direction of motion, across each ο, 
while n-Si is the same for G(n,k)'0' as for G(n,k) and remains constant across each ο (ο is 

the concatenation symbol in formula 3.5). 

From the graylex order we can see that the first composition must be n00...00, since 
Si is always 0 and each part except the first one is increasing and is at its first value.  The 

generic sequencing algorithm, specialized to this graylex order, leads to the non-recursive 
sequencing algorithm shown in Figure 3.8. 

S:=n-g[1]; i:=2; 
LOOP 
  S:=S-g[i];                              (* S is now g[i+1]+...+g[k] 
*) 
  IF S is even THEN                          (* g[i] should increase 
*) 
    IF g[i]<n-S THEN                 (* g[i] can increase and will shortly 
*) 
      IF g[i] is even THEN           (* S[i-1] is even; so g[i-1]=n-S[i-1] 
*) 
        g[i-1]:=g[i-1]-1       (* its new first value since S[i-1] will be odd 
*) 
      ELSE           (* S[i-1] is odd; so g[i-1]=0 and so is each g[j] for 2≤j≤i-1 
*) 
        g[1]:=g[1]-1                (* g[j] is at its first value for 2≤j≤i-1 
*) 
      END IF; 
      g[i]:=g[i]+1; RETURN 
    END IF         (* otherwise we cannot increase g[i] and will instead increase i 
*) 
  ELSE                              (* S is odd so g[i] should decrease *) 
    IF g[i]>0 THEN                  (* g[i] can decrease and will shortly 
*) 
      IF g[i] is odd THEN           (* S[i-1] is even; so g[i-1]=n-S[i-1] *) 
        g[i-1]:=g[i-1]+1      (* its new first value since S[i-1] will be odd 
*) 
      ELSE           (* S[i-1] is odd; so g[i-1]=0 and so is each g[j] for 2≤j≤i-1 
*) 
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        g[1]:=g[1]+1                (* g[j] is at its first value for 2≤j≤i-1 
*) 
      END IF; 
      g[i]:=g[i]-1; RETURN 
    END IF        (* otherwise we cannot decrease g[i] and will instead increase i 
*) 
  END IF; 
  i:=i+1; 
  IF i>k THEN                         (* each g[j] is at its final value *) 
    Done:=TRUE 
  END IF 
END LOOP. 
 

Figure 3.8 
 

Finding the next k-composition of n in the Knuth-Klingsberg Gray code  
(the first one is n0...0). 
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IF g[k]=n THEN Done:=TRUE; RETURN END IF; 
IF g[1]>0 THEN 
  S:=n-g[1]-g[2]; 
  IF S is even THEN                              (* g[2] should and can increase *) 
    g[2]:=g[2]+1; g[1]:=g[1]-1; 
    IF g[2]=1 THEN t:=t+1; p[t]:=2 END IF                (* push 2 onto stack *) 
  ELSE 
    i:=p[t]; S:=n-g[1]-g[i];                    (* g[i] is second positive element *) 
    IF S is even THEN                          (* g[i] increases and is odd and j>2*) 
      g[i]:=g[i]+1; g[1]:=g[1]-1 
    ELSE                            (* g[i] decreases and either g[i] is even or else j=2 *) 
      g[i]:=g[i]-1; g[1]:=g[1]+1; 
      IF (j=2) AND (g[j]=0) THEN t:=t-1 END IF           (* pop 2 from stack *) 
    END IF  
  END IF  
ELSE                                                             (* g[1]=0 *) 
  i:=p[t]; S:=n-g[i];  
  IF S is odd THEN                               (* g[i] should and can decrease *) 
    IF g[i] is odd THEN g[j-1]:=g[j-1]+1 ELSE g[1]:=g[1]+1 END IF; 
    g[i]:=g[i]-1; 
    IF g[i]=0 THEN                                        (* pop i from stack *) 
      IF i>2 THEN                                    (* and push i-1 onto stack *) 
        p[t]:=i-1 
      ELSE                                             (* just pop i from stack *) 
        t:=t-1 
      END IF 
    ELSE IF i>2 THEN                                 (* just push i-1 onto stack *) 
      t:=t+1; p[t]:=i-1 
    END IF 
  ELSE                          (* g[i] should increase but can't.  We must handle g[i+1] *) 
    i:=i+1; S:=S-g[i]; 
    IF S is odd THEN                                            (* so is g[i] *) 
      g[i]:=g[i]-1; g[i-1]:=g[i-1]+1; 
      IF g[i]=0 THEN               (* j ust pop i from stack since g[i-1] was already >0 *) 
        t:=t-1; p[t]:=i-1;                       (* actually, from underneath i-1 *) 
      END IF 
    ELSE                                              (* S is even and so is g[i] *) 
      g[i]:=g[i]+1; g[i-1]:=g[i-1]-1; 
      IF g[i]=1 THEN                                     (* push i onto stack *) 
        IF g[i-1]=0 THEN                             (* and pop i-1 from stack *) 
          p[t]:=i 
        ELSE                                   (* just insert i beneath i-1 on stack *) 
          p[t]:=i; t:=t+1; p[t]:=i-1 
        END IF 
      ELSE IF g[i-1]=0 THEN                          (* just pop i-1 from stack *) 
        t:=t-1 
      END IF 
    END IF 
  END IF 
END IF; 
RETURN. 
 

Figure 3.9 
A loop-free version of the Klingsberg algorithm for finding 
 the next k-composition g1g2...gk of n using a stack p1p2...pt 

(initially the composition is n0...0, the stack is empty, and the top-of-stack index t=0). 
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The algorithm in [Kl] is essentially the one in Figure 3.8 with the following 
refinement.  If gi increases or decreases at the expense of gi-1 or g1, all the integers 
g2,...,gi-2 are 0; so if g1=0, then either gi-1 or gi is the first positive element, and otherwise it 

is the second one.  The algorithm in [Kl] stores the index of the first positive element, 
which is easy to update; if this is 1, the second one is sought by a linear search, and this is 
the only loop in the algorithm.  Unfortunately, the index of the second positive element 
cannot be updated unless we know the indices of all the positive elements.  To make this 
algorithm loop-free, then, we store the indices of all the positive elements except for g1 on 
a stack, implemented with the array p1p2...pt which is sorted with the smallest index on top, 

and to update this stack we never have to touch more than the top two indices (see Figure 
3.9).  This seems like the only way to make this algorithm loop-free: the generic loop-free 
sequencing algorithm of Figure 1.1 is not guaranteed to work in this case because if 
gi+1+...+gn=n then ai=zi=0.  We note that a loop-free composition-generating algorithm 

already exists [Eh2], and a much simpler one which takes constant extra space can be 
constructed by applying the natural bijection between compositions and combinations 
[NW, p47] to the loop-free combination generator of Figure 3.6 (see Figure 3.12 below); 
we present this one to demonstrate the generality of our method. 

To find Rank(g1...gk), for i from k down to 2 we substitute into (1.1) if gi is 
decreasing - that is, if Si=gi+1+...+gk is odd - and into (1.2) otherwise, and we then 
substitute into (1.3) if we are going to switch - that is, if gi is odd.  Now #(x,gi+1...gk) is the 
number of compositions of n-Si-x into i-1 parts, which is the number of combinations of 
n-Si-x+i-2 objects taken i-2 at a time, and the sum in (1.1) or (1.2) has x running from its 
minimum value of gi+1 to its maximum value of n-Si;  so we have 

Rank(g1g2.. .gk ) =  
n + k -1

k -1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
-  (n - g1 +1) mod 2 -  

i=2

k
∑ (-1)Si  

n - Si-1 + i -1
i -1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
,  gi odd

  
n - Si-1 + i - 2

i -1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
,  gi even

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

,  (3.6)

where Si=gi+1+...+gk. 

The corresponding unranking algorithm is given in Figure 3.10.  Both ranking and 
unranking can be done using O(n) arithmetic operations by computing each binomial 
coefficient from its predecessor. 
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t:=

n+k-1

k-1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
-r; s:= n;

      (* t is greater by 1 than the q at the end of section 1 
*) 

FOR i FROM k DOWNTO 3 DO 

    
g[i]:= the largest integer such that 

s-g[i]+i-1

i-1
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
≥ t;

 
  IF g[i] is odd then 

    

  t:=
s-g[i]+i-1

i-1

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
-t+1

ELSE

  t:= t-
s-g[i]+i-2

i-1

⎛ 

⎝ 
⎜ ⎞ 

⎠  
  END IF; 
  s:=s-g[i]; 
END FOR; 
g[1]:=t-1; g[2]:=s-t+1. 
 

Figure 3.10 
Finding the k-composition of n of rank r in the Knuth-Klingsberg Gray code. 

But the natural bijection between the composition g1...gk of n and the combination 
c1...ck-1 of n+k-1 given by gi=ci-ci-1-1 (with c0 taken to be 0) can be used to convert the 

Nijenhuis-Wilf-Liu-Tang Gray code for combinations into a Gray code for compositions.  
Here, s(gi+1...gn)=(0,1,...,n-Si) if n-k is odd and (n-Si,...,1,0) otherwise (see Figure 3.11, 

where the 5-compositions of 2 are listed beside the 4-combinations of 6 given in Figure 
3.5). 

 
combination     composition 
1 2 3 4 0 0 0 0 2 
1 2 4 5 0 0 1 0 1 
2 3 4 5 1 0 0 0 1 
1 3 4 5 0 1 0 0 1 
1 2 3 5 0 0 0 1 1 
1 2 5 6 0 0 2 0 0 
2 3 5 6 1 0 1 0 0 
1 3 5 6 0 1 1 0 0 
3 4 5 6 2 0 0 0 0 
2 4 5 6 1 1 0 0 0 
1 4 5 6 0 2 0 0 0 
1 2 5 6 0 0 2 0 0 
1 2 4 6 0 0 1 1 0 
2 3 4 6 1 0 0 1 0 
1 3 4 6 0 1 0 1 0 
1 2 3 6 0 0 0 2 0 
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Figure 3.11 

Compositions corresponding to the combinations listed according to the Tang-Liu Gray 
code 

Applying this bijection to the algorithm of Figure 3.6 we obtain the constant-time, 
constant-extra-space algorithm of Figure 3.12 for finding the next composition. 

IF k=1 THEN Done:=TRUE; RETURN END; 
LOOP                           (* iterated AT MOST FOUR TIMES 

*) 
  IF Rise THEN                              (* g[i] should rise 

*) 
    IF i>k THEN Done:=TRUE; RETURN END; 
    IF g[i]<m THEN          (* g[i] can rise.   m=n-(g[i+1]+...+g[n])  *) 
      g[i]:=g[i]+1; 
      IF i>2 THEN 
        m:=m-g[i]; i:=i-1; g[i]:=m; g[i-1]:=0; 

Rise:=FALSE; 
      ELSE 
        g[1]:=g[1]-1; 
      END IF i; 
      RETURN; 
    END IF g[i];              (* else g[i] cannot rise so we increase i 

*) 
  ELSE                        (* Rise is FALSE and g[i] should fall. *) 
    IF g[i]>0 THEN                            (* g[i] can fall *) 
      g[i]:=g[i]-1; 
      IF i>2 THEN 
        m:=m-g[i]; i:=i-1; g[i]:=0; g[i-1]:=m; 
        IF i=2 THEN Rise:=TRUE ELSE i:=i-1 END; 
      ELSE 
        g[1]:=g[1]+1; 
      END IF i; 
      RETURN; 
    END IF g[i]               (* else g[i] cannot fall so we increase i 

*) 
  END IF Rise; 
  i:=i+1; Rise:=NOT Rise; IF i≤k THEN m:=m+g[i] END; 
END LOOP. 
 

    Figure 3.12 
Constant-time constant-extra-space algorithm for generating the next k-composition of n 

(initially the composition is 0...0n, m=n, i=k, Rise=FALSE and Done=FALSE) 

e) The Knuth-Kaye Gray code for set partitions 
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The classes of a partition of {1,2,...,n} are assumed to be indistiguishable; so they are 
ordered by their smallest member: (15)(24)(3), for instance.  A partition is coded by the 
word c1c2...cn, where ci is the index of the class to which the number i belongs, so that 

(15)(24)(3) is coded by the word 12321. 

A Gray code for set partitions, in which each partition differs from its predecessor in 
that one object moves from one class into another (possibly empty) class, was found by D. 
Knuth and communicated to H. Wilf, who described it in [Wi].  The description is 
recursive: given a Gray code for the partitions of {1,2,..,n-1}, n is inserted into each such 
partition in all possible ways, moving either from the first class to its own class after the 
last one or back the other way with the direction of motion changing for each partition of 
{1,2,..,n-1} (see Figure 3.13). 

The graylex order that this Gray code imposes on the list of words c1c2...cn is as 
follows.  For each prefix c1,...,ci-1, let m(i)=1+max(c1,...,ci-1).  Then s(c1,...,ci-1) = 
(1,2,...,m(i)) if the rank of c1c2...ci-1 among the partitions of {1,2,...,i-1} is even and 
(m(i),...,2,1) otherwise (see Figure 3.4: ci begins by rising and changes direction of motion 
every time it hits its final value zi).   

 
 

PARTITION            c1 c2 c3 c4   d1 d2 d3 d4 
(1234)               1  1  1  1    F  F  F  F 
(123)(4)             1  1  1  2    F  F  F  F 
(12)(3)(4)           1  1  2  3    F  F  F  T 
(12)(34)             1  1  2  2    F  F  F  T 
(124)(3)             1  1  2  1    F  F  F  T 
(14)(2)(3)           1  2  3  1    F  F  T  F 
(1)(24)(3)           1  2  3  2    F  F  T  F 
(1)(2)(34)           1  2  3  3    F  F  T  F 
(1)(2)(3)(4)         1  2  3  4    F  F  T  F 
(1)(23)(4)           1  2  2  3    F  F  T  T 
(1)(234)             1  2  2  2    F  F  T  T 
(14)(23)             1  2  2  1    F  F  T  T 
(134)(2)             1  2  1  1    F  F  T  F 
(13)(24)             1  2  1  2    F  F  T  F 
(13)(2)(4)           1  2  1  3    F  F  T  F 

 
Figure 3.13 

The Knuth-Kaye Gray code for set partitions of {1,2,3,4}; ci is the class to which the object 
i belongs, and di is TRUE if ci is descending. 
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The generic sequencing algorithm, specialized to this Gray code, leads to the 
algorithm in Figure 3.14.  The maximum values for the ci are stored in an auxilliary array: 
mi is the value of max(c1,...,ci-1).  Since the parity of c1+...+ci-1 may or may not change as 

we pass from one partition of {1,2,...,i-1} to the next, there is no obvious way of calculating 
the direction in which ci must move; so these directions are stored in an array of Boolean 
variables: di is TRUE if and only if ci is descending. 
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i:=n; 
LOOP 
  IF d[i] THEN                               (* c[i] should decrease 
*) 
    IF c[i]=1 THEN                            (* c[i] cannot decrease 
*) 
      d[i]:=FALSE; i:=i-1 
    ELSE                                        (* c[i] can increase 
*) 
      c[i]:=c[i]-1; EXIT 
    END IF 
  ELSE                                        (* c[i] should increase 
*) 
    IF c[i]>m[i] THEN                         (* c[i] cannot increase 
*) 
      d[i]:=TRUE; i:=i-1; 
      IF i=1 THEN Done:=TRUE; RETURN; END IF 
    ELSE                                         (* c[i] can increase 
*) 
      c[i]:=c[i]+1; EXIT 
    END IF 
  END IF 
END LOOP;              (* now we have to update the whole suffix c[i+1]...c[n] 
*) 
WHILE i<n DO 
  i:=i+1; 
  m[i]:=max(c[i-1],m[i-1]); 
  IF d[i] THEN c[i]:=m[i]+1; END IF;              (* its first value 
*) 
END WHILE; 
RETURN. 
 

Figure 3.14 
Finding the next set partition of {1,2,..,n} in the Knuth-Kaye Gray code; ci is the class to 

which the object i belongs, mi+1 is the largest value that ci may attain, and di is TRUE if ci 
is descending.  Initially, ci=1, mi=1 and di=FALSE for each i from 1 to n (except that 

m1=0), and Done is FALSE. 
 

This is essentially the algorithm in [Ka], except that in [Ka] the maximum value of ci 

is not stored explicitly.  Instead, the value s[k], the smallest element in the class k, is stored; 
if s[ci]=i, then ci is at its maximum. 

To solve the resumption problem for this algorithm we need to be able to calculate 
m1m2...mn and d1d2...dn from c1c2...cn.  The former can be done in linear time, but the 

latter is much more difficult: we have only the formula 
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di = rank(c1c2...ci-1) is odd.                                            (3.7) 

This means that the resumption problem is dependent upon the ranking problem, but the 
ranking problem is also dependent upon the resumption problem, since we need to know 
the directions in which the integers are moving to be able to calculate the rank of a word.  
We solve both problems simultaneously below. 

A formula for the lex-order rank of c1c2...cn is given in [Wm, p. 99].  A table of tm,s, 

the number of ways to put s objects into classes if m classes are already occupied, is 
precomputed for 0≤s≤n-2 and 1≤m≤n-s-1 using the formula 

 

                                          
t m,s =  

1                            if s = 0
mtm,s-1 +  t m+1,s-1 otherwise.
⎧ 
⎨ 
⎩ 

                                (3.8)
 

The part of the table necessary for n=7 is given in Figure 3.15. 
 
       m=  1   2   3   4   5   6 
     s 
     0     1   1   1   1   1   1 
     1     2   3   4   5   6 
     2     5  10  17  26 
     3    15  37  77 
     4    52 151 
     5   203 
 

Figure 3.15 
Table of tm,s needed to rank set partitions. 

 

From (1.1), 

rank(c1c2...ciai+1...an)=rank(c1c2...ci-1ai...an)+(ci-1)tm(i),n-i,            (3.9) 

so that 

 

lex-rank(c1c2...cn) = ∑i=2,...,n (ci-1)tm(i),n-i .                           (3.10) 



 
37 

The Gray code rank is calculated similarly, using (1.1) whether ci is increasing or 
decreasing.  If ci is increasing, (3.9) still holds.  Now suppose that ci is decreasing.  If 
ci>m(i), then ci=ai; so the sum in (1.1) is 0.  Otherwise, it is equal to #(c1,c2,...,ci-1,ai), 
which is tm(i)+1,n-i, plus the rest of the sum, which is (m(i)-ci)tm(i),n-i.  This observation, 
together with the observation that ci decreases if and only if rank(c1c2...ci-1) is odd, yields 

the formula 

 

rank(c1c2...cn ) =  
(ci - 1)tm(i),n- i                  if rank(c1c2.. .ci-1) is even

tm(i)+1,n- i + (m(i) - ci )t m(i),n- i  otherwise (or 0 if ci > m(i)),   (3.11)
⎧ 
⎨ 
⎩ i=2

n
∑

 
                             where m(i) = max(c1,c2,...,ci-1). 

The term tm(i)+1,n-i in (3.11) makes it necessary to compute the table of tm,s for 

0≤s≤n-2 and 1≤m≤n-s. 

 We know that rank(c1)=0, and once we have computed rank(c1c2...ci-1) we can 
compute rank(c1c2...ci) from (3.11), which yields an algorithm, quadratic in the number of 

arithmetic operations, for ranking a word in graylex order. 
 
FOR i FROM 1 TO n DO d[i]:=FALSE END FOR; 
r:=0; m:=1; 
FOR i FROM 2 TO n DO 
  m:=max(m,c[i-1]);                  (* m = m(i) = max(c[1],..,c[i-1]). *) 
  IF NOT d[i] THEN                    (* rank(c[1]c[2]...c[i-1]) is even. 
*) 
    IF c[i] is even THEN (* change d[j] for each j>i such that t[m(i),j-i] is 
odd*) 
      k:=1 - (m mod 2);        (* when j=i+1, t[m(i),j-i] ≡ m(i)+1 (mod 2) 
*) 
      FOR j FROM i+1 TO n DO 
        IF k=0 THEN                           (* t[m(i),j-i] is even. 
*) 
          k:=2                              (* k follows j-i mod 3. *) 
        ELSE 
          d[j]:=NOT d[j];                                         (* now t(m(i),j-i) is odd. *) 
          k:=k-1  (* when j=i+2, t[m(i),j]≡m(i) (mod 2); the next time it's odd.  *) 
        END IF 
      END FOR 
    END IF; 
    r:=r+(c[i]-1)*t[m,n-i] 
  ELSE                                 (* rank(c[1]c[2]...c[i-1]) is odd. 
*) 
    IF c[i]≤m  THEN 
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      IF m-c[i] is odd THEN  (* change d[j] if t[m(i)+1,j-i]+t[m(i),j-i] is odd. 
*) 
        k:=2               (* t[m(i)+1,j-i]+t[m(i),j-i] will be odd until j=i+3. 
*)  
      ELSE                         (* change d[j] if t[m(i)+1,j-i] is odd. *) 
        k:= m mod 2           (* when j=i+1, t[m(i)+1,j-i]≡m(i) (mod 2). *) 
      END IF; 
      FOR j FROM i+1 TO n DO 
        IF k=0 THEN k:=2 ELSE d[j]:=NOT d[j]; k:=k-1 END IF; 
      END IF; 
      r:=r+t[m+1,n-i]+(m-c[i])*t[m,n-i] 
    END IF 
  END IF 
END FOR. 
 

Figure 3.16 
Algorithm to find the rank r of the set-partition c1c2...cn in the Knuth-Kaye Gray code and 

the Boolean array d1d2...dn, where di is TRUE if ci is descending. 

But since we only need to know the parity of the ranks of all the prefixes, we can do 
all but the last substitution into (3.11) modulo 2.  From (3.8) it is easy to prove by induction 
on s that tm,s is odd if s mod 3 = 0, has the opposite parity as m if s mod 3 = 1, and has the 

same parity as m if s mod 3 = 2.  To avoid storing or recomputing m(i), we use all the 
available information from each prefix before moving on to the next one.  The algorithm is 
shown in Figure 3.16. 

This algorithm also requires a quadratic number of operations, but the only operations 
which are iterated that often are on j, k and Boolean variables.  There are only O(n) 
operations on large integers; so the algorithm actually runs in quadratic time.  If all we want 
is d1d2...dn, we can omit all reference to r; so we don't need to precompute the table. 

This algorithm can be modified to find the word c1c2...cn of rank r and the 
corresponding d1d2...dn.  Remove all statements that contain r.  After the second line 

(m:=1;) insert 
 
c[1]:=1; s:=r;  
 
After the fifth line (IF NOT d[i] THEN) insert 
 
    c[i]:=1 + (s div t[m,n-i]); s:=s-(c[i]-1)*t[m,n-i]; 
 
Replace 
 
     IF c[i]≤m 
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 by 
 
    IF s<t[m+1,n-i] THEN 
      c[i]:=m+1 
    ELSE 
      s:=s-t[m+1,n-i]; 
      c[i]:=m - (s div t[m,n-i]); 
      s:=s-(m-c[i])*t[m,n-i]; 

These modifications do not change the time-complexity. 

Using these algorithms we find that the last word starting with 11 is  
1121341561781.. (coding the partition (1247..)(3)(5)(6)(8)(9)..), its direction vector is 
FFFTFFTFFTFFT.., and its successor is 1231451671891.. (coding the partition 
(147..)(2)(3)(5)(6)(8)(9)..), so that 2/3 of its elements change.  This means that the words do 
not obey any minimal-change property, so that there is no way to make the next-string 
algorithm loop-free with this order of generating partitions.  Of course, there already is a 
loop-free set-partition generating algorithm ([Eh1], [Ev, p68]).  The Gray code used there 
differs from this one in that s(c1c2...ci-1) is (2,3,...,m(i),1) instead of (1,2,3,...,m(i)) and 

(1,m(i),...,3,2) instead of (m(i),...,3,2,1).  This is genlex but it is not graylex unless the 
positive integers are reordered so that 1 is greater than all the others.  All the Gray codes 
discussed in sections 3 and 4 of [JWW] are in a similar genlex order: 0 acts like the greatest 
integer, and the direction of motion changes with each new prefix.  We invite the reader to 
apply our method to the set-partition Gray-code in [Eh1] to solve the ranking, unranking 
and resumption problems. 

4. The Towers of Hanoi 

In the by-now-infamous Towers of Hanoi puzzle (see [Hi] for a history of this 
problem), n rings of different sizes, originally stacked on a source peg in order of size with 
the smallest ring on top, have to be stacked on a destination peg, using a third peg as a 
spare, without moving more than one ring at a time or putting any ring on top of a smaller 
ring.  The classical recursive algorithm for solving this problem is shown in Figure 4.1 and 
the classical iterative one (which was proved correct in [BL]) is shown in Figure 4.2. 

 
IF n>1 THEN stack the n-1 smallest rings on the spare peg END IF; 
Move the largest ring from the source peg to the destination peg; 
IF n>1 THEN stack the n-1 smallest rings on the destination peg END IF. 
 

Figure 4.1 
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The recursive algorithm for stacking n rings on the destination peg if they are initially 
stacked on the source peg. 

 
 
Cyclically order the pegs so that destination follows source iff n is odd; 
LOOP 
    Move the smallest ring according to this cyclic order; 
    IF all the rings are on a single peg THEN EXIT END IF; 
    Move the second-smallest topmost ring but not on top of the smallest ring 
END LOOP. 
 

Figure 4.2 
The classical iterative algorithm for stacking n rings on the destination peg if they are 

initially stacked on the source peg. 

 

When we execute the iterative algorithm, the only variable information we need in 
order to decide what ring to move - aside from the topmost ring on each peg, which is part 
of the data structure being manipulated - is whether it is time to move the smallest ring.  As 
was shown in [Wa1], this information can be found in constant time by examining the three 
topmost rings or empty pegs: if the rings are labelled 1,2,...,n in increasing order of size, the 
source peg labelled n+1, the spare peg n+2 and the destination peg n+3, then exactly one of 
the three topmost rings or empty pegs will have an even label, and this is where ring 1 
should be moved, so that if this move is compatible with the cyclic order, it is time to move 
ring 1.  Other results in [Wa1], which were described in [Hi] as open problems whose 
solutions could be derived from results in [Hi], are a criterion for the current position of the 
rings to be part of a minimal solution (every ring is on a ring or empty peg of opposite 
parity), and a linear-time ranking and unranking procedure (if bn+1bn...b2b1 is the rank in 
binary, then for each i from n down to 1, bi=bi+1 if and only if ring i is on ring or empty peg 

i+1). 

If we store the positions of the rings in an array Peg, where Peg[i] is the peg on which 
ring i is sitting, it takes O(n) time in the worst case to find the second-smallest topmost ring 
- the computer searches the rings in increasing order of size until it finds one which is not 
on the same peg as its predecessor.  When we execute the algorithm with real rings and 
pegs we compare the sizes of the three topmost rings, and it is both more natural and more 
efficient to incorporate this approach into a computer program.  The rings on each peg form 
a sorted stack, and the allowable operation is popping a ring off the top of one stack and 
pushing it onto the top of another one (keeping the stacks sorted).  This operation can be 
done in constant time using linked lists; so the algorithm can be made loop-free by storing 
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the positions of the rings by a simulated linked list [Er2]: a size-3 array Top, where Top[i] 
is the topmost ring on peg i, and a size-n array Beneath, where Beneath[i] is the ring 
beneath ring i, with n+1 or some other sentinel to simulate the nil pointer.  Since the array 
Peg is rendered redundant, this implementation uses constant extra space. 

A recursive algorithm for stacking the rings onto a given destination peg from any 
legal position was found independently by Er [Er1] and Scarioni and Speranza [SS], and is 
shown in its essentials in Figure 4.3. 
 
IF the largest ring is on the destination peg THEN 
    IF n>1 THEN stack the n-1 smallest rings on the destination peg END IF 
ELSE 
    The 'other' peg := neither the destination peg nor the peg containing ring n; 
    IF n>1 THEN stack the n-1 smallest rings on the 'other' peg END IF; 
    Move the largest ring onto the destination peg; 
    IF n>1 THEN stack the n-1 smallest rings on the destination peg END IF 
END IF. 
 

Figure 4.3 
The recursive algorithm for stacking n rings on the destination peg from any legal position. 
 

Iterative versions appear in [Hi], [Er2], and [Wa2].  All of these are equivalent to the 
recursive algorithm, and a proof that all these algorithms are indeed minimal appears in 
[Hi].  We compare them now for the minimal extra space needed for a loop-free 
implementation. 

These algorithms all define a target peg for each ring according to the algorithm 
shown in Figure 4.4. 

 
Target[n]:=destination peg; 
FOR i FROM n-1 BY -1 TO 1 DO 
  IF Peg[i+1]=Target[i+1] THEN 
    Target[i]:=Target[i+1] 
  ELSE 
    Target[i]:=the peg other than Peg[i+1] or Target[i+1] 
  END IF 
END FOR. 
 

Figure 4.4 
Algorithm for finding the target pegs for each ring. 

 



 
42 

The iterative algorithm in [Hi] for stacking the rings on the destination peg is 
essentially the one shown in Figure 4.5. 
 
Find Target[i] for each i;          (* using the algorithm of Figure 4.4 
*) 
FOR i:=1 TO n DO 
  IF Peg[i]≠Target[i] THEN 
    Peg[i]:=Target[i]; 
    IF i>1 THEN             (* the smaller rings are all stacked on Target[i-1] 
*) 
      Stack all the smaller rings on Peg[i]  (* algorithm of Fig. 4.2 
*) 
    END IF; 
  END IF 
END FOR. 

Figure 4.5 
Er-Hinz iterative algorithm for stacking n rings on the destination peg from any legal 

position. 
 

The iterative algorithm in [Er2] is essentially the same, except that an explicit loop-
free version is given, using the arrays Top and Beneath as well as Peg and Target.  The 
array Target is constantly updated to keep ring 1 moving in the correct cyclic direction.  In 
any loop-free implementation of the algorithm in [Hi] we would need all these arrays, 
although it would not be necessary to update Target: it suffices to update the cyclic 
direction for ring 1 for each new value of i. 

 

The algorithm in [Wa2], which does not store the array Target, is given in Figure 4.6. 
 
Find Target[1]; (* Fig. 4.4 with all indices of the array Target changed to 1 *) 
IF ring 1 is not on Target[1] THEN move it there END IF; 
WHILE at most one peg is empty DO 
  Move second-smallest topmost ring i but not onto ring 1; 
  IF i is even THEN 
    Move ring 1 onto ring i 
  ELSE 
    Move ring 1 but not onto ring i 
  END IF 
END WHILE. 
 

Figure 4.6 
Walsh algorithm for stacking n rings on the destination peg from any legal position. 
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This algorithm is proved correct in [Wa2] by showing, using induction on n, that the 
recursive algorithm makes the same sequence of moves.  Here we derive our algorithm 
from the recursive one using genlex order.  From the recursive algorithm of Figure 4.3 we 
see that if ring n is not on its target peg - the destination peg - it will be moved there before 
it is moved anywhere else.  The same is true of any other ring i - this is arranged by the 
recursive call for stacking i rings - and no larger ring will be moved in the meantime.  It 
follows that for any position of the larger rings, ring i assumes either one position, 
Target[i], or two, the latter of which is Target[i].  This defines a genlex order on the 
positions of the rings, and the generic sequencing algorithm says to find the smallest ring i 
which is not on Target[i], if there is one, and move it there.  We can calculate Target[1] 
without storing the array Target, and if ring 1 is not on Target[1] it must be moved there.  
To find the smallest ring i which is not on Target[i], we observe from Figure 4.4 that for 
any j>1, Peg[j], Target[j] and Target[j-1] are either all the same or all different.  It can be 
shown by induction on j that if rings 1,2,...,i-1 are all on the same peg they are all on their 
target pegs.  If all n rings are on the same peg, then this peg is Target[n]=destination, and 
the algorithm must terminate.  Otherwise, for the second-smallest topmost ring i, Peg[i], 
Target[i] and Target[i-1]=Peg[i-1]=Peg[1] are all different, and ring i must be moved onto 
Target[i], which is the peg containing neither ring 1 nor ring i.  Now Target[i-1] becomes 
Target[i], the new value of Peg[i].  But now Target[i-1], Peg[i-1] and the old value of 
Peg[i] are all different, so that Target[i-2] becomes the old value of Peg[i].  Continuing in 
this way we find that Target[i-3] becomes the new value of Peg[i], Target[i-4] becomes the 
old value of Peg[i] and so on, so that Target[1] becomes the new value of Peg[i] if i is even 
and the old value of Peg[i] if i is odd, and in either case it is different from Peg[1]; so that 
ring 1 must be moved onto ring i if i is even and onto the peg containing neither ring i nor 
ring 1 if i is odd.  Thus the generic sequencing algorithm leads directly to the algorithm in 
Figure 4.6. 

We define the binary number bn...b2b1 where bi=0 if and only if Peg[i]=Target[i] and 

prove that each move reduces this number by 1.  In the above discussion we showed that at 
the beginning of the loop rings 1,2,...,i-1 are on their target pegs but not ring i, so that bi=1 
but bi-1=...=b1=0.  The move of ring i puts it on its target peg but changes the target pegs of 
all the rings 1,2,...,i-1, so that now bi=0 but bi-1=...=b1=1, which reduces the binary number 
by 1.  Then ring 1 is moved to its target peg, changing b1 from 1 to 0, again reducing this 

number by 1.  When the binary number drops to 0, all the rings are on a single peg - the 
destination peg - and the algorithm terminates, so that the initial value of this binary 
number is the number of moves required to complete the algorithm (this fact was proved in 
both [Wa2] and [Hi]). 
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We note that this algorithm provides an alternative to Figure 4.2 for solving the 
original Towers of Hanoi problem.  In this special case, the first two lines can be replaced 
with 'IF n is odd THEN move ring 1 onto the destination peg ELSE move ring 1 onto the 
spare peg END IF'. 

Any loop-free implementation of this algorithm requires the arrays Top and Beneath 
to make it loop-free and Peg to find Target[1] by scanning the rings from largest to smallest 
as done in Figure 4.4, since the rings cannot be scanned from largest to smallest using the 
arrays Top and Beneath.  They can, however, be scanned from smallest to largest using 
these two arrays and a size-3 array Current.  If we assume that Target[1]=Peg[1], we can 
then use that fact that Target[i], Peg[i] and Target[i-1] are either all the same or all different 
to find what the value of Target[n] would be under that assumption - that is, on what peg all 
the rings will end up being stacked if we don't move ring 1 first.  If this turns out to be the 
destination peg, ring 1 is on Target[1] and we don't have to move it.  If not, we order the 
pegs cyclically so that the destination peg follows the value that Target[n] would have if 
Target[1] were Peg[1].  If we change Target[n] to destination, Target[n-1] moves in the 
opposite cyclic order, Target[n-2] in the original cyclic order, and so on, so that to get the 
true value of Target[1] we have to move it from the peg containing ring 1 in the above-
mentioned cyclic order if n is odd and in the opposite cyclic order if n is even, and this is 
the cyclic order in which we have to move ring 1.  After that we follow Figure 4.6, finding 
the second-smallest topmost ring by sorting the size-3 array Top and moving the rings by 
popping and pushing.  Each move is made in constant time, so that the algorithm is loop-
free, and since only one size-n array is used - Beneath - the algorithm uses O(1) extra 
space. 

A more general problem is solved in [Hi]: moving the rings from one legal position to 
another.  Two algorithms are considered.  Let ring i be the largest ring that is not on its 
destination peg Dest[i].  Ring i is moved onto Dest[i] in either one move or two.  Before 
moving ring i, all the smaller rings must be stacked on the appropriate 'other' peg.  Once 
ring i is on Dest[i], the sequence of moves which would take the smaller rings from their 
destination pegs and stack them on the peg on which they are currently stacked is reversed.  
One of these two algorithms is minimal, and since one can compute the number of moves 
that each of them will take from the formula in [Hi] and [Wa2], one chooses the minimal 
algorithm and then executes it. 

The smaller rings can be stacked the first time using Figure 4.6 and the second time, 
if necessary, using Figure 4.2.  The hard part is the reversal of the sequence of moves which 
stacks the rings on a given peg from any legal position.  But to take rings from a single peg 
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and put them onto designated pegs it is not necessary to even consider the reverse problem, 
let alone store the entire sequence of moves necessary to solve the reverse problem and 
then reverse the sequence.  The algorithm in Figure 4.7 solves this problem directly and 
does not require the foresight of calculating temporary target pegs.  It is clearly the unique 
minimal-move algorithm in which the largest ring which is not on its destination peg moves 
only once, and we have it on the authority of [Hi] that it is therefore the minimal algorithm 
which does the job. 

 
FOR i FROM n BY -1 TO 1 DO 
  IF ring i is not on peg Dest[i] THEN 
    Stack all the smaller rings            (* which are now on ring i 
*) 
    on the 'other' peg besides Dest[i];             (* Figure 4.2 
*) 
    Move ring i to Dest[i] 
  END IF 
END FOR. 
 

Figure 4.7 
An algorithm for taking n rings which are stacked on a source peg 

and putting each ring i on a specified peg Dest[i]. 

To solve the general problem we need to know how many moves the algorithms of 

Figures 4.6 and 4.7 will take.  An algorithm for finding in advance the moves that Figure 

4.6 will take while calculating Target[1] appears in [Wa2]; we repeat it in Figure 4.8. 
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Target[1]:=destination; m:=0; 
FOR i FROM n BY -1 TO 2 DO 
  IF Peg[i]≠Target[1] THEN 
    Target[1]:=the peg other than Target[1] or Peg[i] 
    m:=m+1; 
  END IF; 
  m:=m*2; 
END FOR; 
IF Peg[1]≠Target[1] THEN m:=m+1 END IF. 

 
Figure 4.8 

An algorithm for finding m, the number of moves needed to execute Figure 4.6, while 
calculating Target[1] 

A similar algorithm (see Figure 4.9) computes the number of moves necessary to execute 
Figure 4.7. 

 
StackPeg:=source; m:=0;    (* StackPeg is the destination for a stack of rings 
*) 
FOR i FROM n BY -1 TO 1 DO 
  m:=m*2; 
  IF StackPeg≠Dest[i] THEN 
    StackPeg:=the peg other than StackPeg or Dest[i]; 
    m:=m+1 
  END IF 
END FOR. 
 

Figure 4.9 
An algorithm for finding m, the number of moves needed to execute Figure 4.7 

Thus the entire algorithm for moving the rings from one legal position to another can 
be implemented using the array Dest (which, being part of the problem, is not considered 
extra space) and whatever representation we are using for the position of the rings.  If we 
are prepared to search for the second-smallest topmost ring we can represent the rings by 
the array Peg; otherwise we need the arrays Top and Beneath.  The algorithm of Figure 4.7 
will still not be totally loop-free, because the condition that ring i is not on peg Dest[i] may 
be false for several consecutive rings.  However, the violation of the loop-free condition is 
only linear in total time, since that condition is tested only once for each ring and can be 
done in constant time even if we only use Top and Beneath, since the ring to be tested is on 
the same peg as ring 1.  If we use only Top and Beneath we must modify the algorithm of 
Figure 4.8 so that it computes Target[1] by scanning the rings from smallest to largest and 
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evaluates m starting from the least significant bit of its binary expansion.  With these 
modifications, the entire algorithm is almost loop-free and uses constant extra space. 

From the algorithm of Figure 4.7 it is easy to derive the genlex order in which the 
rings move.  For each position of the larger rings, ring i follows a sequence of one peg 
(ai=zi) or a sequence of two pegs (ai,zi).  If i=n or all the larger rings are on their destination 
pegs, then zi=Dest[i]; otherwise zi is computed from Peg[i+1] and zi+1 the way Target[i] is 
computed in Figure 4.4: if Peg[i+1]=zi+1 then zi=zi+1 and otherwise zi= the peg other than 
Peg[i+1] and zi+1.  Similarly, an is the source peg, and for each i<n, if Peg[i+1]=ai+1 then 
ai=ai+1 and otherwise ai= the peg other than Peg[i+1] and ai+1.  The genlex order followed 

by the rings moving from a given legal position (Peg[i]=Source[i]) to a single destination 
peg can be derived from the above by reversing the roles of ai and zi and of Source and 

Destination.  For the original Towers of Hanoi problem, each ring follows a two-peg 
sequence: an=source, zn=destination, and for i<n, if Peg[i+1]=zi+1 then zi=zi+1 and ai= the 
peg other than ai+1 and zi+1, and otherwise ai=ai+1 and zi is the 'other' peg.  For the more 

general problem of moving the rings from one legal position to another, the largest ring not 
originally on its destination peg follows either a two-peg or three-peg sequence depending 
on which of the two algorithms presented in [Hi] turns out to be minimal, and the other 
rings follow one of the three above genlex orders depending upon which part of the 
algorithm is being executed; the details are left to the reader.  We note that this genlex order 
is not graylex unless we artificially impose a linear order on the pegs instead of the more 
natural cyclic order. 

5. Conclusion 

The method presented here can be used to sequence and rank any list of words in 
genlex order, and this includes almost all the classical combinatorial Gray codes.  There are 
some exceptions: the list of integer partitions of 10 shown in [Wi, p12], computed using the 
Gray code published in [Sa], will convince the reader that this Gray code is not in genlex 
order, and so it is unlikely that an iterative description can be found by using any method 
less general (and less complicated) than the revolving door method illustrated in [NW, 
p29].  This leads to the following open problem.  The 'method' presented in this article 
begins by generating the list Ln for small values of n from the recursive description, 
observing if it is in genlex order and, if so, discovering a rule for finding s(g1g2...gi-1) as a 
function of g1g2...gi-1, and then proving these observations by induction using the recursive 

description.  Does there exist an algorithm which accepts as input the recursive description 
of a Gray code and decides whether or not it is genlex and, if so, outputs the simplest 
possible rule for finding s(g1g2...gi-1) as a function of g1g2...gi-1? 
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APPENDIX 
 

Listings of the computer programs for sequencing, ranking and unranking the 

Proskurowski-Ruskey Gray code for balanced parenthesis systems 
 
Two modules were written: RankTree, which contains the constant-extra-space 

sequencing algorithm and the ranking and unranking algorithms, and EhrlichTree, which 
contains the loop-free sequencing algorithm.  This page contains the declarations of both 
modules, the next five pages contain the rest of RankTree, and the last three pages contain 
the rest of EhrlichTree.  The bitstring is stored in the variable A.  The variables n and k are 
the parameters in T(n,k): the bitstring is of length 2n and has a prefix 1k0.  The variable i is 
a loop index for printing the bitstring, r is for its rank, and B is for constructing the bitstring 
of that rank for comparison with A.  Done is true if the current bitstring is the last one in the 
list.  LastRight is true if the total number of free 1s not in their rightmost positions is even.  
OK is true if r is less than the total number of bitstrings.  Pos is the position vector of the 1s 
in the bitstring, Dir[i]=1 if Pos[i] is increasing and 0 otherwise, and Ehr is the Bitner-
Ehrlich-Reingold array.  Finally, List is Fixed if we are generating T(n,k) for fixed k, 
Variable if we are generating T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) and Special if we are 
generating T(n+1,1) with the prefix 10 removed. 
 
 
MODULE RankTree; (* Constant extra-space generation, ranking 
and unranking of balanced parenthesis systems *) 
FROM InOut IMPORT WriteString, WriteLn, ReadCard, WriteCard; 
TYPE Dyck=ARRAY[1..80] OF CARDINAL; 
     ListType=(Fixed, Variable, Special); 
VAR i,n,k,r: CARDINAL; 
    Done, LastRight, OK: BOOLEAN; 
    A,B: Dyck; 
    List: ListType; 
 
 
MODULE EhrlichTree; (* Loop-free generation of balanced 
parenthesis systems *) 
FROM InOut IMPORT WriteString, WriteLn, ReadCard, WriteCard; 
TYPE Dyck=ARRAY[1..80] OF CARDINAL; 
     ListType=(Fixed, Variable, Special); 
VAR i,n,k: CARDINAL; 
    Done: BOOLEAN; 
    A, Pos, Dir, Ehr: Dyck; 
    List: ListType; 
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PROCEDURE First(n:CARDINAL; VAR k:CARDINAL; VAR A:Dyck; 
                VAR Done, LastRight: BOOLEAN; List: 
ListType); 
(* FIRST PARENTHESIS SYSTEM.  NO AUXILIARY ARRAYS NEEDED *) 
VAR i: CARDINAL; 
BEGIN 
  Done:=FALSE; 
  IF List=Variable THEN 
    k:=n; LastRight:=TRUE 
  ELSIF List=Special THEN 
    k:=1; LastRight:=n<=1 
  ELSE 
    LastRight:=(k=n) OR (n<=2) 
  END; (* IF List *) 
  FOR i:=1 TO k DO 
    A[i]:=1; 
  END; (* FOR *) 
  IF k=n THEN 
    FOR i:=n+1 TO 2*n DO 
      A[i]:=0; 
    END; (* FOR *) 
  ELSIF (k>1) OR ((n=2) AND (List=Fixed)) THEN 
    A[k+1]:=0; A[k+2]:=1; 
    FOR i:=k+3 TO 2*k+2 DO 
      A[i]:=0 
    END; (* FOR *) 
    FOR i:=k+2 TO n DO 
      A[2*i-1]:=1; A[2*i]:=0; 
    END; (* FOR *) 
  ELSE (* k=1 *) 
    IF List=Special THEN 
      IF n=1 THEN 
        A[2]:=0; 
      ELSE 
        A[2]:=1; A[3]:=0; A[4]:=0; 
        FOR i:=3 TO n DO 
          A[2*i-1]:=1; A[2*i]:=0; 
        END; (* FOR *) 
      END; (* IF n *) 
    ELSE 
      A[2]:=0; 
      IF n=2 THEN 
        A[3]:=1; A[4]:=0; 
      ELSIF n>2 THEN 
        A[3]:=1; A[4]:=1; A[5]:=0; A[6]:=0; 
        FOR i:=4 TO n DO 
          A[2*i-1]:=1; A[2*i]:=0; 
        END; (* FOR *) 
      END (* IF n *) 
    END; (* IF List *) 
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  END; (* IF k *) 
END First; 
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PROCEDURE Next(n: CARDINAL; VAR k: CARDINAL; VAR A: Dyck; 
               VAR Done, LastRight: BOOLEAN; List: ListType); 
(* NEXT  PARENTHESIS SYSTEM.  NO AUXILIARY ARRAYS NEEDED *) 
VAR i,j: CARDINAL; 
    Right: BOOLEAN; 
BEGIN 
  i:=2*n-1;                        (* position of symbol in Dyck-word *) 
  j:=n;                                     (* index among 1s only 
*) 
  Right:=LastRight;   (* true if the number of free 1s to the left of A[j] is even *) 
  LOOP 
    IF ((List=Fixed) AND (j<=k)) OR (j<=1) THEN 
      Done:=TRUE; EXIT; 
    END; (* IF *) 
    WHILE A[i]=0 DO i:=i-1; END; (* WHILE *) 
    IF (i<2*j-1) AND ((List<>Variable)OR(i>k)) THEN 
      Right:=NOT Right; 
    END; (* IF *) 
    IF Right AND (i<2*j-1) THEN                (* jth 1 moves right 
*) 
      A[i]:=0; 
      IF j=k THEN                        (* List=Variable and k drops 
*) 
        A[i+1]:=1; LastRight:=NOT LastRight; k:=k-1; 
      ELSIF j=n THEN 
        A[i+1]:=1; 
        IF i+1=2*j-1 THEN LastRight:=NOT LastRight; END; 
      ELSE 
        LastRight:=NOT LastRight; 
        IF i+1=2*j-1 THEN A[i+2]:=1 ELSE A[2*j+1]:=1 END; 
      END; (* IF j *) 
      EXIT; 
    ELSIF (NOT Right) AND (A[i-1]=0) 
    AND((List<>Variable)OR(k>1)OR(j>2)) THEN    (* jth 1 moves left *) 
      A[i-1]:=1; 
      IF j=n THEN 
        A[i]:=0; 
        IF i=2*j-1 THEN  LastRight:=NOT LastRight; END; 
      ELSE 
        LastRight:=NOT LastRight; 
        IF i=2*j-1 THEN 
          A[i+1]:=0 
        ELSE 
          A[2*j+1]:=0; 
        END; (* IF i *) 
      END; (* IF j *) 
      EXIT; 
    ELSE                                        (* jth 1 can't move 
*) 
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      i:=i-1; j:=j-1; 
    END; (* IF Right *) 
  END; (* LOOP *) 
END Next; 
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PROCEDURE Rank(n,k:CARDINAL; A:Dyck; List:ListType): 
CARDINAL; 
VAR i,j,f,t,r,d:CARDINAL; 
    Dir: BOOLEAN; 
BEGIN 
  IF List=Variable THEN 
    k:=1; 
    WHILE A[k+1]=1 DO k:=k+1 END; 
    IF k=1 THEN k:=2 END; 
  ELSIF List=Special THEN 
    k:=1; n:=n+1; 
  END; (* IF List *) 
  f:=1;                            (* computing first binomial coefficient 
*) 
  FOR i:=1 TO n-k DO 
    f:=f*(2*n-k-i) DIV i; 
  END; (* FOR *) 
  IF List=Variable THEN  (* computing rank of last bitstring for this value of k 
*) 
    r:=f*(2*n-k)*(k+1) DIV (n*(n+1)); 
    IF A[2]=1 THEN   (* k was always greater than 1 - if k was 1 we changed it to 2  
*) 
      Dir:=TRUE; 
      r:=r-1; 
    ELSE 
      Dir:=FALSE; 
    END; (* IF A[2] *) 
  ELSE 
    r:=(f*k DIV n) - 1; 
    Dir:=TRUE; 
  END; (* IF *) 
  j:=k+2; 
  IF List=Special THEN (* subtract 2 from all indices of A to remove prefix 10 *) 
    d:=2   
  ELSE 
    d:=0; 
  END; (* IF List *) 
  FOR i:=k+1 TO n DO 
    WHILE A[j-d]=0 DO 
      f:=f*(n+i-j) DIV (2*n-j+1);      (* updating binomial coefficient 
*) 
      j:=j+1; 
    END; (* WHILE *) 
    IF j<2*i-1 THEN 
      t:=(f*(2*i-j) DIV (n-j+i+1)) - 1; 
      IF Dir THEN r:=r-t ELSE r:=r+t END;       (* updating rank 
*) 
      Dir:=NOT Dir; 
    END; (* IF j *) 
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    f:=f*(n-i+1) DIV (2*n-j+1); 
                                                  (* updating binomial coefficient when both i and j change *) 
    j:=j+1; 
  END; (* FOR *) 
  RETURN(r); 
END Rank; 
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PROCEDURE Unrank(n,k,r:CARDINAL; VAR A:Dyck; 
                VAR OK: BOOLEAN; List:ListType); 
VAR i,j,f,nf,d: CARDINAL; 
BEGIN 
  IF List=Variable THEN 
    k:=n; f:=0; nf:=1; 
    WHILE r>=nf*(k+1) DIV (n+1) DO 
      IF k=1 THEN OK:=FALSE; RETURN; END; 
      k:=k-1; f:=nf; 
      nf:=f*(2*n-k) DIV (n-k); 
    END; (* WHILE *) 
    r:=r-f*(k+2) DIV (n+1); 
  END; (* IF *) 
  IF List=Special THEN 
    d:=2; k:=1; n:=n+1; 
  ELSE 
    d:=0; 
    FOR i:=1 TO k DO 
      A[i]:=1; 
    END; (* FOR *) 
    A[k+1]:=0; 
  END; (* IF *) 
  f:=1; 
  FOR i:=1 TO n-k DO 
    f:=f*(2*n-k-i) DIV i; 
  END; (* FOR *) 
  nf:=f*k DIV n; 
           (*nf means new value of f; when nf meets the stopping condition we use 
f*) 
  OK:=r<nf; 
  IF NOT OK THEN RETURN END; 
  IF (List<>Variable) OR (k>1) THEN 
    r:=(f*k DIV n) - 1 - r; 
  END; (* IF *) 
  j:=k+2; 
  FOR i:=k+1 TO n DO 
    LOOP 
      nf:=f*(n+i-j) DIV (2*n-j+1); 
      IF nf*(2*i-j-1) DIV (n+i-j) <= r THEN EXIT END; 
      A[j-d]:=0; j:=j+1; f:=nf; 
    END; (* LOOP *) 
    A[j-d]:=1; 
    IF j<2*i-1 THEN 
      r:=(f*(2*i-j) DIV (n-j+i+1)) - 1 - r; 
    END; (* IF *) 
    f:=f*(n-i+1) DIV (2*n-j+1); 
    j:=j+1; 
  END; (* FOR *) 
  FOR i:=j TO 2*n DO 
    A[i-d]:=0; 
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  END; (* FOR *) 
END Unrank; 
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BEGIN (* RankTree *) 
  WriteString('Generating Dyck-Words by Transpositions.'); 
WriteLn; 
  LOOP 
    WriteLn; 
    WriteString('Enter number of pairs, 0 to quit: '); 
    ReadCard(n); 
    IF n=0 THEN 
      EXIT 
    END; (* IF n *) 
    WriteString('Enter length of prefix of 1s, 0 for variable: 
'); 
    ReadCard(k); 
    IF (k>n) THEN 
      WriteString('The maximum is '); WriteCard(n,1); 
WriteLn; 
    ELSE 
      IF k>0 THEN 
        List:=Fixed; 
      ELSE (* k=0 *) 
        WriteString('Enter 1 to do n=n+1 and k=1, 0 otherwise: 
'); 
        ReadCard(k); 
        IF k>0 THEN List:=Special ELSE List:=Variable END; 
      END; (* outer IF k *) 
      First(n,k,A,Done,LastRight,List); 
      WriteLn; 
      WHILE NOT Done DO 
        FOR i:=1 TO 2*n DO 
          WriteCard(A[i],1); 
        END; (* FOR *) 
        r:=Rank(n,k,A,List); 
        WriteCard(r,10); 
        Unrank(n,k,r,B,OK,List); 
        IF OK THEN 
          WriteString("    "); 
          FOR i:=1 TO 2*n DO 
            WriteCard(B[i],1); 
          END; (* FOR *) 
        ELSE 
          WriteString("Rank too big"); 
        END; (* IF *) 
        WriteLn; 
        Next(n,k,A,Done,LastRight,List); 
      END; (* WHILE *) 
      Unrank(n,k,r+1,B,OK,List); 
      IF OK THEN 
        WriteString("Out of bounds test NOT 
working");WriteLn; 
      ELSE 
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        WriteString("Out of bounds test working");WriteLn; 
      END; (* IF *) 
    END; (* IF k *) 
  END; (* LOOP *) 
END RankTree. 
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PROCEDURE First(n:CARDINAL; VAR k:CARDINAL;VAR Done: BOOLEAN; 
                VAR A,Pos,Dir,Ehr:Dyck;  List: ListType);  
                                (* for loop-free algorithm 
*) 
VAR i: CARDINAL; 
BEGIN 
  Done:=FALSE; 
  IF List=Variable THEN 
    k:=n; 
  ELSIF List=Special THEN 
    k:=1; 
  END; (* IF List *) 
  FOR i:=1 TO k DO 
    A[i]:=1; Pos[i]:=i; 
  END; (* FOR *) 
  IF k=n THEN 
    FOR i:=n+1 TO 2*n DO 
      A[i]:=0; 
    END; (* FOR *) 
  ELSIF (k>1) OR ((n=2) AND (List=Fixed)) THEN 
    A[k+1]:=0; A[k+2]:=1; Pos[k+1]:=k+2; 
    FOR i:=k+3 TO 2*k+2 DO A[i]:=0 END; (* FOR *) 
    FOR i:=k+2 TO n DO 
      A[2*i-1]:=1; A[2*i]:=0; Pos[i]:=2*i-1; 
    END; (* FOR *) 
  ELSE (* k=1 *) 
    IF List=Special THEN 
      IF n=1 THEN 
        A[2]:=0; 
      ELSE 
        A[2]:=1; A[3]:=0; A[4]:=0; Pos[2]:=2; 
        FOR i:=3 TO n DO 
          A[2*i-1]:=1; A[2*i]:=0; Pos[i]:=2*i-1; 
        END; (* FOR *) 
      END; (* IF n *) 
    ELSE 
      A[2]:=0; 
      IF n=2 THEN 
        A[3]:=1; A[4]:=0; Pos[2]:=3; 
      ELSIF n>2 THEN 
        A[3]:=1; A[4]:=1; A[5]:=0; A[6]:=0; Pos[2]:=3; 
Pos[3]:=4; 
        FOR i:=4 TO n DO 
          A[2*i-1]:=1; A[2*i]:=0; Pos[i]:=2*i-1; 
        END; (* FOR *) 
      END (* IF n *) 
    END; (* IF List *) 
  END; (* IF k *) 
  FOR i:=1 TO n DO 
    IF Pos[i]=2*i-1 THEN Dir[i]:=0 ELSE Dir[i]:=1 END; 
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    Ehr[i]:=i; 
  END; (* FOR *) 
END First; 
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PROCEDURE Next(n: CARDINAL; VAR k: CARDINAL;VAR Done: 
BOOLEAN; 
               VAR A,Pos,Dir,Ehr:Dyck;  List: ListType); 
(* LOOP-FREE SEQUENCING ALGORITHM *) 
VAR i,j: CARDINAL; 
BEGIN 
  j:=Ehr[n];                                                                        (* the jth 1 is to be moved *) 
  IF ((List=Fixed) AND ((j<=k) OR (j<=2))) OR (j<=1) THEN 
    Done:=TRUE; RETURN; 
  END; (* IF *) 
  Ehr[n]:=n; 
  i:=Pos[j];                                                                        (* the position of the jth 1 *) 
  IF i=2*j-1 THEN                                                                      (* it must move left *) 
    Dir[j]:=0; 
  END; (* IF *) 
  IF Dir[j]=1 THEN                                                                    (* jth 1 moves right *) 
    A[i]:=0; Pos[j]:=i+1; 
    IF j=k THEN                                                             (* List=Variable and k drops 
*) 
      A[i+1]:=1; 
      k:=k-1; 
    ELSIF j=n THEN                                                                  (* only one 1 moves *) 
      A[i+1]:=1; 
    ELSE                                          (* the jth 1 displaces the j+1st 1 which moves too. *) 
      IF i+1=2*j-1 THEN                                  (* It moves one space to the right *) 
        A[i+2]:=1; Pos[j+1]:=i+2; Dir[j+1]:=1; 
      ELSE                                                             (* It moves as far right as possible. *) 
        A[2*j+1]:=1; Pos[j+1]:=2*j+1; Dir[j+1]:=0; 
      END; (* IF i+1 *) 
    END; (* IF j *) 
  ELSE                                                                                                 (* jth 1 moves left *) 
    A[i-1]:=1; Pos[j]:=i-1; 
    IF j=n THEN                                                                        (* only one 1 moves *) 
      A[i]:=0; 
    ELSE                                                                      (* the j+1st 1 displaces the jth 1 *) 
      Pos[j+1]:=i; Dir[j+1]:=1; 
      IF i=2*j-1 THEN                                  (* It used to be adjacent to the jth 1 *) 
        A[i+1]:=0 
      ELSE                                                      (* It used to be as far right as possible *) 
        A[2*j+1]:=0; 
      END; (* IF i *) 
    END; (* IF j *) 
  END; (* IF Dir[j] *) 
  IF (Pos[j]=2*j-1) OR (Pos[j]=Pos[j-1]+1) THEN 
                                       (* the jth 1 can't move further*) 
    Ehr[j]:=Ehr[j-1]; 
    Ehr[j-1]:=j-1; 
  END; (* IF *) 
END Next; 
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BEGIN (* EhrlichTree *) 
  WriteString('Generating Dyck-Words by Transpositions.'); 
  WriteLn; 
  LOOP 
    WriteLn; 
    WriteString('Enter number of pairs, 0 to quit: '); 
    ReadCard(n); 
    IF n=0 THEN 
      EXIT 
    END; (* IF n *) 
    WriteString('Enter length of prefix of 1s, 0 for variable: 
'); 
    ReadCard(k); 
    IF (k>n) THEN 
      WriteString('The maximum is '); WriteCard(n,1); WriteLn; 
    ELSE 
      IF k>0 THEN 
        List:=Fixed; 
      ELSE (* k=0 *) 
        WriteString('Enter 1 to do n=n+1 and k=1, 0 otherwise: 
'); 
        ReadCard(k); 
        IF k>0 THEN 
          List:=Special; 
        ELSE 
          List:=Variable; 
        END; (* inner IF k *) 
      END; (* outer IF k *) 
      First(n,k,Done,A,Pos,Dir,Ehr,List); 
      WriteLn; 
      WHILE NOT Done DO 
        FOR i:=1 TO 2*n DO 
          WriteCard(A[i],1); 
        END; (* FOR *) 
        WriteString("    "); 
        FOR i:=1 TO n DO 
          WriteCard(Pos[i],1); 
        END; (* FOR *) 
        WriteString("    "); 
        FOR i:=1 TO n DO 
          WriteCard(Dir[i],1); 
        END; (* FOR *) 
        WriteString("    "); 
        FOR i:=1 TO n DO 
          WriteCard(Ehr[i],1); 
        END; (* FOR *) 
        WriteLn; 
        Next(n,k,Done,A,Pos,Dir,Ehr,List); 
      END; (* WHILE *) 
    END; (* IF k *) 
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  END; (* LOOP *) 
END EhrlichTree. 

 


