

1

A SIMPLE SEQUENCING AND RANKING METHOD
 THAT WORKS ON ALMOST ALL GRAY CODES

Timothy R. Walsh, Department of Mathematics and Computer Science, UQAM

P.O. Box 8888, Station A, Montreal, Quebec, Canada H3C-3P8

Abstract: We present a method of deriving non-recursive sequencing and ranking
algorithms for any list of words which obeys the condition that all the words in the list with
a common prefix are consecutive in the list. We also generalize to these lists the Bitner-
Ehrlich-Reingold method of designing loop-free generation algorithms. We first apply
these methods to the recursively-described Ruskey-Proskurowski Gray code for balanced
parenthesis systems. We thus find two iterative sequencing algorithms, of which one uses
constant extra space and the other is loop-free, for generating balanced parenthesis systems.
We also find algorithms which require constant extra space and a linear number of
arithmetic operations for ranking and unranking balanced parenthesis systems, both in
lexicographical order and in Gray code order. Next, we consider some simpler Gray codes:
the classical Gray code for subsets, the Nijenhuis-Wilf Gray codes for combinations and
permutations, the Knuth-Klingsberg Gray code for integer compositions and the Knuth-
Kaye Gray code for set partitions (which cannot be made loop-free). We present a simple
constant-extra-space constant-time implementation of the Nijenhuis-Wilf algorithm for
generating the k-subsets of an n-set, and we modify it to obtain a simple constant-extra-
space constant-time algorithm for generating the compositions of an integer. We also show
how already-published iterative sequencing algorithms for all these Gray codes could have
been more simply derived using our method, we design loop-free versions wherever it is
possible, and we derive new ranking and unranking algorithms. Finally, we present an
implementation of the Hinz algorithm for moving the rings of the Towers of Hanoi puzzle
from one arbitrary legal position to another which uses constant extra space and constant
time except for a linear number of operations scattered throughout the entire algorithm.

0. Introduction

While teaching a graduate course in combinatorial algorithms, in which [NW] and
[Wi] are required textbooks, I discovered a systematic method of deriving iterative
sequencing, ranking and unranking algorithms for recursively-described Gray codes which
was easier to explain to the students than the various methods presented in these texts and
in some of the articles they reference. I applied it to all the simpler Gray codes in these
texts: the classical Gray code for subsets [Gr], the ones for combinations and permutations
in [NW], and Knuth's recursively-described Gray codes for compositions of an integer and
partitions of a set which were announced in [NW], and in each case it was an easy matter to
come up with non-recursive sequencing algorithms which were close to those already in the
literature (see [Kl] for integer combinations, [Ka] for set partitions, and [NW] for the
others), to make loop-free versions of these algorithms (except for the set-partition Gray

2

code which uses an array in which arbitrarily many elements can change from one partition
to the next), to derive efficient ranking and unranking algorithms - and to explain the
process of deriving these results to the class. Later I applied it to a more challenging Gray
code for which only a recursive description was published - the Proskurowski-Ruskey Gray
code for balanced parenthesis systems [PR] - and obtained similar results which I tested by
computer.

In Section 1 of this paper we describe this method and show that it works on any list
of words in which all the words with a common prefix are consecutive in the list. This
condition generalizes the graylex order defined in [Ch] and used there to enable a computer
to derive Gray codes; here we take the Gray code as a given. The Bitner-Ehrlich-Reingold
method of deriving loop-free algorithms for many of the classical Gray codes [BER] was
generalized in [Wm] and [JWW]; here we generalize it further to all the lists obeying this
condition and show that it works under only slightly more restrictive conditions. In Section
2 we apply these methods to the recursively-described Proskurowski-Ruskey Gray code for
balanced parenthesis systems [PR]. We thus obtain two non-recursive sequencing
algorithms of which one uses constant extra space and the other is loop-free. We also
derive algorithms which require constant extra space and a linear number of arithmetic
operations for ranking and unranking balanced parenthesis systems, both in lexicographical
order (improving the results in [Pa], [Pl], [RH] and [Z]) and in Gray code order. In Section
3 we apply this method to the other above-mentioned Gray codes and present constant-
time, constant-extra-space generators of the k-subsets of an n-set and of the k-compositions
of n which we believe to be simpler than any of their competitors. We also mention a
number of other Gray codes in the literature to which the method could be applied. In
Section 4 we apply it to the Towers of Hanoi puzzle and two of its generalizations,
including Hinz' algorithm [Hi] for moving the rings from one arbitary legal position to
another. We present a constant-extra-space implementation of Hinz' algorithm which is
loop-free except for a linear number of operations scattered throughout the entire algorithm.
In Section 5 we mention a Gray code to which the method cannot be applied and pose an
open problem. The Appendix contains a listing of the computer programs for sequencing,
ranking and unranking the balanced parenthesis systems in the Proskurowski-Ruskey Gray
code.

1. The method and the lists on which it works

Let L=(w0,w1,...,w#(L)-1) be a list of distinct combinatorial objects; #(L) is the
number of objects in L. The sequencing problem is: given an object wr in the list, either
determine that it is the last object w#(L)-1 or else find the next object wr+1. The ranking

3

problem is: given an object wr in the list, determine its rank r - that is, the number of

objects which precede it in the list. The unranking problem is: given a non-negative integer
r<#(L), determine the object wr.

If one has an algorithm which solves the sequencing problem for a list L, the entire
list can be generated by successively applying the sequencing algorithm to w0. Suppose a

given sequencing algorithm maintains some auxiliary variables. The resumption problem
is: given an object w in L, determine the values that all the auxiliary variables used by the
algorithm will have just after w has been generated so that the generation of L can be
resumed from that point. For example, suppose L to be the list of positions assumed by the
rings of the Towers of Hanoi puzzle as the unique minimal-move solution is being
executed. To make the next move of the standard iterative sequencing algorithm (see
Figure 4.2) one has to examine the topmost ring on each peg to find the smallest and the
second smallest one and to remember if the smallest one is now to be moved. This last bit
of information is stored in an auxiliary variable. If the monk who has been executing this
algorithm suddenly dies, his successor will have to determine from the current position of
the rings whether to resume the solution by moving the smallest ring, and this information
can be determined in O(1) time [Wa1].

Suppose now that the objects in L are length-n words: strings g1g2...gn of letters from

a finite alphabet A (we can remove the restriction that all the words be of the same length
by padding the shorter ones on the right with blanks).

A linear order imposed on A (with the blank, if it is used, preceeding the first letter of
A) induces the following criterion for L to be in lexicographical order: all the words with a
common prefix g1g2...gi-1 are consecutive in L, and the values assumed by the next letter gi

increase monotonely as we traverse the interval of words with that prefix. The distinct
values assumed by gi are not necessarily consecutive in A: if L is the list of permutations of
{1,2,...,n} in lexicographical order, then for any prefix g1g2...gi-1, gi traverses the set
{1,2,...,n}-{g1,g2,...,gi-1} sorted in increasing order (see the last column of Figure 3.2). In
this example the set of distinct values assumed by gi is determined by the prefix g1g2...gi-1,

and this is true for any lexicographical order. The concept of lexicographical order was
generalized to graylex order in [Ch]: all the words with a common prefix g1g2...gi-1 are
consecutive in L, the values assumed by the next letter gi either increase monotonely or

decrease monotonely as we traverse the interval of words with that prefix, and the prefix
determines both the set of distinct values assumed by gi and the direction of motion of gi -
that is, whether gi increases or decreases (see the first column of Figure 3.2 and Figure 3.5).

4

We generalize further by dropping all restrictions on the values assumed by gi, so that

A does not even have to be linearly ordered. We say that L is in generalized
lexicographical order, abbreviated genlex order, if all the words in L with a common prefix
are consecutive in L. This is sufficient to ensure that for any prefix g1g2...gi-1 the sequence
of distinct values assumed by gi as we traverse the interval of words with that prefix is
determined by the prefix; so we can treat that sequence as a function s(g1g2...gi-1) of
g1g2...gi-1. The list

11,13,12,14,21,22,23,24,31,33,32,34,41,42,43,44

is in genlex order but not in graylex order; s(g1g2...gi-1)=(1,2,3,4) if g1+g2+...+gi-1 is even

and (1,3,2,4) otherwise.

For any list L in genlex order there is a conceptually simple sequencing algorithm.
Given any prefix g1g2...gi-1, i<n, we define ai to be the first value in s(g1g2...gi-1), zi to be
the last value in s(g1g2...gi-1), and h(gi) to be the successor of gi in s(g1g2...gi-1) if gi≠zi
(bearing in mind that ai, zi, and h(gi) all depend upon g1g2...gi-1). Then z1z2...zn is the last
object in L and, given any other object g1g2...gi-1gizi+1...zn, where gi≠zi, its successor in L
is g1g2...gi-1h(gi)ai+1...an. The generic sequencing algorithm, then, consists of scanning a
word g1g2...gn from right to left until we either determine that it is z1z2...zn or else find the
rightmost gi≠zi in which case we then replace gizi+1...zn by h(gi)ai+1...an. For this
algorithm to be practical, of course, the sequence s(g1g2...gi-1) must be an easily
computable function of g1g2...gi-1. The design of a simple sequencing algorithm for any

list in genlex order is thus reduced to finding a simple rule, if one exists, for calculating
s(g1g2...gi-1) as a function of g1g2...gi-1.

A Gray code is an infinite sequence of lists L(0),L(1),L(2),... such that L(n) consists
of length-n words and each word (except the last one) in each list can be changed to its
successor by changing a number of letters which is bounded by a constant independent of n.
In this case one can hope to find a constant-time algorithm for replacing gizi+1...zn by
h(gi)ai+1...an. The scanning of the current word from right to left to find the rightmost gi≠zi
can be avoided by maintaining an auxiliary array e0e1e2...en which keeps track of the
maximal subwords gj+1...gk which are equal to zj+1...zk (we call such a maximal subword a

z-subword). This trick was first used by Bitner, Ehrlich and Reingold to design loop-free
algorithms for generating subsets, combinations, permutations, integer compositions and
set-partitions ([Eh1],[Eh2],[BER]) and later generalized in [JWW] to any genlex order in
which s(the successor of g1g2...gi-1) is always the reverse of s(g1g2...gi-1) and is never of
length 1. In Figure 1.1 below we generalize it to any genlex order in which ai≠zi for any

5

prefix g1g2...gi-1.

6

i:=en;
IF i=0 THEN (* g1g2...gn = z1z2...zn *)
 Done := TRUE (* Done is a BOOLEAN variable which says to quit generating
*)
ELSE (* i is the index of the rightmost gi≠zi *)
 Replace gizi+1...zn by h(gi)ai+1...an;
 Update any other auxiliary variables as needed;
 en:=n;
 IF gi=zi THEN
 ei:=ei-1;
 ei-1:=i-1
 END IF
END IF.

Figure 1.1: Generic loop-free sequencing algorithm.

(Initially - that is, for the first word - gj=aj and ej=j for all j and Done=FALSE)

It is clear that if each of the statements of this algorithm can be executed in constant
time, then so can the entire algorithm. We prove its correctness by solving the resumption
problem for the array e0e1e2...en.

Theorem. Suppose that L is any list of length-n words in genlex order such that ai≠zi
for any prefix g1g2...gi-1. Then the algorithm of Figure 1.1 preserves the property that e0=0
and for every k>0, ek=j if gj+1...gk is a z-subword and ek=k otherwise.

Proof. It is easy to verify that the conclusion is true initially (this follows from the
initial values and the fact that ai≠zi for each i so that there are no z-subwords), and we

suppose it to be true at the beginning of a given execution of the algorithm. In particular,
setting k=n we find that if en≠0 then it is the index of the rightmost gi≠zi and if en=0 then
g1g2...gn = z1z2...zn, so that in either case the sequencing is done correctly. Assume the
former case to be true. If i=n the assignment en:=n changes nothing. If i<n then replacing
gizi+1...zn by h(gi)ai+1...an destroys the rightmost z-subword zi+1...zn (since ak≠zk for
i+1≤k≤n) so that the assignment en:=n makes the conclusion true for all k>i (for i<k<n, ei
was equal to i because gi was not the rightmost member of the z-subword and now it is not
part of any z-subword). If gi≠zi none of the other z-subwords are changed, nor is any other
ek, so that the conclusion is still true for all k≤i. Suppose now that gi=zi. If i>1 and
gi-1=zi-1 then we have extended the z-subword zj+1...zi-1 to zj+1...zi, where j=ei-1, so that
gi-1 is no longer its rightmost member but gi is, and the two assignments 'ei:=ei-1; ei-1:=i-1'
make the conclusion true for k=i-1 and k=i. If i=1 or gi-1≠zi-1 then we have created a new
z-subword zi, so that ei-1 was already i-1 (even if i=1: e0 is always 0) and this value is

7

correctly assigned to ei, and again the conclusion is true for k=i-1 and k=i. No ek gets

changed for any k<i-1, nor does any other z-subword, so that the conclusion is true for all k
at the end of that execution of the algorithm, QED.

If we have a way of calculating #(g1g2...gi-1), the number of elements of L with
prefix g1g2...gi-1, we have a conceptually simple ranking algorithm, which is an adaptation

to genlex order of the algorithm in [Le] which ranks words in lexicographical order. It is
easy to verify the following three formulae:

rank(g1g2...gi-1giai+1...an) = rank(g1g2...gi-1aiai+1...an)+∑fi precedes gi#(g1g2...gi-1fi) (1.1)

rank(g1g2...gi-1gizi+1...zn) = rank(g1g2...gi-1zizi+1...zn)-∑hi follows gi#(g1g2...gi-1hi) (1.2)

rank(g1g2...gi-1zi...zn) = rank(g1g2...gi-1ai...an)+#(g1g2...gi-1) -1. (1.3)

To compute rank(g1g2...gn) we could move forward through L and assign to a
variable r the values rank(a1a2...an)=0, rank(g1a2...an), ... , rank(g1g2...gn) obtained by

successive substitution into (1.1). If the sum in (1.2) is easier to evaluate, we could move
backward through L and assign to r the values rank(z1z2...zn)=#(L)-1, rank(g1z2...zn), ... ,
rank(g1g2...gn) obtained by successive substitution into (1.2). One of these two

alternatives is usually used to compute ranks in lexicographical order. However, for
graylex or genlex order it may be convenient to evaluate the sum in (1.2) sometimes but
not all the time, and before switching from one to the other we need to substitute into (1.3):
we add #(g1g2...gi-1)-1 to r if we are switching from (1.1) to (1.2) and subtract the same

quantity from r if we are switching from (1.2) to (1.1). We substitute into (1.1) by adding
the sum to r or into (1.2) by subtracting the sum from r. The generic ranking algorithm,
then, is to initialize r to 0 and assume we will first substitute into (1.1), and then for
i=1,2,...,n we do the actual substitutions, after which r will be rank(g1g2...gn).

To find the word g1g2...gn of rank r we maintain a variable q which is always
assigned the value r-rank(g1g2...gi-1aiai+1...an) if we are going to substitute into (1.1) and
rank(g1g2...gi-1zizi+1...zn)-r if we are going to substitute into (1.2). Before switching from
one to the other we substitute into (1.3) by replacing q by #(g1g2...gi-1)-1-q. We choose
the gi which maximizes the sum on the right side of (1.1) or (1.2) subject to the constraint

that it not exceed q, and we do the substitution by subtracting this sum from q. The generic
unranking algorithm is to initialize q to r and assume we will first substitute into (1.1), and
then for i=1,2,...,n we do the actual substitutions, after which q will be 0 and g1g2...gn will

be the word of rank r in L.

8

2. The Proskurowski-Ruskey Gray code for balanced parenthesis systems

A balanced parenthesis system of length 2n is a bitstring of n zeros and n ones such
that no prefix contains more zeros than ones. In [PR] a recursive description is given of a
Gray code in which each system of length 2n is changed to its successor by transposing a
single pair of bits. T(n,k) is defined as the list of systems of length 2n with prefix 1k0. For
bitstrings x and y=1k0x, the operations flip and insert are defined as flip(y)=1k-101x and
insert(y)=1k+100x. Two operations on lists are defined: AοB means A followed by B and
AR means A reversed. Then T(n,k) is defined by the following recursion:

T(n,k) =
flip(T(n, 2)) if k = 1
flip(TR(n, k +1)) o insert(T(n -1,k -1)) if 1 < k < n (2.1)
1n0n if k = n.

⎧

⎨
⎪

⎩ ⎪

The first object in T(n,k) is defined as

first(T(n, k)) =
101100(10)n-3 if k = 1 and n ≥ 3
1k010k (10)n-k-1 if 1 < k < n or (k = 1 and n = 2) (2.2)
1n0n if k = n

⎧

⎨
⎪

⎩ ⎪

(we added the conditions 'and n≥3' and 'or (k=1 and n=2)' to make the definition in [PR]

work for the trivial case when k=1 and n=2).

Two Gray codes for the set of all systems of length 2n are given: T(n+1,1) with the
prefix 10 removed, and T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1). A recursive algorithm is
given which generates T(n,k) in constant average time. The authors challenge the reader to
modify their algorithm so that it generates all the systems of length 2n in constant worst-
case time and we answer their challenge here. Balanced parenthesis systems is one of
many representations of binary trees, and for one of these there is already a loop-free
generation algorithm [vB]; however, we believe that we have the only existing loop-free
algorithm for generating balanced parenthesis systems.

First we generate T(n,k) from (2.1) for small values of n (see Figure 2.1).

9

 T(1,1)
 10

 T(2,2) T(2,1)
 1100 1010

 T(3,3) T(3,2) T(3,1)
 111000 110100 101100
 110010 101010

 T(4,4) T(4,3) T(4,2) T(4,1)
 11110000 11101000 11010010 10110010
 11100100 11010100 10110100
 11100010 11011000 10111000
 11001100 10101100
 11001010 10101010

 T(5,5) T(5,4) T(5,3) T(5,2) T(5,1)
1111100000 1111010000 1110100010 1101001010 1011001010
 1111001000 1110100100 1101001100 1011001100
 1111000100 1110101000 1101011000 1011011000
 1111000010 1110110000 1101010100 1011010100
 1110010010 1101010010 1011010010
 1110010100 1101110000 1011110000
 1110011000 1101101000 1011101000
 1110001100 1101100100 1011100100
 1110001010 1101100010 1011100010
 1100110010 1010110010
 1100110100 1010110100
 1100111000 1010111000
 1100101100 1010101100
 1100101010 1010101010

Figure 2.1: T(n,k), the list of balanced parenthesis systems of length 2n with prefix 1k0

We observe the following pattern for T(n,k). Given a bitstring in T(n,k), call 1i the
ith 1 from the left of the bitstring. By definition, 11,12,...,1k are fixed; we call the other 1s
free. In every interval of T(n,k) in which 1k+1, 1k+2, ... ,1i-1 stay in one place, 1i moves
between its leftmost position adjacent to 1i-1 (except that 1k+1 starts with one zero between
it and 1k) and its rightmost position at index 2i-1 in the bitstring, moving right if and only if

the number of free 1s to its left which are not in their rightmost positions is even. This can
easily be proved from the recursive definition of T(n,k): the crucial argument in the
induction step is that if k>2 the flip operator creates a free 1 which is not in its rightmost
position and is to the left of all the other free 1s, and this is precisely when the reversal
operator is applied. Let gi be the index of 1i in the bitstring, and let L be the list of words

10

gk+1gk+2...gn corresponding to T(n,k). Then L is in genlex order - in fact, graylex order -

with s()=(k+2,k+3,...,2k+1) and

s(gk+1gk+2...gi -1) =
(gi-1 +1,.. ., 2i -1) if gj = 2 j -1 for an even number of j , k +1 ≤ j ≤ i -1,
(2i -1,.. ., gi-1 +1) if gj = 2 j -1 for an odd number of j , k +1 ≤ j ≤ i -1.
⎧
⎨
⎩

Using these observations we can specialize the generic sequencing algorithm to
T(n,k) without explicitly storing the array gk+1gk+2...gn. We maintain one bit of auxiliary

information: the BOOLEAN variable LastRight, which is true if there are an even number
of free 1s which are not in their rightmost positions (initially LastRight is false if n>2 and
k<n, since 1max(3,k+1) is the only free 1 which is not in its rightmost position). We

initialize another BOOLEAN variable Right, which is true if there are an even number of
free 1s to the left of the current 1 which are not in their rightmost positions, to LastRight,
and then we scan the current bitstring from right to left, skipping over the zeros and
keeping track of the index i of 1i and its position j in the bitstring. Whenever we come
across a 1i such that j<2i-1, we negate Right. If we come to a 1i, i>k, such that j<2i-1 and
Right is true, or else a 1i which has a 0 on its left and Right is false, then 1i moves (we give
the details in the next two paragraphs); if we get to 1k first then the current bitstring is the

last one in T(n,k) and we set a termination flag to true.

Suppose that we come to a 1i, i>k, such that j<2i-1 and Right is true, so that we must
move 1i one position to the right. If i=n then that is all we do, except that if it is now in its

rightmost position we negate LastRight. The case when i<n, divided into two subcases
depending upon whether moving 1i to its right takes it to its rightmost position, is

illustrated at the top of Figure 2.2: the arrows over the 1s indicate their direction of motion.
The directions of motion are calculated from the graylex order and the 'before' and 'after'
positions of the 1s to the right of 1i from the terminal and initial positions, respectively, for

each 1 given its direction of motion.
 ., , . . .
BEFORE 1i1 00...0001010...10 BEFORE 1i1 0001010...10
 . , , , , .. , , ,
AFTER 1i00...0101010...10 AFTER 1i1001010...10 (1i at rightmost)

 , ,, . . .
BEFORE 1i00...0101010...10 BEFORE 1i1001010...10 (1i at rightmost)
 , . , , , , . , , ,
AFTER 1i1 00...0001010...10 AFTER 1i1 0001010...10

Figure 2.2. The suffix beginning with 1i before and after 1i moves.

11

Now we suppose that we come to a 1i, i>k, which has a 0 on its left and Right is false,
so that we must move 1i one position to the left. If i=n then that is all we do, except that if

it was in its rightmost position we negate LastRight. The case when i<n, divided into two
subcases depending upon whether 1i was originally in its rightmost position, is illustrated at

the bottom of Figure 2.2.

Whenever i<n the number of free 1s not in their rightmost positions changes by 1 and
so we negate LastRight.

If we are generating all the balanced parenthesis systems by generating T(n+1,1)
without the prefix 10, the algorithm remains unchanged: 12 which is free but at its
rightmost position in T(n+1,1) is simply renamed 11 which is now fixed. A few minor
changes are made if we are generating T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1). When we get
to ik we are at the last bitstring in T(n,k), and we want to change it to the first bitstring in
T(n,k-1) (or TR(n,1) if k=2). So, instead of setting the termination flag to true, we move 1k,
and only 1k, to the right. This creates a new free 1 not at its rightmost position (or changes

all the directions of motion in passing from T(n,2) to TR(n,1)); so we negate LastRight.
Since we are now generating T(n,k-1) or its reversal we decrease k by 1. When the current
bitstring is the last one in TR(n,1), this algorithm would instruct us to move 12 to its left; so
as a special fix we skip over 12. Finally, we set the termination flag to true when we get to
11.

To make the sequencing algorithm run in constant time we specialize the generic
algorithm of Figure 1.1 to the genlex-order list L of words g1g2...gn, where gi is the index
of 1i, the ith 1, in the bitstring. Now we have to store g1g2...gn explicitly as an auxiliary
array, as well as the array e1e2...en of Figure 1.1 (we don't need e0 because 11 never moves)
and an array d1d2...dn, where di=1 if 1i is moving right (gi is increasing) and 0 otherwise.
The array e1e2...en is updated as in Figure 1.1; we know that gi=zi if it is equal to either 2i-1
or gi-1+1, since gi has just changed and cannot change to ai. The updating of the bitstring is

done as in the previous version (see Figure 2.2), and the corresponding change made to the
position vector g1g2...gn is easy to deduce. If 1i moves, gi either increases or decreases by
1, and if k<i<n then gi+1 also changes: if gi decreases by 1 then gi+1 assumes the old value
of gi, and otherwise gi+1 becomes 2i if gi=2i-1 and 2i+1 otherwise. The new value of di+1
should be easy to deduce from the arrows in Figure 2.2: it is 1 unless gi+1 becomes 2i+1.
From these arrows it would appear that di+2,di+3,...,dn should all change from 1 to 0, so
that the algorithm wouldn't run in constant time. But we don't need to know dj until we
have to change gj, and since all these changes to dj take place when gj=2j-1 we simply set
dj to 0 whenever we have to change gj which is equal to 2j-1; the only side-effect of this fix

12

is that 12 would get moved left after generating T(n,1), and we fix that up by modifying the
termination condition (we set the flag to true if en≤max(2,k)). The only modifications
needed to generate T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) is that instead of stopping when
en=k we move 1k (and only 1k, as in the previous version) and decrease k by 1 and we stop
when en=1: the passage from T(n,2) to TR(n,1) falls out automatically.

To express the ranking and unranking problem in terms of formulae (1.1)-(1.3) we
refer to the position vector g1g2...gn even though we don't have to store it explicitly. The
quantity #(g1g2...gi) is the number of balanced parenthesis systems of length 2n with a
prefix containing i ones and j=gi symbols altogether, so that it has j-i zeros. The rest of the

bitstring has n-i ones and n-j+i zeros, and the number of such suffixes [Fe, p70] is

2n - j
n + i - j
⎛

⎝
⎜ ⎞

⎠
-

2n - j
n + i - j +1
⎛

⎝
⎜ ⎞

⎠
. (2.3)

To substitute into (1.1) or (1.2) we have to sum these binomial coefficients over j, and
since the sign in front of j is negative it is more convenient to do so over large j than small
j; so we will use (1.1) when j=gi is decreasing and (1.2) when it is increasing. Now the
direction in which gi changes stays constant as long as gi=2i-1, and in this case the sum in
(1.1) (when gi=ai) and in (1.2) (when gi=zi) is 0. The only time we have to actually
substitute into (1.1) or (1.2) is when gi<2i-1, and then we substitute into (1.3) as well (with
i replaced by i+1) since gi+1 is going to change in the opposite direction. Combining these

two substitutions, we are going to add or subtract the sum of (2.3) over j from its current
value to 2i-1, which is

2n - j +1
n + i - j

⎛

⎝
⎜ ⎞

⎠
-
2n - j +1
n + i - j +1
⎛

⎝
⎜ ⎞

⎠
. (2.4)

Simplifying (2.4) and subtracting 1 (as in (1.3)), we obtain the algorithm of Figure
2.3 for ranking the balanced parenthesis system p1p2...p2n in T(n,k).

13

Rank:=

2n-k-1

n-1
⎛

⎝
⎜ ⎞

⎠
k
n
-1;

Dir:=TRUE; (* the current 1 is moving right *)
j:=k+2;
FOR i:=k+1 TO n DO
 WHILE pj=0 DO j:=j+1 END; (* find 1i *)
 IF j<2i-1 THEN

Term:=

2n-j+1

n+i-j
⎛

⎝
⎜ ⎞

⎠
2i-j

n -j+i+1

⎧
⎨
⎩

⎫
⎬
⎭
−1;

 IF Dir THEN Rank:=Rank-Term ELSE Rank:=Rank+Term END IF;
 Dir:=NOT Dir;
 END IF;
 j:=j+1;
END FOR.

Figure 2.3. Ranking the balanced parenthesis system p1p2...p2n in T(n,k).

To rank p1p2...p2n in T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1), we must first find which

T(n,k) it is in. We search for the first 0, and the number of 1s we skip over is k. If k>1 we
initialize Rank to #(T(n,n)οT(n,n-1)ο...οT(n,k)) - 1, which is

2n - k
n

⎛

⎝
⎜ ⎞

⎠
k +1
n +1
⎧
⎨
⎩

⎫
⎬
⎭
−1

and proceed from the second line of the algorithm. If k=1, we set it to 2, add 1 to the above
initial value of Rank, set Dir to FALSE and proceed from the third line of the algorithm.
To rank p1p2...p2n in T(n+1,1) with the prefix 10 removed, we set n to n+1 and k to 1 and
then start the algorithm from the first line except that in the WHILE loop we test pj-2
instead of pj.

Of course, if we are actually programming this algorithm we neither calculate the
binomial coefficients individually (which wastes time) nor precompute them and store them
in a table (which wastes space). We calculate the one necessary to initialize Rank (in
Figure 2.3) - call it f - and then we calculate the others from their predecessors: before
increasing j in the WHILE loop we multiply f by n+i-j and divide it by 2n-j+1 and before
increasing j at the end of the FOR loop we multiply f by n-i+1 and divide it by 2n-j+1
(since i is going to increase too). This makes the whole ranking algorithm run in O(n)
arithmetic operations and O(1) extra space.

The same optimization can be applied to the unranking algorithm of Figure 2.4.

14

FOR i:=1 TO k DO pj:=1 END FOR;
pk+1:=0;

Rank:=

2n-k-1

n-1
⎛

⎝
⎜ ⎞

⎠
k
n
−1− Rank;

j:=k+2;
FOR i:=k+1 TO n DO

WHILE

2n-(j+1)+1

n+i-(j+1)
⎛

⎝
⎜ ⎞

⎠
2i-(j+1)

n -(j+1)+i+1

⎧
⎨
⎩

⎫
⎬
⎭
> Rank DO

 pj:=0;
 j:=j+1;
 END WHILE;
 pj:=1;
 IF j<2i-1 THEN

Rank:=

2n-j+1

n +i-j
⎛

⎝
⎜ ⎞

⎠
2i−j

n-j+i+1

⎧
⎨
⎩

⎫
⎬
⎭
−1 − Rank;

 END IF;
 j:=j+1;
END FOR;
FOR i:=j TO 2n DO pi:=0 END FOR.

Figure 2.4: Constructing the parenthesis system p1p2...p2n of a given Rank in T(n,k).

If we are working with T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) we set k to the smallest
integer such that Rank is not less than

2n - k -1
n

⎛

⎝
⎜ ⎞

⎠
k + 2
n +1

⎧
⎨
⎩

⎫
⎬
⎭

and subtract this value from Rank, and then we begin the algorithm from the first line
except that we skip the third line if k=1. If we are working with T(n+1,1) with the prefix
10 removed, we set k=1 and n=n+1 and begin the algorithm from the third line except that
we subtract 2 from every subscript of p.

We have programmed optimized versions of the ranking and unranking algorithms
and both sequencing algorithms (the loop-free one and the one which uses no auxiliary
arrays) in Modula-2 and tested them by generating T(n,k),
T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) and T(n+1,1) with the prefix 10 removed, ranking each
parenthesis system generated and constructing the parenthesis system of that rank for
comparison with the original. Listings appear in the appendix.

15

The above optimization trick is well known but not well published: for example, it is
not included in the lexicographical-order ranking of balanced parenthesis systems in [Pa],
[PL], [RH] or [Z]; so we include it below.

From [PL] (or by substituting (2.4) into (1.1)) we have

Rank(g1g2.. .gn) =
2n - gi

n + i - gi -1
⎛

⎝
⎜ ⎞

⎠ i=2

n
∑ 2i - gi -1

n + i - gi

⎧
⎨
⎩

⎫
⎬
⎭

. (2.5)

Applying the same optimization trick we have the ranking and unranking algorithms
of Figure 2.5 (which can be further optimized to avoid recomputing products and
quotients).

Rank:=0; f:=1; j:=2n-1; |f:=Binomial_Coeff(2n-2,n-1);
FOR i:=n DOWNTO 2 DO |p1:=1; j:=2;
 WHILE pj=0 DO DO |FOR i:=2 TO n DO
 f:=f*(2n-j+1)/(n+i-j); | WHILE f*(2i-j-1)/(n+i-j)>Rank
DO
 j:=j-1 | pj:=0; j:=j+1;
 END WHILE; | f:=f*(n+i-j)/(2n-j+1);
 Rank:=Rank+f*(2i-j-1)/(n+i-j); | END WHILE;
 f:=f*(2n-j+1)/(n-i+2); | Rank:=Rank-f*(2i-j-1)/(n+i-1);
 j:=j-1; | pj:=1; j:=j+1;
END FOR. | f:=f*(n-i+1)/(2n-j+1)
 |END FOR;
 |FOR i:=j TO 2n DO pi:=0 END FOR.

Figure 2.5.

Ranking and unranking the balanced parenthesis system p1p2...p2n in lexicographical order.

3. Other Gray codes

a) The classical binary reflected Gray code

In this Gray code [Gr], L(n) consists of all the 2n strings g1g2...gn of n bits and each
one differs from its successor in a single bit. It was shown in [Ch] that s(g1g2...gi-1)=(0,1)
if g1g2...gi-1 contains an even number of 1s and (1,0) otherwise (see Figure 3.1). For the

sake of completeness we give a sketch of a proof which is easy to explain to students. The
recursive description of this Gray code is given by

L(0) is the empty word and L(n)='0'L(n-1)ο'1'LR(n-1) for n>0. (3.1)

16

The inductive step follows from the fact that the reversal operator is applied when the first
symbol changes from 0 to 1, reversing the parity of the number of 1s in any non-null prefix.
 i g1 g2 g3 g4 e0 e1 e2 e3 e4 (b0)b1 b2 b3 b4

 0 0 0 0 0 1 2 3 4 0 0 0 0 0
 4 0 0 0 1 0 1 2 3 3 0 0 0 0 1
 3 0 0 1 1 0 1 2 2 4 0 0 0 1 0
 4 0 0 1 0 0 1 2 3 2 0 0 0 1 1
 2 0 1 1 0 0 1 1 3 4 0 0 1 0 0
 4 0 1 1 1 0 1 1 3 3 0 0 1 0 1
 3 0 1 0 1 0 1 2 1 4 0 0 1 1 0
 4 0 1 0 0 0 1 2 3 1 0 0 1 1 1
 1 1 1 0 0 0 0 2 3 4 0 1 0 0 0
 4 1 1 0 1 0 0 2 3 3 0 1 0 0 1
 3 1 1 1 1 0 0 2 2 4 0 1 0 1 0
 4 1 1 1 0 0 0 2 3 2 0 1 0 1 1
 2 1 0 1 0 0 1 0 3 4 0 1 1 0 0
 4 1 0 1 1 0 1 0 3 3 0 1 1 0 1
 3 1 0 0 1 0 1 2 0 4 0 1 1 1 0
 4 1 0 0 0 0 1 2 3 0 0 1 1 1 1
 0 Done=TRUE

Figure 3.1
The classical Gray code for bitstrings: the Gray code word g1g2g3g4 , the index i such that
gi gets changed, the binary ranking function b1b2b3b4 with sentinel b0=0, and the auxiliary

array e0e1e2e3e4 used in Ehrlich's loop-free algorithm.

We demonstrate the pedagogical value of our method by showing how easily the
classical sequencing algorithm [NW, p16] and ranking algorithm [Wi] can be derived from
the graylex order of L(n). It follows from this order that gi=zi if and only if g1g2...gi
contains an odd number of 1s. If g1g2...gn has an even number of 1s, gn≠zn; so by the
generic sequencing algorithm we change gn. If g1g2...gn has an odd number of 1s, then the
rightmost gi≠zi comes immediately to the left of the rightmost 1 (unless the string is
10...0=z1z2...zn) and we change gi which converts the suffix 10...0 from zi+1...zn to ai+1...an

as required. This algorithm becomes more efficient if we maintain an auxiliary BOOLEAN
variable which is true if g1g2...gn has an even number of 1s. The loop-free version in
[BER] and [RND, p179] is a special case of Figure 1.1, where the test 'if gi=zi' never has to
be made because once gi is changed it must be zi. To rank a bitstring we observe that
#(g1g2...gi)=2n-i; so that by (1.1) 2n-i will get added to the rank for each i such that g1g2...gi
has an odd number of 1s (so that gi=zi and the sum in (1.1) is #(g1g2...gi-1ai)=2n-i). This
means that if b1b2...bn is the binary expansion of the rank of g1g2...gn, then bi=g1+g2+...+gi

mod 2, which gives a ranking algorithm which requires O(n) arithmetic operations.
Solving for gi we obtain gi=bi+bi-1 mod 2, where b0 is taken to be 0, which gives an

17

unranking algorithm which requires O(n) arithmetic operations. Note that gi=zi if and only
if bi=1, and that (see Figure 3.1) ei=j if bj+1...bi is a maximal string of 1s, and otherwise
ei=i.

b) The Nijenhuis-Wilf Gray code for permutations.

Given a permutation p1p2...pn of {1,2,...,n}, let g1g2...gn-1 be its inversion vector: gi
is the number of elements of pi+1...pn which are smaller than pi. If we impose upon the list
of inversion vectors the order given in [Wm, p112], where s(g1g2...gi-1)=(0,1,...,n-i) if
g1+g2+...+gi-1 is even and (n-i,...,1,0) otherwise, then the permutations are ordered (apart

from left-right reversal) as in the Gray code of [NW, p58], where each permutation differs
from its successor by a single transposition but not always of adjacent elements (see Figure
3.2, where the direction of motion of gi is stored in its sign).

 p1 p2 p3 p4 g1 g2 g3 e0 e1 e2 e3 j b1 b2 b3 lex
order

 1 2 3 4 0 0 0 0 1 2 3 4 0 0 0 1 2 3
4
 1 2 4 3 0 0 -1 0 1 2 2 4 0 0 1 1 2 4
3
 1 3 4 2 0 1 -1 0 1 2 3 4 0 1 0 1 3 2
4
 1 3 2 4 0 1 0 0 1 2 2 4 0 1 1 1 3 4
2
 1 4 2 3 0 -2 0 0 1 1 3 4 0 2 0 1 4 2
3
 1 4 3 2 0 -2 -1 0 1 2 1 4 0 2 1 1 4 3
2
 2 4 3 1 1 -2 -1 0 1 2 3 4 1 0 0 2 1 3
4
 2 4 1 3 1 -2 0 0 1 2 2 4 1 0 1 2 1 4
3
 2 3 1 4 1 -1 0 0 1 2 3 4 1 1 0 2 3 1
4
 2 3 4 1 1 -1 -1 0 1 2 2 4 1 1 1 2 3 4
1
 2 1 4 3 1 0 -1 0 1 1 3 4 1 2 0 2 4 1
3
 2 1 3 4 1 0 0 0 1 2 1 3 1 2 1 2 4 3
1
 3 1 2 4 2 0 0 0 1 2 3 4 2 0 0 3 1 2
4
 3 1 4 2 2 0 -1 0 1 2 2 4 2 0 1 3 1 4
2

18

 3 2 4 1 2 1 -1 0 1 2 3 4 2 1 0 3 2 1
4
 3 2 1 4 2 1 0 0 1 2 2 4 2 1 1 3 2 4
1
 3 4 1 2 2 -2 0 0 1 1 3 4 2 2 0 3 4 1
2
 3 4 2 1 2 -2 -1 0 1 2 1 2 2 2 1 3 4 2
1
 4 3 2 1 -3 -2 -1 0 0 2 3 4 3 0 0 4 1 2
3
 4 3 1 2 -3 -2 0 0 0 2 2 4 3 0 1 4 1 3
2
 4 2 1 3 -3 -1 0 0 0 2 3 4 3 1 0 4 2 1
3
 4 2 3 1 -3 -1 -1 0 0 2 2 4 3 1 1 4 2 3
1
 4 1 3 2 -3 0 -1 0 1 0 3 4 3 2 0 4 3 1
2
 4 1 2 3 -3 0 0 0 1 2 0 3 2 1 4 3 2
1

Figure 3.2
The permutations p1p2p3p4 generated in the Nijenhuis-Wilf Gray code order. Abs(gi) is the
number of elements pj such that pj<pi but j>i; the sign of gi is the direction in which abs(gi)
is moving. The array e0e1e2e3 is used to find the value of i=e3 such that pi and pj, j>i, get

swapped. The rank of the permutation is 3!b1+2!b2+1!b3, and the permutation whose
inversion vector is b1b2b3 is given to its right.

19

IF EvenPerm THEN (* g[1]+...+g[n-1] is even; so g[n-1] can change *)
 Swap(p[n-1],p[n]); EvenPerm:=FALSE; RETURN
ELSE
 i:=n-1; Rise:=FALSE; (* Rise means that g[i] is rising.
*)
 Max:=p[n]; Min:=p[n]; (* Max/Min of a[i+1]...a[n] *)
 LOOP
 IF p[i]<Min THEN (* g[i]=0. Rise stays fixed. *)
 Min:=p[i];
 IF Rise THEN (* g[i] should and can rise. *)
 EXIT
 ELSE (* g[i] should fall but can't. *)
 i:=i-1; IF i=0 THEN Done:=TRUE; RETURN END IF
 END IF
 ELSE IF p[i]>Max THEN (* g[i]=n-i. *)
 Max:=p[i];
 IF n-i is odd then Rise:=NOT(Rise) END IF;
 IF NOT(Rise) THEN (* g[i] should and can fall. *)
 EXIT
 ELSE (* g[i] should rise but can't. *)
 i:=i-1; IF i=0 THEN Done:=TRUE; RETURN END IF
 END IF
 END IF; (* g[i] can rise or fall, but we must update Rise
*)
 FOR k FROM i+1 TO n DO
 IF p[k]<p[i] THEN Rise:=NOT(Rise) END IF
 END FOR;
 EXIT; (* so we only execute the FOR loop once within the other loop *)
 END LOOP; (* Now we know i and Rise, and must calculate j. *)
 IF Rise THEN (* We search min p[j] >p[i]. *)
 Min:=n+1;
 FOR k FROM i+1 TO n DO
 IF (p[k]>p[i]) AND (p[k]<Min) THEN j:=k; Min:=p[k] END
IF
 END FOR
 ELSE (* We search max p[j]<p[i]. *)
 Max:=0;
 FOR k FROM i+1 TO n DO
 IF (p[k]<p[i]) AND (p[k]>Max) THEN j:=k; Max:=p[k] END
IF
 END FOR
 END IF;
 Swap(p[i],p[j]); EvenPerm:=TRUE; RETURN
END IF.

Figure 3.3
A linear-time constant-extra-space algorithm for finding the next permutation in the
Nijenhuis-Wilf Gray code (initially p[i]=i for all i, EvenPerm is TRUE and Done is

FALSE).

20

The sequencing algorithm given in [NW, p58] consists essentially of calculating the
inversion vector from the permutation directly from the definition from right to left until
one finds the rightmost gi≠zi (which takes quadratic time in the worst case), then finding
the pj which is the nearest integer to pi, in the direction in which gi is moving, among
pi+1...pn, and swapping pi with pj. The algorithm can be made to run in linear time if we
store the inversion vector as an auxiliary array, but we can find the rightmost gi≠zi in linear
time without an auxiliary array (see Figure 3.3) by observing that if pj<pi for some j>i then
gi>0 and can fall, and if pj<pi for some j>i then gi<n-i and can rise.

We can also use the loop-free algorithm of [Wm, p112] for generating the Cartesian
product of integer intervals (a generalization of the Bitner-Ehrlich-Reingold method and a
special case of Figure 1.1) to design a loop-free algorithm for generating permutations in
this order. We store the inversion vector and the direction vector (or we store the direction
of motion of gi in its sign - see Figure 3.2) as well as the array e0e1...en-1. We update
e0e1...en-1 as in Figure 1.1 (with n replaced by n-1); we know that gi=zi if it is equal to 0 or
n-i. If we are storing the direction of motion as a sign, then updating gi consists of adding 1

and then changing its sign if it is equal to n-i. To update the permutation itself we must
swap pi with pj for the appropriate j, and it remains to find this value of j in constant time.

Suppose gi has to rise, so that g1+...+gi-1 is even. Then we want to find j such that pj
is the smallest of the integers pi+1,...,pn which are larger than pi.

By the definition of inversion vector, gi of the integers pi+1,...,pn are smaller than pi,
so that the desired value of j will be known once we have sorted pi+1...pn. Since gi is the
rightmost integer which is not at its last value, the suffix gi+1...gn is at its last value and so,
therefore, is the suffix pi+1...pn. If gi+1 is supposed to fall, gi+1...gn is 0...0, so that the
integers pi+1,...,pn are in increasing order. It remains to sort the suffix pi+1...pn in the case
when gi+1 is supposed to rise.

To this end we first find the last string g1...gn-1 and the corresponding permutation
p1...pn. Since g1 rises from 0 to n-1, it is n-1. If n is even, n-1 is odd; so g2 falls and is 0.
Then g1+g2 is also odd, so that g3 is also zero, and so on. Thus the last inversion vector is
n-1 0...0 and the last permutation is n1234..n-1. If n is odd, n-1 is even; so g2 rises and is
n-2. Now g1+g2 is odd; so g3 falls and is 0, and all subsequent gi are 0. Thus the last

inversion vector is n-1 n-2 0...0 and the last permutation is n n-1 123...n-2. It follows that
when gi+1 is supposed to rise, pi+1...pn is sorted with the largest integer first, then the

second largest if n-i is odd, and then the rest in increasing order.

21

We recall that we have supposed that g1+...+gi-1 is even. If gi is odd, gi+1 is supposed
to fall, and so the integers pi+1...pn are all in increasing order, and gi of them are smaller
than pi; so the next one, in position j=i+gi+1, is the smallest one which is larger than pi.

Suppose that gi is even, so that gi+1 is supposed to rise. There are 2 cases to consider,

depending on whether n-i is odd or even.

If n-i is even, pi+2<...<pn<pi+1. Now pi<pn<pi+1: if pi were greater than pi+1, gi
would be n-i and would be unable to rise, and if pi were between pn and pi+1, gi would be
n-i-1, which is odd. This means that the gi integers among pi+1,...,pn which are smaller
than pi all follow pi+1, and the smallest one which is larger than pi is in position j=i+gi+2.

If n-i is odd, pi+3<...<pn<pi+2<pi+1. If i+gi=n-1, only pi+1 is greater than pi, so that
j=i+1. Now i+gi cannot be n-2 because n-i is odd and gi is even; so if i+gi<n-1, pi<pn.
Then all the gi integers among pi+1,...,pn, all follow both pi+1 and pi+2, so that the smallest
one which is larger that pi is in position j=i+gi+3.

The loopless algorithm of Figure 3.4 finds j so that (pi,pj) should be swapped.

Recall that we have supposed that gi is to rise. If gi is about to fall, then to pass from
the next string to the current one, gi rises. So to compute j, we use the same algorithm
except that instead of the old value of gi we use the new one, which is gi-1.

IF g[i] is odd THEN
 j:=i+g[i]+1
ELSE IF n-i is even THEN
 j:=i+g[i]+2
ELSE
 IF i+g[i]=n-1 THEN j:=i+1 ELSE j:=i+g[i]+3 END IF
END IF.

Figure 3.4
A loopless algorithm which finds j so that (pi,pj) should be swapped if gi is to rise;

otherwise gi is decreased by 1 before the algorithm is executed.

If we are coding the direction of motion of gi in its sign, we replace g[i] by abs(g[i])

throughout.

We note that there already exist loop-free versions ([Eh1],[Ds]) of the Trotter-
Johnson Gray code for permutations ([Tr],[Jo]), in which each permutation differs from its

22

successor by a transposition of adjacent elements, and the graylex analysis of that Gray
code has already been done [Ch]. The reason for including this loop-free permutation
generator is to show that our method is general enough to work on one's favourite order.

To rank and unrank permutations according to this Gray code, we observe (see figure
3.2) that the inversion vector g1g2...gn-1 is related to b1b2...bn-1, the inversion vector of the

same rank generated in lexicographical order, by the following well-known formula, which
can easily be proved by the same line of argument used to rank the classical Gray code.

gi =
bi if g1+...+gi -1 is even ,
n - i - bi otherwise .

⎧
⎨
⎩

 (3.2)

One can pass between these two inversion vectors in linear time using (3.2) and between
b1b2...bn-1 and its rank (n-1)!b1+(n-2)!b2+...+1!bn-1 in linear time; so that the complexity of

ranking and unranking permutations in this Gray code order, as in lexicographical order, is
dominated by the complexity of passing between a permutation and its inversion vector.
There are O(n log n) algorithms in [Kn, p. 578-579 (answers to exercises 5 and 6, p. 19)],
and I have been told that asymptotically faster ones exist, but I have never been able to find
them.

c) The Nijenhuis-Wilf (Tang-Liu) Gray code for combinations
 - + - +

g1 g2 g3 g4 i
1 2 3 4 4
1 2 4 5 2
2 3 4 5 1
1 3 4 5 3
1 2 3 5 4
1 2 5 6 2
2 3 5 6 1
1 3 5 6 2
3 4 5 6 1
2 4 5 6 1
1 4 5 6 3
1 2 4 6 2
2 3 4 6 1
1 3 4 6 3
1 2 3 6 5

Figure 3.5

The 4-combinations g1g2g3g4 of {1,2,3,4,5,6}. The signs indicate the direction of motion
of the integers and i is the index of the leftmost integer gi≠zi.

23

A k-combination, or k-subset, of {1,2,...,n} is coded by listing its members in
increasing order. The Gray code given in [NW, p28] lists all these combinations for fixed n
and k in such an order that each combination differs from its predecessor by the inclusion
of one element and the exclusion of one other element. Apart from left-right reversal, the
lists are in graylex order [Ch]: for each suffix gi+1...gn, s(gi+1...gn) runs through
consecutive integers from a minimum of i to a maximum which is gi+1-1 if i<k and n if i=k,

rising if k-i is even and falling otherwise (see Figure 3.5).

For the sake of completeness we present a sketch of a proof of the Graylex order from
the recursive definition of this Gray code [NW] given in formula (3.3)

G(n,k) = G(n-1,k)οGR(n-1,k-1)'n' for n>0 and k>0, (3.3)

anchored by setting G(n,k) to the empty list if n=0 and k>0 or n>0 and k=0 and G(0,0) to
the singleton consisting of the empty word. The inductive step follows from the fact that
after the concatenation operator both the direction of motion of each gi changes and the
parity of k-i changes, gk-1 has n-1=gk-1 as its maximum value, and gk increases from n-1 to

n.

The generic sequencing algorithm leads to the iterative algorithm given in [NW, p.
32], and the derivation of this algorithm from the graylex order is considerably simpler than
the derivation directly from the recursive definition using the revolving door method [NW,
p. 29]. The algorithm itself takes linear worst-case time to pass from one combination to
the next because the search for the leftmost gi≠zi always begins at g1. But it can be made to

run in constant worst-case time without using an auxiliary array, because the index i of the
leftmost gi≠zi varies by at most 2 from one combination to the next, as the following

theorem will show.

Theorem. Given a k-combination g1g2...gk, let i be the index of the leftmost gi which
is not at its final value zi. Then for the next combination the corresponding value of i will

lie between i-2 and i+1 if k-i is even or between i-1 and i+2 if k-i is odd.

Proof. We first prove the upper bound. We assume that i<k-1; otherwise the result is
trivial. If k-i is even, gi increases; so gi+1 must decrease. If gi+1 were at its final value of
i+1, gi would be bounded by i, its minimum value, and would have no room to increase, but
since gi is not at its final value, neither is gi+1. But gi+1 does not change in passing to the

next combination; so it can still decrease, and the new value of i is bounded above by i+1.
The same argument shows that if k-i is odd the new value of i is bounded above by i+2,

24

since now gi+2 decreases and could not be at its final value of i+2 without bounding gi by

its minimum value of i.

We now prove the lower bound, assuming that i>2. If k-i is odd, gi decreases; so gi-1

was supposed to increase and is instead set to its first value of i-1 for the next combination.
This means that gj=j for all j<i-1, and since gi-2 is supposed to decrease, these integers are
all at their final values, so that the next value of i is bounded below by i-1. If k-i is even, gi
increases; so gi-1 was supposed to decrease but must have been at its final value of i-1, so
that again gj=j for all j<i-1. In passing to the new combination, gi-1 is raised to its first
value of gi-1, so that gi-2, which is supposed to increase, is not necessarily at its final value.

However, all the integers to its left are at their final values; so the next value of i is bounded
below by i-2. This completes the proof.

We use this theorem to derive from the graylex order an algorithm which generates
the combinations in constant worst-case time with no auxiliary array. Aside from the
combination itself, there are only 4 variables: i (the index of the current integer), m (the
maximum value of gi), Rise (a BOOLEAN variable which is true if k-i is even so that gi

should be increasing), and Done (which is true if we have reached the last combination). A
pseudo-code for an algorithm which updates all the variables in constant time is given in
Figure 3.6.

LOOP (* iterated AT MOST FOUR TIMES *)
 IF Rise THEN (* g[i] should increase *)
 IF i=k THEN m:=n ELSE m:=g[i+1]-1 END IF;
 IF g[i]<m THEN (* g[i] can increase
*)
 g[i]:=g[i]+1;
 IF i>1 THEN
 g[i-1]:=g[i]-1; (* its first value *)
 IF i=2 THEN i:=1; Rise:=FALSE ELSE i:=i-2 END IF;
 END IF;
 RETURN;
 END IF (* otherwise g[i] cannot increase so we increase i
*)
 ELSE (* Rise is FALSE and g[i] should decrease *)
 IF i>k THEN Done:=TRUE; RETURN END IF;
 IF g[i]>i THEN (* g[i] can decrease *)
 g[i]:=g[i]-1;
 IF i>1 THEN
 g[i-1]:=i-1; (* its first value *)
 i:=i-1; Rise:=TRUE
 END IF;
 RETURN;
 END IF (* otherwise g[i] cannot decrease so we increase i *)

25

 END IF;
 i:=i+1; Rise:=NOT(Rise)
END LOOP.

Figure 3.6
An algorithm for generating the next k-combination of {1,2,...,n} in constant worst-case
time and constant extra space. For the first combination, gj=j for each j from 1 to k, i=k

(since only gk can change), Rise is TRUE and Done is FALSE.

The essential difference between this algorithm and the one in [NW, p. 32] is that in
the latter, i is always initialized to 1 and Rise to TRUE if n is odd and FALSE otherwise,
whereas in this one, i is updated to its lower bound according to the above theorem and
Rise is adjusted accordingly. The comments explain how the algorithm follows from the
graylex order.

We note that there are other loop-free combination generators. The one in [BER] and
[RND, p186] uses an auxiliary array and generates the Liu-Tang Gray code [LT] which is
the same as the one in [NW] except for left-right and first-last reversal and the
representation of combinations by bitstrings. The one in [Eh1] uses an auxiliary array, and
the one in [Ch] does not; they both create the graylex order on the fly, and it is a
challenging exercise to determine just what this order turns out to be (for [Eh1], try
generating the position-vectors of the zeros in the bitstring). We present the above
algorithm to show that our method finds efficient algorithms without sacrificing
aesthetically pleasing orders.

To find Rank(g1g2...gk) we use (1.1)-(1.3), modified by replacing n with k and

applying left-right reversal (since the graylex order is expressed in terms of suffixes rather
than prefixes). For i=k down to 1 we substitute into (1.1) and then (1.3) when k-i is even
and into (1.2) and then (1.3) when k-i is odd. The sum in (1.1) or (1.2) combines with the
appropriate term in (1.3) (with i replaced by i+1) to give the number of combinations of gi

objects taken i at a time; so we have

Rank(g1g2...gk) = ((-1)k-i

i=1

k
∑

gi
i

⎛

⎝
⎜ ⎞

⎠
) - k mod 2. (3.4)

To substitute efficiently into (3.4), we note that its binomial coefficient takes i
multiplications and divisions to compute individually and gi-gi-1 of them to compute from

its predecessor, and we choose the shortest path for each i, so that the total number of
multiplications and divisions is bounded by k(k-1)/2 (if we never use the previous value)
and also by gk≤n (if we always do). For unranking, for i from k down to 1 we let gi be the

26

smallest integer x such that b=Binomial_Coeff(x,i)-1≥Rank and replace Rank by b-Rank;
by computing each binomial coefficient from its predecessor we can do this in O(n)
arithmetic operations.

d) The Knuth-Klingsberg Gray code for integer compositions
 and a simpler one

A k-composition of n is a string of k non-negative integers whose sum is n. In a
personal communication to H. Wilf [Wi], D. Knuth presented a Gray code for these
compositions such that each composition differs from its predecessor in that one integer is
increased by 1 and one integer is decreased by 1. The recursive description given by Knuth
for his Gray code is

G(n,k+1) = G(n,k)'0'οGR(n-1,k)'1'οG(n-2,k)'2'οGR(n-3,k)'3'ο...οGR?(0,k)'n' (3.5)

where GR? means G if n is even and GR if n is odd. This recursion is anchored by G(n,1) =
'n'. An iterative version is contained in [Kl].

This Gray code is in the following graylex order apart from left-right reversal (see
figure 3.7 for the case when n=5 and k=4). For each integer gi, let Si=gi+1+...+gk. Then
g1=n-S1, and for each index i>1, the extreme values of gi are 0 and n-Si, and gi rises if Si is
even and falls if Si is odd.

 g1 g2 g3 g4 g1 g2 g3 g4 g1 g2 g3 g4
 5 0 0 0 0 0 4 1 3 0 0 2
 4 1 0 0 1 0 3 1 2 1 0 2
 3 2 0 0 0 1 3 1 1 2 0 2
 2 3 0 0 0 2 2 1 0 3 0 2
 1 4 0 0 1 1 2 1 0 2 1 2
 0 5 0 0 2 0 2 1 1 1 1 2
 0 4 1 0 3 0 1 1 2 0 1 2
 1 3 1 0 2 1 1 1 1 0 2 2
 2 2 1 0 1 2 1 1 0 1 2 2
 3 1 1 0 0 3 1 1 0 0 3 2
 4 0 1 0 0 4 0 1 0 0 2 3
 3 0 2 0 1 3 0 1 1 0 1 3
 2 1 2 0 2 2 0 1 0 1 1 3
 1 2 2 0 3 1 0 1 0 2 0 3
 0 3 2 0 4 0 0 1 1 1 0 3
 0 2 3 0 2 0 0 3
 1 1 3 0 1 0 0 4
 2 0 3 0 0 1 0 4
 1 0 4 0 0 0 1 4
 0 1 4 0 0 0 0 5
 0 0 5 0

27

Figure 3.7

The 4-compositions g1g2g3g4 of 5 in Gray code order.

The inductive step necessary to prove this proposition from (3.5) by induction on k is
the fact gk+1 always rises, and for each i from 2 to k, the parity of Si is the same for
G(n,k)'0' as for G(n,k) and is reversed, together with the direction of motion, across each ο,
while n-Si is the same for G(n,k)'0' as for G(n,k) and remains constant across each ο (ο is

the concatenation symbol in formula 3.5).

From the graylex order we can see that the first composition must be n00...00, since
Si is always 0 and each part except the first one is increasing and is at its first value. The

generic sequencing algorithm, specialized to this graylex order, leads to the non-recursive
sequencing algorithm shown in Figure 3.8.

S:=n-g[1]; i:=2;
LOOP
 S:=S-g[i]; (* S is now g[i+1]+...+g[k]
*)
 IF S is even THEN (* g[i] should increase
*)
 IF g[i]<n-S THEN (* g[i] can increase and will shortly
*)
 IF g[i] is even THEN (* S[i-1] is even; so g[i-1]=n-S[i-1]
*)
 g[i-1]:=g[i-1]-1 (* its new first value since S[i-1] will be odd
*)
 ELSE (* S[i-1] is odd; so g[i-1]=0 and so is each g[j] for 2≤j≤i-1
*)
 g[1]:=g[1]-1 (* g[j] is at its first value for 2≤j≤i-1
*)
 END IF;
 g[i]:=g[i]+1; RETURN
 END IF (* otherwise we cannot increase g[i] and will instead increase i
*)
 ELSE (* S is odd so g[i] should decrease *)
 IF g[i]>0 THEN (* g[i] can decrease and will shortly
*)
 IF g[i] is odd THEN (* S[i-1] is even; so g[i-1]=n-S[i-1] *)
 g[i-1]:=g[i-1]+1 (* its new first value since S[i-1] will be odd
*)
 ELSE (* S[i-1] is odd; so g[i-1]=0 and so is each g[j] for 2≤j≤i-1
*)

28

 g[1]:=g[1]+1 (* g[j] is at its first value for 2≤j≤i-1
*)
 END IF;
 g[i]:=g[i]-1; RETURN
 END IF (* otherwise we cannot decrease g[i] and will instead increase i
*)
 END IF;
 i:=i+1;
 IF i>k THEN (* each g[j] is at its final value *)
 Done:=TRUE
 END IF
END LOOP.

Figure 3.8

Finding the next k-composition of n in the Knuth-Klingsberg Gray code
(the first one is n0...0).

29

IF g[k]=n THEN Done:=TRUE; RETURN END IF;
IF g[1]>0 THEN
 S:=n-g[1]-g[2];
 IF S is even THEN (* g[2] should and can increase *)
 g[2]:=g[2]+1; g[1]:=g[1]-1;
 IF g[2]=1 THEN t:=t+1; p[t]:=2 END IF (* push 2 onto stack *)
 ELSE
 i:=p[t]; S:=n-g[1]-g[i]; (* g[i] is second positive element *)
 IF S is even THEN (* g[i] increases and is odd and j>2*)
 g[i]:=g[i]+1; g[1]:=g[1]-1
 ELSE (* g[i] decreases and either g[i] is even or else j=2 *)
 g[i]:=g[i]-1; g[1]:=g[1]+1;
 IF (j=2) AND (g[j]=0) THEN t:=t-1 END IF (* pop 2 from stack *)
 END IF
 END IF
ELSE (* g[1]=0 *)
 i:=p[t]; S:=n-g[i];
 IF S is odd THEN (* g[i] should and can decrease *)
 IF g[i] is odd THEN g[j-1]:=g[j-1]+1 ELSE g[1]:=g[1]+1 END IF;
 g[i]:=g[i]-1;
 IF g[i]=0 THEN (* pop i from stack *)
 IF i>2 THEN (* and push i-1 onto stack *)
 p[t]:=i-1
 ELSE (* just pop i from stack *)
 t:=t-1
 END IF
 ELSE IF i>2 THEN (* just push i-1 onto stack *)
 t:=t+1; p[t]:=i-1
 END IF
 ELSE (* g[i] should increase but can't. We must handle g[i+1] *)
 i:=i+1; S:=S-g[i];
 IF S is odd THEN (* so is g[i] *)
 g[i]:=g[i]-1; g[i-1]:=g[i-1]+1;
 IF g[i]=0 THEN (* j ust pop i from stack since g[i-1] was already >0 *)
 t:=t-1; p[t]:=i-1; (* actually, from underneath i-1 *)
 END IF
 ELSE (* S is even and so is g[i] *)
 g[i]:=g[i]+1; g[i-1]:=g[i-1]-1;
 IF g[i]=1 THEN (* push i onto stack *)
 IF g[i-1]=0 THEN (* and pop i-1 from stack *)
 p[t]:=i
 ELSE (* just insert i beneath i-1 on stack *)
 p[t]:=i; t:=t+1; p[t]:=i-1
 END IF
 ELSE IF g[i-1]=0 THEN (* just pop i-1 from stack *)
 t:=t-1
 END IF
 END IF
 END IF
END IF;
RETURN.

Figure 3.9
A loop-free version of the Klingsberg algorithm for finding
 the next k-composition g1g2...gk of n using a stack p1p2...pt

(initially the composition is n0...0, the stack is empty, and the top-of-stack index t=0).

30

The algorithm in [Kl] is essentially the one in Figure 3.8 with the following
refinement. If gi increases or decreases at the expense of gi-1 or g1, all the integers
g2,...,gi-2 are 0; so if g1=0, then either gi-1 or gi is the first positive element, and otherwise it

is the second one. The algorithm in [Kl] stores the index of the first positive element,
which is easy to update; if this is 1, the second one is sought by a linear search, and this is
the only loop in the algorithm. Unfortunately, the index of the second positive element
cannot be updated unless we know the indices of all the positive elements. To make this
algorithm loop-free, then, we store the indices of all the positive elements except for g1 on
a stack, implemented with the array p1p2...pt which is sorted with the smallest index on top,

and to update this stack we never have to touch more than the top two indices (see Figure
3.9). This seems like the only way to make this algorithm loop-free: the generic loop-free
sequencing algorithm of Figure 1.1 is not guaranteed to work in this case because if
gi+1+...+gn=n then ai=zi=0. We note that a loop-free composition-generating algorithm

already exists [Eh2], and a much simpler one which takes constant extra space can be
constructed by applying the natural bijection between compositions and combinations
[NW, p47] to the loop-free combination generator of Figure 3.6 (see Figure 3.12 below);
we present this one to demonstrate the generality of our method.

To find Rank(g1...gk), for i from k down to 2 we substitute into (1.1) if gi is
decreasing - that is, if Si=gi+1+...+gk is odd - and into (1.2) otherwise, and we then
substitute into (1.3) if we are going to switch - that is, if gi is odd. Now #(x,gi+1...gk) is the
number of compositions of n-Si-x into i-1 parts, which is the number of combinations of
n-Si-x+i-2 objects taken i-2 at a time, and the sum in (1.1) or (1.2) has x running from its
minimum value of gi+1 to its maximum value of n-Si; so we have

Rank(g1g2.. .gk) =
n + k -1

k -1
⎛

⎝
⎜ ⎞

⎠
- (n - g1 +1) mod 2 -

i=2

k
∑ (-1)Si

n - Si-1 + i -1
i -1

⎛
⎝
⎜ ⎞

⎠
, gi odd

n - Si-1 + i - 2

i -1
⎛

⎝
⎜ ⎞

⎠
, gi even

⎧

⎨
⎪

⎩
⎪

, (3.6)

where Si=gi+1+...+gk.

The corresponding unranking algorithm is given in Figure 3.10. Both ranking and
unranking can be done using O(n) arithmetic operations by computing each binomial
coefficient from its predecessor.

31

t:=

n+k-1

k-1
⎛

⎝
⎜ ⎞

⎠
-r; s:= n;

 (* t is greater by 1 than the q at the end of section 1
*)

FOR i FROM k DOWNTO 3 DO

g[i]:= the largest integer such that

s-g[i]+i-1

i-1
⎛

⎝
⎜ ⎞

⎠
≥ t;

 IF g[i] is odd then

 t:=
s-g[i]+i-1

i-1

⎛

⎝
⎜ ⎞

⎠
-t+1

ELSE

 t:= t-
s-g[i]+i-2

i-1

⎛

⎝
⎜ ⎞

⎠
 END IF;
 s:=s-g[i];
END FOR;
g[1]:=t-1; g[2]:=s-t+1.

Figure 3.10
Finding the k-composition of n of rank r in the Knuth-Klingsberg Gray code.

But the natural bijection between the composition g1...gk of n and the combination
c1...ck-1 of n+k-1 given by gi=ci-ci-1-1 (with c0 taken to be 0) can be used to convert the

Nijenhuis-Wilf-Liu-Tang Gray code for combinations into a Gray code for compositions.
Here, s(gi+1...gn)=(0,1,...,n-Si) if n-k is odd and (n-Si,...,1,0) otherwise (see Figure 3.11,

where the 5-compositions of 2 are listed beside the 4-combinations of 6 given in Figure
3.5).

combination composition
1 2 3 4 0 0 0 0 2
1 2 4 5 0 0 1 0 1
2 3 4 5 1 0 0 0 1
1 3 4 5 0 1 0 0 1
1 2 3 5 0 0 0 1 1
1 2 5 6 0 0 2 0 0
2 3 5 6 1 0 1 0 0
1 3 5 6 0 1 1 0 0
3 4 5 6 2 0 0 0 0
2 4 5 6 1 1 0 0 0
1 4 5 6 0 2 0 0 0
1 2 5 6 0 0 2 0 0
1 2 4 6 0 0 1 1 0
2 3 4 6 1 0 0 1 0
1 3 4 6 0 1 0 1 0
1 2 3 6 0 0 0 2 0

32

Figure 3.11

Compositions corresponding to the combinations listed according to the Tang-Liu Gray
code

Applying this bijection to the algorithm of Figure 3.6 we obtain the constant-time,
constant-extra-space algorithm of Figure 3.12 for finding the next composition.

IF k=1 THEN Done:=TRUE; RETURN END;
LOOP (* iterated AT MOST FOUR TIMES

*)
 IF Rise THEN (* g[i] should rise

*)
 IF i>k THEN Done:=TRUE; RETURN END;
 IF g[i]<m THEN (* g[i] can rise. m=n-(g[i+1]+...+g[n]) *)
 g[i]:=g[i]+1;
 IF i>2 THEN
 m:=m-g[i]; i:=i-1; g[i]:=m; g[i-1]:=0;

Rise:=FALSE;
 ELSE
 g[1]:=g[1]-1;
 END IF i;
 RETURN;
 END IF g[i]; (* else g[i] cannot rise so we increase i

*)
 ELSE (* Rise is FALSE and g[i] should fall. *)
 IF g[i]>0 THEN (* g[i] can fall *)
 g[i]:=g[i]-1;
 IF i>2 THEN
 m:=m-g[i]; i:=i-1; g[i]:=0; g[i-1]:=m;
 IF i=2 THEN Rise:=TRUE ELSE i:=i-1 END;
 ELSE
 g[1]:=g[1]+1;
 END IF i;
 RETURN;
 END IF g[i] (* else g[i] cannot fall so we increase i

*)
 END IF Rise;
 i:=i+1; Rise:=NOT Rise; IF i≤k THEN m:=m+g[i] END;
END LOOP.

 Figure 3.12
Constant-time constant-extra-space algorithm for generating the next k-composition of n

(initially the composition is 0...0n, m=n, i=k, Rise=FALSE and Done=FALSE)

e) The Knuth-Kaye Gray code for set partitions

33

The classes of a partition of {1,2,...,n} are assumed to be indistiguishable; so they are
ordered by their smallest member: (15)(24)(3), for instance. A partition is coded by the
word c1c2...cn, where ci is the index of the class to which the number i belongs, so that

(15)(24)(3) is coded by the word 12321.

A Gray code for set partitions, in which each partition differs from its predecessor in
that one object moves from one class into another (possibly empty) class, was found by D.
Knuth and communicated to H. Wilf, who described it in [Wi]. The description is
recursive: given a Gray code for the partitions of {1,2,..,n-1}, n is inserted into each such
partition in all possible ways, moving either from the first class to its own class after the
last one or back the other way with the direction of motion changing for each partition of
{1,2,..,n-1} (see Figure 3.13).

The graylex order that this Gray code imposes on the list of words c1c2...cn is as
follows. For each prefix c1,...,ci-1, let m(i)=1+max(c1,...,ci-1). Then s(c1,...,ci-1) =
(1,2,...,m(i)) if the rank of c1c2...ci-1 among the partitions of {1,2,...,i-1} is even and
(m(i),...,2,1) otherwise (see Figure 3.4: ci begins by rising and changes direction of motion
every time it hits its final value zi).

PARTITION c1 c2 c3 c4 d1 d2 d3 d4
(1234) 1 1 1 1 F F F F
(123)(4) 1 1 1 2 F F F F
(12)(3)(4) 1 1 2 3 F F F T
(12)(34) 1 1 2 2 F F F T
(124)(3) 1 1 2 1 F F F T
(14)(2)(3) 1 2 3 1 F F T F
(1)(24)(3) 1 2 3 2 F F T F
(1)(2)(34) 1 2 3 3 F F T F
(1)(2)(3)(4) 1 2 3 4 F F T F
(1)(23)(4) 1 2 2 3 F F T T
(1)(234) 1 2 2 2 F F T T
(14)(23) 1 2 2 1 F F T T
(134)(2) 1 2 1 1 F F T F
(13)(24) 1 2 1 2 F F T F
(13)(2)(4) 1 2 1 3 F F T F

Figure 3.13

The Knuth-Kaye Gray code for set partitions of {1,2,3,4}; ci is the class to which the object
i belongs, and di is TRUE if ci is descending.

34

The generic sequencing algorithm, specialized to this Gray code, leads to the
algorithm in Figure 3.14. The maximum values for the ci are stored in an auxilliary array:
mi is the value of max(c1,...,ci-1). Since the parity of c1+...+ci-1 may or may not change as

we pass from one partition of {1,2,...,i-1} to the next, there is no obvious way of calculating
the direction in which ci must move; so these directions are stored in an array of Boolean
variables: di is TRUE if and only if ci is descending.

35

i:=n;
LOOP
 IF d[i] THEN (* c[i] should decrease
*)
 IF c[i]=1 THEN (* c[i] cannot decrease
*)
 d[i]:=FALSE; i:=i-1
 ELSE (* c[i] can increase
*)
 c[i]:=c[i]-1; EXIT
 END IF
 ELSE (* c[i] should increase
*)
 IF c[i]>m[i] THEN (* c[i] cannot increase
*)
 d[i]:=TRUE; i:=i-1;
 IF i=1 THEN Done:=TRUE; RETURN; END IF
 ELSE (* c[i] can increase
*)
 c[i]:=c[i]+1; EXIT
 END IF
 END IF
END LOOP; (* now we have to update the whole suffix c[i+1]...c[n]
*)
WHILE i<n DO
 i:=i+1;
 m[i]:=max(c[i-1],m[i-1]);
 IF d[i] THEN c[i]:=m[i]+1; END IF; (* its first value
*)
END WHILE;
RETURN.

Figure 3.14
Finding the next set partition of {1,2,..,n} in the Knuth-Kaye Gray code; ci is the class to

which the object i belongs, mi+1 is the largest value that ci may attain, and di is TRUE if ci
is descending. Initially, ci=1, mi=1 and di=FALSE for each i from 1 to n (except that

m1=0), and Done is FALSE.

This is essentially the algorithm in [Ka], except that in [Ka] the maximum value of ci

is not stored explicitly. Instead, the value s[k], the smallest element in the class k, is stored;
if s[ci]=i, then ci is at its maximum.

To solve the resumption problem for this algorithm we need to be able to calculate
m1m2...mn and d1d2...dn from c1c2...cn. The former can be done in linear time, but the

latter is much more difficult: we have only the formula

36

di = rank(c1c2...ci-1) is odd. (3.7)

This means that the resumption problem is dependent upon the ranking problem, but the
ranking problem is also dependent upon the resumption problem, since we need to know
the directions in which the integers are moving to be able to calculate the rank of a word.
We solve both problems simultaneously below.

A formula for the lex-order rank of c1c2...cn is given in [Wm, p. 99]. A table of tm,s,

the number of ways to put s objects into classes if m classes are already occupied, is
precomputed for 0≤s≤n-2 and 1≤m≤n-s-1 using the formula

t m,s =

1 if s = 0
mtm,s-1 + t m+1,s-1 otherwise.
⎧
⎨
⎩

 (3.8)

The part of the table necessary for n=7 is given in Figure 3.15.

 m= 1 2 3 4 5 6
 s
 0 1 1 1 1 1 1
 1 2 3 4 5 6
 2 5 10 17 26
 3 15 37 77
 4 52 151
 5 203

Figure 3.15
Table of tm,s needed to rank set partitions.

From (1.1),

rank(c1c2...ciai+1...an)=rank(c1c2...ci-1ai...an)+(ci-1)tm(i),n-i, (3.9)

so that

lex-rank(c1c2...cn) = ∑i=2,...,n (ci-1)tm(i),n-i . (3.10)

37

The Gray code rank is calculated similarly, using (1.1) whether ci is increasing or
decreasing. If ci is increasing, (3.9) still holds. Now suppose that ci is decreasing. If
ci>m(i), then ci=ai; so the sum in (1.1) is 0. Otherwise, it is equal to #(c1,c2,...,ci-1,ai),
which is tm(i)+1,n-i, plus the rest of the sum, which is (m(i)-ci)tm(i),n-i. This observation,
together with the observation that ci decreases if and only if rank(c1c2...ci-1) is odd, yields

the formula

rank(c1c2...cn) =
(ci - 1)tm(i),n- i if rank(c1c2.. .ci-1) is even

tm(i)+1,n- i + (m(i) - ci)t m(i),n- i otherwise (or 0 if ci > m(i)), (3.11)
⎧
⎨
⎩ i=2

n
∑

 where m(i) = max(c1,c2,...,ci-1).

The term tm(i)+1,n-i in (3.11) makes it necessary to compute the table of tm,s for

0≤s≤n-2 and 1≤m≤n-s.

 We know that rank(c1)=0, and once we have computed rank(c1c2...ci-1) we can
compute rank(c1c2...ci) from (3.11), which yields an algorithm, quadratic in the number of

arithmetic operations, for ranking a word in graylex order.

FOR i FROM 1 TO n DO d[i]:=FALSE END FOR;
r:=0; m:=1;
FOR i FROM 2 TO n DO
 m:=max(m,c[i-1]); (* m = m(i) = max(c[1],..,c[i-1]). *)
 IF NOT d[i] THEN (* rank(c[1]c[2]...c[i-1]) is even.
*)
 IF c[i] is even THEN (* change d[j] for each j>i such that t[m(i),j-i] is
odd*)
 k:=1 - (m mod 2); (* when j=i+1, t[m(i),j-i] ≡ m(i)+1 (mod 2)
*)
 FOR j FROM i+1 TO n DO
 IF k=0 THEN (* t[m(i),j-i] is even.
*)
 k:=2 (* k follows j-i mod 3. *)
 ELSE
 d[j]:=NOT d[j]; (* now t(m(i),j-i) is odd. *)
 k:=k-1 (* when j=i+2, t[m(i),j]≡m(i) (mod 2); the next time it's odd. *)
 END IF
 END FOR
 END IF;
 r:=r+(c[i]-1)*t[m,n-i]
 ELSE (* rank(c[1]c[2]...c[i-1]) is odd.
*)
 IF c[i]≤m THEN

38

 IF m-c[i] is odd THEN (* change d[j] if t[m(i)+1,j-i]+t[m(i),j-i] is odd.
*)
 k:=2 (* t[m(i)+1,j-i]+t[m(i),j-i] will be odd until j=i+3.
*)
 ELSE (* change d[j] if t[m(i)+1,j-i] is odd. *)
 k:= m mod 2 (* when j=i+1, t[m(i)+1,j-i]≡m(i) (mod 2). *)
 END IF;
 FOR j FROM i+1 TO n DO
 IF k=0 THEN k:=2 ELSE d[j]:=NOT d[j]; k:=k-1 END IF;
 END IF;
 r:=r+t[m+1,n-i]+(m-c[i])*t[m,n-i]
 END IF
 END IF
END FOR.

Figure 3.16
Algorithm to find the rank r of the set-partition c1c2...cn in the Knuth-Kaye Gray code and

the Boolean array d1d2...dn, where di is TRUE if ci is descending.

But since we only need to know the parity of the ranks of all the prefixes, we can do
all but the last substitution into (3.11) modulo 2. From (3.8) it is easy to prove by induction
on s that tm,s is odd if s mod 3 = 0, has the opposite parity as m if s mod 3 = 1, and has the

same parity as m if s mod 3 = 2. To avoid storing or recomputing m(i), we use all the
available information from each prefix before moving on to the next one. The algorithm is
shown in Figure 3.16.

This algorithm also requires a quadratic number of operations, but the only operations
which are iterated that often are on j, k and Boolean variables. There are only O(n)
operations on large integers; so the algorithm actually runs in quadratic time. If all we want
is d1d2...dn, we can omit all reference to r; so we don't need to precompute the table.

This algorithm can be modified to find the word c1c2...cn of rank r and the
corresponding d1d2...dn. Remove all statements that contain r. After the second line

(m:=1;) insert

c[1]:=1; s:=r;

After the fifth line (IF NOT d[i] THEN) insert

 c[i]:=1 + (s div t[m,n-i]); s:=s-(c[i]-1)*t[m,n-i];

Replace

 IF c[i]≤m

39

 by

 IF s<t[m+1,n-i] THEN
 c[i]:=m+1
 ELSE
 s:=s-t[m+1,n-i];
 c[i]:=m - (s div t[m,n-i]);
 s:=s-(m-c[i])*t[m,n-i];

These modifications do not change the time-complexity.

Using these algorithms we find that the last word starting with 11 is
1121341561781.. (coding the partition (1247..)(3)(5)(6)(8)(9)..), its direction vector is
FFFTFFTFFTFFT.., and its successor is 1231451671891.. (coding the partition
(147..)(2)(3)(5)(6)(8)(9)..), so that 2/3 of its elements change. This means that the words do
not obey any minimal-change property, so that there is no way to make the next-string
algorithm loop-free with this order of generating partitions. Of course, there already is a
loop-free set-partition generating algorithm ([Eh1], [Ev, p68]). The Gray code used there
differs from this one in that s(c1c2...ci-1) is (2,3,...,m(i),1) instead of (1,2,3,...,m(i)) and

(1,m(i),...,3,2) instead of (m(i),...,3,2,1). This is genlex but it is not graylex unless the
positive integers are reordered so that 1 is greater than all the others. All the Gray codes
discussed in sections 3 and 4 of [JWW] are in a similar genlex order: 0 acts like the greatest
integer, and the direction of motion changes with each new prefix. We invite the reader to
apply our method to the set-partition Gray-code in [Eh1] to solve the ranking, unranking
and resumption problems.

4. The Towers of Hanoi

In the by-now-infamous Towers of Hanoi puzzle (see [Hi] for a history of this
problem), n rings of different sizes, originally stacked on a source peg in order of size with
the smallest ring on top, have to be stacked on a destination peg, using a third peg as a
spare, without moving more than one ring at a time or putting any ring on top of a smaller
ring. The classical recursive algorithm for solving this problem is shown in Figure 4.1 and
the classical iterative one (which was proved correct in [BL]) is shown in Figure 4.2.

IF n>1 THEN stack the n-1 smallest rings on the spare peg END IF;
Move the largest ring from the source peg to the destination peg;
IF n>1 THEN stack the n-1 smallest rings on the destination peg END IF.

Figure 4.1

40

The recursive algorithm for stacking n rings on the destination peg if they are initially
stacked on the source peg.

Cyclically order the pegs so that destination follows source iff n is odd;
LOOP
 Move the smallest ring according to this cyclic order;
 IF all the rings are on a single peg THEN EXIT END IF;
 Move the second-smallest topmost ring but not on top of the smallest ring
END LOOP.

Figure 4.2
The classical iterative algorithm for stacking n rings on the destination peg if they are

initially stacked on the source peg.

When we execute the iterative algorithm, the only variable information we need in
order to decide what ring to move - aside from the topmost ring on each peg, which is part
of the data structure being manipulated - is whether it is time to move the smallest ring. As
was shown in [Wa1], this information can be found in constant time by examining the three
topmost rings or empty pegs: if the rings are labelled 1,2,...,n in increasing order of size, the
source peg labelled n+1, the spare peg n+2 and the destination peg n+3, then exactly one of
the three topmost rings or empty pegs will have an even label, and this is where ring 1
should be moved, so that if this move is compatible with the cyclic order, it is time to move
ring 1. Other results in [Wa1], which were described in [Hi] as open problems whose
solutions could be derived from results in [Hi], are a criterion for the current position of the
rings to be part of a minimal solution (every ring is on a ring or empty peg of opposite
parity), and a linear-time ranking and unranking procedure (if bn+1bn...b2b1 is the rank in
binary, then for each i from n down to 1, bi=bi+1 if and only if ring i is on ring or empty peg

i+1).

If we store the positions of the rings in an array Peg, where Peg[i] is the peg on which
ring i is sitting, it takes O(n) time in the worst case to find the second-smallest topmost ring
- the computer searches the rings in increasing order of size until it finds one which is not
on the same peg as its predecessor. When we execute the algorithm with real rings and
pegs we compare the sizes of the three topmost rings, and it is both more natural and more
efficient to incorporate this approach into a computer program. The rings on each peg form
a sorted stack, and the allowable operation is popping a ring off the top of one stack and
pushing it onto the top of another one (keeping the stacks sorted). This operation can be
done in constant time using linked lists; so the algorithm can be made loop-free by storing

41

the positions of the rings by a simulated linked list [Er2]: a size-3 array Top, where Top[i]
is the topmost ring on peg i, and a size-n array Beneath, where Beneath[i] is the ring
beneath ring i, with n+1 or some other sentinel to simulate the nil pointer. Since the array
Peg is rendered redundant, this implementation uses constant extra space.

A recursive algorithm for stacking the rings onto a given destination peg from any
legal position was found independently by Er [Er1] and Scarioni and Speranza [SS], and is
shown in its essentials in Figure 4.3.

IF the largest ring is on the destination peg THEN
 IF n>1 THEN stack the n-1 smallest rings on the destination peg END IF
ELSE
 The 'other' peg := neither the destination peg nor the peg containing ring n;
 IF n>1 THEN stack the n-1 smallest rings on the 'other' peg END IF;
 Move the largest ring onto the destination peg;
 IF n>1 THEN stack the n-1 smallest rings on the destination peg END IF
END IF.

Figure 4.3
The recursive algorithm for stacking n rings on the destination peg from any legal position.

Iterative versions appear in [Hi], [Er2], and [Wa2]. All of these are equivalent to the
recursive algorithm, and a proof that all these algorithms are indeed minimal appears in
[Hi]. We compare them now for the minimal extra space needed for a loop-free
implementation.

These algorithms all define a target peg for each ring according to the algorithm
shown in Figure 4.4.

Target[n]:=destination peg;
FOR i FROM n-1 BY -1 TO 1 DO
 IF Peg[i+1]=Target[i+1] THEN
 Target[i]:=Target[i+1]
 ELSE
 Target[i]:=the peg other than Peg[i+1] or Target[i+1]
 END IF
END FOR.

Figure 4.4
Algorithm for finding the target pegs for each ring.

42

The iterative algorithm in [Hi] for stacking the rings on the destination peg is
essentially the one shown in Figure 4.5.

Find Target[i] for each i; (* using the algorithm of Figure 4.4
*)
FOR i:=1 TO n DO
 IF Peg[i]≠Target[i] THEN
 Peg[i]:=Target[i];
 IF i>1 THEN (* the smaller rings are all stacked on Target[i-1]
*)
 Stack all the smaller rings on Peg[i] (* algorithm of Fig. 4.2
*)
 END IF;
 END IF
END FOR.

Figure 4.5
Er-Hinz iterative algorithm for stacking n rings on the destination peg from any legal

position.

The iterative algorithm in [Er2] is essentially the same, except that an explicit loop-
free version is given, using the arrays Top and Beneath as well as Peg and Target. The
array Target is constantly updated to keep ring 1 moving in the correct cyclic direction. In
any loop-free implementation of the algorithm in [Hi] we would need all these arrays,
although it would not be necessary to update Target: it suffices to update the cyclic
direction for ring 1 for each new value of i.

The algorithm in [Wa2], which does not store the array Target, is given in Figure 4.6.

Find Target[1]; (* Fig. 4.4 with all indices of the array Target changed to 1 *)
IF ring 1 is not on Target[1] THEN move it there END IF;
WHILE at most one peg is empty DO
 Move second-smallest topmost ring i but not onto ring 1;
 IF i is even THEN
 Move ring 1 onto ring i
 ELSE
 Move ring 1 but not onto ring i
 END IF
END WHILE.

Figure 4.6
Walsh algorithm for stacking n rings on the destination peg from any legal position.

43

This algorithm is proved correct in [Wa2] by showing, using induction on n, that the
recursive algorithm makes the same sequence of moves. Here we derive our algorithm
from the recursive one using genlex order. From the recursive algorithm of Figure 4.3 we
see that if ring n is not on its target peg - the destination peg - it will be moved there before
it is moved anywhere else. The same is true of any other ring i - this is arranged by the
recursive call for stacking i rings - and no larger ring will be moved in the meantime. It
follows that for any position of the larger rings, ring i assumes either one position,
Target[i], or two, the latter of which is Target[i]. This defines a genlex order on the
positions of the rings, and the generic sequencing algorithm says to find the smallest ring i
which is not on Target[i], if there is one, and move it there. We can calculate Target[1]
without storing the array Target, and if ring 1 is not on Target[1] it must be moved there.
To find the smallest ring i which is not on Target[i], we observe from Figure 4.4 that for
any j>1, Peg[j], Target[j] and Target[j-1] are either all the same or all different. It can be
shown by induction on j that if rings 1,2,...,i-1 are all on the same peg they are all on their
target pegs. If all n rings are on the same peg, then this peg is Target[n]=destination, and
the algorithm must terminate. Otherwise, for the second-smallest topmost ring i, Peg[i],
Target[i] and Target[i-1]=Peg[i-1]=Peg[1] are all different, and ring i must be moved onto
Target[i], which is the peg containing neither ring 1 nor ring i. Now Target[i-1] becomes
Target[i], the new value of Peg[i]. But now Target[i-1], Peg[i-1] and the old value of
Peg[i] are all different, so that Target[i-2] becomes the old value of Peg[i]. Continuing in
this way we find that Target[i-3] becomes the new value of Peg[i], Target[i-4] becomes the
old value of Peg[i] and so on, so that Target[1] becomes the new value of Peg[i] if i is even
and the old value of Peg[i] if i is odd, and in either case it is different from Peg[1]; so that
ring 1 must be moved onto ring i if i is even and onto the peg containing neither ring i nor
ring 1 if i is odd. Thus the generic sequencing algorithm leads directly to the algorithm in
Figure 4.6.

We define the binary number bn...b2b1 where bi=0 if and only if Peg[i]=Target[i] and

prove that each move reduces this number by 1. In the above discussion we showed that at
the beginning of the loop rings 1,2,...,i-1 are on their target pegs but not ring i, so that bi=1
but bi-1=...=b1=0. The move of ring i puts it on its target peg but changes the target pegs of
all the rings 1,2,...,i-1, so that now bi=0 but bi-1=...=b1=1, which reduces the binary number
by 1. Then ring 1 is moved to its target peg, changing b1 from 1 to 0, again reducing this

number by 1. When the binary number drops to 0, all the rings are on a single peg - the
destination peg - and the algorithm terminates, so that the initial value of this binary
number is the number of moves required to complete the algorithm (this fact was proved in
both [Wa2] and [Hi]).

44

We note that this algorithm provides an alternative to Figure 4.2 for solving the
original Towers of Hanoi problem. In this special case, the first two lines can be replaced
with 'IF n is odd THEN move ring 1 onto the destination peg ELSE move ring 1 onto the
spare peg END IF'.

Any loop-free implementation of this algorithm requires the arrays Top and Beneath
to make it loop-free and Peg to find Target[1] by scanning the rings from largest to smallest
as done in Figure 4.4, since the rings cannot be scanned from largest to smallest using the
arrays Top and Beneath. They can, however, be scanned from smallest to largest using
these two arrays and a size-3 array Current. If we assume that Target[1]=Peg[1], we can
then use that fact that Target[i], Peg[i] and Target[i-1] are either all the same or all different
to find what the value of Target[n] would be under that assumption - that is, on what peg all
the rings will end up being stacked if we don't move ring 1 first. If this turns out to be the
destination peg, ring 1 is on Target[1] and we don't have to move it. If not, we order the
pegs cyclically so that the destination peg follows the value that Target[n] would have if
Target[1] were Peg[1]. If we change Target[n] to destination, Target[n-1] moves in the
opposite cyclic order, Target[n-2] in the original cyclic order, and so on, so that to get the
true value of Target[1] we have to move it from the peg containing ring 1 in the above-
mentioned cyclic order if n is odd and in the opposite cyclic order if n is even, and this is
the cyclic order in which we have to move ring 1. After that we follow Figure 4.6, finding
the second-smallest topmost ring by sorting the size-3 array Top and moving the rings by
popping and pushing. Each move is made in constant time, so that the algorithm is loop-
free, and since only one size-n array is used - Beneath - the algorithm uses O(1) extra
space.

A more general problem is solved in [Hi]: moving the rings from one legal position to
another. Two algorithms are considered. Let ring i be the largest ring that is not on its
destination peg Dest[i]. Ring i is moved onto Dest[i] in either one move or two. Before
moving ring i, all the smaller rings must be stacked on the appropriate 'other' peg. Once
ring i is on Dest[i], the sequence of moves which would take the smaller rings from their
destination pegs and stack them on the peg on which they are currently stacked is reversed.
One of these two algorithms is minimal, and since one can compute the number of moves
that each of them will take from the formula in [Hi] and [Wa2], one chooses the minimal
algorithm and then executes it.

The smaller rings can be stacked the first time using Figure 4.6 and the second time,
if necessary, using Figure 4.2. The hard part is the reversal of the sequence of moves which
stacks the rings on a given peg from any legal position. But to take rings from a single peg

45

and put them onto designated pegs it is not necessary to even consider the reverse problem,
let alone store the entire sequence of moves necessary to solve the reverse problem and
then reverse the sequence. The algorithm in Figure 4.7 solves this problem directly and
does not require the foresight of calculating temporary target pegs. It is clearly the unique
minimal-move algorithm in which the largest ring which is not on its destination peg moves
only once, and we have it on the authority of [Hi] that it is therefore the minimal algorithm
which does the job.

FOR i FROM n BY -1 TO 1 DO
 IF ring i is not on peg Dest[i] THEN
 Stack all the smaller rings (* which are now on ring i
*)
 on the 'other' peg besides Dest[i]; (* Figure 4.2
*)
 Move ring i to Dest[i]
 END IF
END FOR.

Figure 4.7
An algorithm for taking n rings which are stacked on a source peg

and putting each ring i on a specified peg Dest[i].

To solve the general problem we need to know how many moves the algorithms of

Figures 4.6 and 4.7 will take. An algorithm for finding in advance the moves that Figure

4.6 will take while calculating Target[1] appears in [Wa2]; we repeat it in Figure 4.8.

46

Target[1]:=destination; m:=0;
FOR i FROM n BY -1 TO 2 DO
 IF Peg[i]≠Target[1] THEN
 Target[1]:=the peg other than Target[1] or Peg[i]
 m:=m+1;
 END IF;
 m:=m*2;
END FOR;
IF Peg[1]≠Target[1] THEN m:=m+1 END IF.

Figure 4.8

An algorithm for finding m, the number of moves needed to execute Figure 4.6, while
calculating Target[1]

A similar algorithm (see Figure 4.9) computes the number of moves necessary to execute
Figure 4.7.

StackPeg:=source; m:=0; (* StackPeg is the destination for a stack of rings
*)
FOR i FROM n BY -1 TO 1 DO
 m:=m*2;
 IF StackPeg≠Dest[i] THEN
 StackPeg:=the peg other than StackPeg or Dest[i];
 m:=m+1
 END IF
END FOR.

Figure 4.9
An algorithm for finding m, the number of moves needed to execute Figure 4.7

Thus the entire algorithm for moving the rings from one legal position to another can
be implemented using the array Dest (which, being part of the problem, is not considered
extra space) and whatever representation we are using for the position of the rings. If we
are prepared to search for the second-smallest topmost ring we can represent the rings by
the array Peg; otherwise we need the arrays Top and Beneath. The algorithm of Figure 4.7
will still not be totally loop-free, because the condition that ring i is not on peg Dest[i] may
be false for several consecutive rings. However, the violation of the loop-free condition is
only linear in total time, since that condition is tested only once for each ring and can be
done in constant time even if we only use Top and Beneath, since the ring to be tested is on
the same peg as ring 1. If we use only Top and Beneath we must modify the algorithm of
Figure 4.8 so that it computes Target[1] by scanning the rings from smallest to largest and

47

evaluates m starting from the least significant bit of its binary expansion. With these
modifications, the entire algorithm is almost loop-free and uses constant extra space.

From the algorithm of Figure 4.7 it is easy to derive the genlex order in which the
rings move. For each position of the larger rings, ring i follows a sequence of one peg
(ai=zi) or a sequence of two pegs (ai,zi). If i=n or all the larger rings are on their destination
pegs, then zi=Dest[i]; otherwise zi is computed from Peg[i+1] and zi+1 the way Target[i] is
computed in Figure 4.4: if Peg[i+1]=zi+1 then zi=zi+1 and otherwise zi= the peg other than
Peg[i+1] and zi+1. Similarly, an is the source peg, and for each i<n, if Peg[i+1]=ai+1 then
ai=ai+1 and otherwise ai= the peg other than Peg[i+1] and ai+1. The genlex order followed

by the rings moving from a given legal position (Peg[i]=Source[i]) to a single destination
peg can be derived from the above by reversing the roles of ai and zi and of Source and

Destination. For the original Towers of Hanoi problem, each ring follows a two-peg
sequence: an=source, zn=destination, and for i<n, if Peg[i+1]=zi+1 then zi=zi+1 and ai= the
peg other than ai+1 and zi+1, and otherwise ai=ai+1 and zi is the 'other' peg. For the more

general problem of moving the rings from one legal position to another, the largest ring not
originally on its destination peg follows either a two-peg or three-peg sequence depending
on which of the two algorithms presented in [Hi] turns out to be minimal, and the other
rings follow one of the three above genlex orders depending upon which part of the
algorithm is being executed; the details are left to the reader. We note that this genlex order
is not graylex unless we artificially impose a linear order on the pegs instead of the more
natural cyclic order.

5. Conclusion

The method presented here can be used to sequence and rank any list of words in
genlex order, and this includes almost all the classical combinatorial Gray codes. There are
some exceptions: the list of integer partitions of 10 shown in [Wi, p12], computed using the
Gray code published in [Sa], will convince the reader that this Gray code is not in genlex
order, and so it is unlikely that an iterative description can be found by using any method
less general (and less complicated) than the revolving door method illustrated in [NW,
p29]. This leads to the following open problem. The 'method' presented in this article
begins by generating the list Ln for small values of n from the recursive description,
observing if it is in genlex order and, if so, discovering a rule for finding s(g1g2...gi-1) as a
function of g1g2...gi-1, and then proving these observations by induction using the recursive

description. Does there exist an algorithm which accepts as input the recursive description
of a Gray code and decides whether or not it is genlex and, if so, outputs the simplest
possible rule for finding s(g1g2...gi-1) as a function of g1g2...gi-1?

48

REFERENCES

[BER]: J.R. Bitner, G. Ehrlich, E.M. Reingold, Efficient Generation of the Binary Reflected
Gray Code and its Applications, Comm. ACM 19 (1976), p. 517-521.

[BL]: P. Buneman and L. Levy, The towers of Hanoi problem, Information Processing
Letters 10 (1980), p. 243-244.

[Ch]: P.J. Chase, Combination generation and graylex ordering, Proceedings of the 18th
Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, 1988,
Congressus Numerantium 69 (1989), p. 215-242.

[Ds]: N. Dershowitz, A simplified loop-free algorithm for generating permutations, BIT 15
(1975), 158-164.

[Eh1]: G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other
combinatorial configurations, J. ACM 20 (1973), p. 500-513.

[Eh2]: G. Ehrlich, Algorithm 466, Four Combinatorial Algorithms [G6], Comm. ACM 16
(1973), p. 690-691.

[Er1]: M.C. Er, The generalized towers of Hanoi problem, J. Inform. Optim. Sci. 5 (1984), p.
89-94.

[Er2]: M.C. Er, An iterative solution to the generalized towers of Hanoi problem, BIT 23
(1983), 295-302.

[Ev]: S. Even, Algorithmic combinatorics, MacMillan, N.Y. 1973.

[Fe]: W. Feller, An introduction to probability theory and its applications, Vol. 1, Second
edition, Wiley and Sons, N.Y., 1957.

[Gr]: F. Gray, Pulse code communication, U.S. Patent 2 632 058, March 17, 1953.

[Hi]: A.M. Hinz, The tower of Hanoi, L'Enseignement Mathématique 35 (1989), p. 289-321.

[Jo]: S.M. Johnson, Generation of permutations by adjacent transpositions, Mathematics of
Computation 17 (1963), p. 282-285.

[JWW]: J.T. Joichi, D.E. White and S.G. Williamson, Combinatorial Gray Codes, SIAM J.
Computing 9 (1980), p. 130-141.

[Ka]: R. Kaye, A Gray code for set partitions, Information Processing Letters 5 (1976), p.
171-173.

[Kl]: P. Klingsberg, A Gray code for compositions, Journal of Algorithms 3 (1982), p.
41-44.

49

[Kn]: D.E. Knuth, The art of computer programming, Vol. 3 (sorting and searching),
Addison-Wesley, Reading, Mass., 1973.

50

[Le]: D.H. Lehmer, The machine tools of combinatorics, in Applied Combinatorial
Mathematics, E.F. Beckenbach (ed.), Wiley and Sons, N.Y., 1964, p. 5-31.

[LT]: C.N. Liu and D.T. Tang, Algorithm 452, Enumerating M out of N objects, Comm.
ACM 16 (1973), p. 485.

[NW]: A. Nijenhuis and H.S. Wilf, Combinatorial algorithms for computers and calculators,
second edition, Academic Press, N.Y., 1978.

[Pa]: J. Pallo, Enumerating, ranking and unranking binary trees, Computer Journal 29
(1986), 171-175.

[PL]: A. Proskurowski and E. Laiman, Fast enumeration, ranking and unranking of binary
trees, Proceedings of the 13th Southeast conference on Computing, Graph Theory and
Combinatorics, Congressus Numerantium 35 (1982), 401-413.

[PR]: A. Proskurowski and F. Ruskey, Generating binary trees by transpositions,
Proceedings of the first SWAT conference, Stockholm, 1988, Lecture Notes in Computer
Science 318, Springer-Verglag, N.Y., 1988, p. 199-207.

[RH]: F. Ruskey and T.C. Hu, Generating binary trees lexicographically, SIAM J.
Computing 6 (1977), p. 745-758.

[RND]: E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial algorithms, theory and
practice, Prentice-Hall, New Jersey, 1977.

[Sa]: C. Savage, Gray code sequences of partitions, Journal of Algorithms 10 (1989),
577-595.

[SS]: F. Scarioni and M.G. Speranza, A probabilistic analysis of an error-correcting
algorithm for the towers of Hanoi puzzle, Information Processing Letters 18 (1984), p.
99-103.

[Tr]: H.F. Trotter, Algorithm 115: Perm, Communications of the ACM 5 (1962), 434-435.

[vB]: D.R. van Baronaigien, A loopless algorithm for generating binary tree sequences,
Information Processing Letters 39 (1991), p. 189-194.

[Wa1]: T.R. Walsh, The towers of Hanoi revisited: moving the rings by counting the moves,
Information Processing Letters 15 (1982), 64-67.

[Wa2]: T.R. Walsh, A case for iteration, Proceedings of the 14th Southeastern Conference
on Computing, Graph Theory and Combinatorics, 1983, Congressus Numerantium 40
(1983), p. 38-43.

[Wi]: H. S. Wilf, Combinatorial algorithms: an update, SIAM, Philadelphia, 1989.

51

[Wm]: S.G. Williamson, Combinatorics for computer science, Computer Science Press,
Rockville, 1985.

[Z]: S. Zaks, Lexicographic generation of ordered trees, Theoretical Computer Science 10
(1980), p. 63-82.

52

APPENDIX

Listings of the computer programs for sequencing, ranking and unranking the

Proskurowski-Ruskey Gray code for balanced parenthesis systems

Two modules were written: RankTree, which contains the constant-extra-space

sequencing algorithm and the ranking and unranking algorithms, and EhrlichTree, which
contains the loop-free sequencing algorithm. This page contains the declarations of both
modules, the next five pages contain the rest of RankTree, and the last three pages contain
the rest of EhrlichTree. The bitstring is stored in the variable A. The variables n and k are
the parameters in T(n,k): the bitstring is of length 2n and has a prefix 1k0. The variable i is
a loop index for printing the bitstring, r is for its rank, and B is for constructing the bitstring
of that rank for comparison with A. Done is true if the current bitstring is the last one in the
list. LastRight is true if the total number of free 1s not in their rightmost positions is even.
OK is true if r is less than the total number of bitstrings. Pos is the position vector of the 1s
in the bitstring, Dir[i]=1 if Pos[i] is increasing and 0 otherwise, and Ehr is the Bitner-
Ehrlich-Reingold array. Finally, List is Fixed if we are generating T(n,k) for fixed k,
Variable if we are generating T(n,n)οT(n,n-1)ο...οT(n,2)οTR(n,1) and Special if we are
generating T(n+1,1) with the prefix 10 removed.

MODULE RankTree; (* Constant extra-space generation, ranking
and unranking of balanced parenthesis systems *)
FROM InOut IMPORT WriteString, WriteLn, ReadCard, WriteCard;
TYPE Dyck=ARRAY[1..80] OF CARDINAL;
 ListType=(Fixed, Variable, Special);
VAR i,n,k,r: CARDINAL;
 Done, LastRight, OK: BOOLEAN;
 A,B: Dyck;
 List: ListType;

MODULE EhrlichTree; (* Loop-free generation of balanced
parenthesis systems *)
FROM InOut IMPORT WriteString, WriteLn, ReadCard, WriteCard;
TYPE Dyck=ARRAY[1..80] OF CARDINAL;
 ListType=(Fixed, Variable, Special);
VAR i,n,k: CARDINAL;
 Done: BOOLEAN;
 A, Pos, Dir, Ehr: Dyck;
 List: ListType;

53

PROCEDURE First(n:CARDINAL; VAR k:CARDINAL; VAR A:Dyck;
 VAR Done, LastRight: BOOLEAN; List:
ListType);
(* FIRST PARENTHESIS SYSTEM. NO AUXILIARY ARRAYS NEEDED *)
VAR i: CARDINAL;
BEGIN
 Done:=FALSE;
 IF List=Variable THEN
 k:=n; LastRight:=TRUE
 ELSIF List=Special THEN
 k:=1; LastRight:=n<=1
 ELSE
 LastRight:=(k=n) OR (n<=2)
 END; (* IF List *)
 FOR i:=1 TO k DO
 A[i]:=1;
 END; (* FOR *)
 IF k=n THEN
 FOR i:=n+1 TO 2*n DO
 A[i]:=0;
 END; (* FOR *)
 ELSIF (k>1) OR ((n=2) AND (List=Fixed)) THEN
 A[k+1]:=0; A[k+2]:=1;
 FOR i:=k+3 TO 2*k+2 DO
 A[i]:=0
 END; (* FOR *)
 FOR i:=k+2 TO n DO
 A[2*i-1]:=1; A[2*i]:=0;
 END; (* FOR *)
 ELSE (* k=1 *)
 IF List=Special THEN
 IF n=1 THEN
 A[2]:=0;
 ELSE
 A[2]:=1; A[3]:=0; A[4]:=0;
 FOR i:=3 TO n DO
 A[2*i-1]:=1; A[2*i]:=0;
 END; (* FOR *)
 END; (* IF n *)
 ELSE
 A[2]:=0;
 IF n=2 THEN
 A[3]:=1; A[4]:=0;
 ELSIF n>2 THEN
 A[3]:=1; A[4]:=1; A[5]:=0; A[6]:=0;
 FOR i:=4 TO n DO
 A[2*i-1]:=1; A[2*i]:=0;
 END; (* FOR *)
 END (* IF n *)
 END; (* IF List *)

54

 END; (* IF k *)
END First;

55

PROCEDURE Next(n: CARDINAL; VAR k: CARDINAL; VAR A: Dyck;
 VAR Done, LastRight: BOOLEAN; List: ListType);
(* NEXT PARENTHESIS SYSTEM. NO AUXILIARY ARRAYS NEEDED *)
VAR i,j: CARDINAL;
 Right: BOOLEAN;
BEGIN
 i:=2*n-1; (* position of symbol in Dyck-word *)
 j:=n; (* index among 1s only
*)
 Right:=LastRight; (* true if the number of free 1s to the left of A[j] is even *)
 LOOP
 IF ((List=Fixed) AND (j<=k)) OR (j<=1) THEN
 Done:=TRUE; EXIT;
 END; (* IF *)
 WHILE A[i]=0 DO i:=i-1; END; (* WHILE *)
 IF (i<2*j-1) AND ((List<>Variable)OR(i>k)) THEN
 Right:=NOT Right;
 END; (* IF *)
 IF Right AND (i<2*j-1) THEN (* jth 1 moves right
*)
 A[i]:=0;
 IF j=k THEN (* List=Variable and k drops
*)
 A[i+1]:=1; LastRight:=NOT LastRight; k:=k-1;
 ELSIF j=n THEN
 A[i+1]:=1;
 IF i+1=2*j-1 THEN LastRight:=NOT LastRight; END;
 ELSE
 LastRight:=NOT LastRight;
 IF i+1=2*j-1 THEN A[i+2]:=1 ELSE A[2*j+1]:=1 END;
 END; (* IF j *)
 EXIT;
 ELSIF (NOT Right) AND (A[i-1]=0)
 AND((List<>Variable)OR(k>1)OR(j>2)) THEN (* jth 1 moves left *)
 A[i-1]:=1;
 IF j=n THEN
 A[i]:=0;
 IF i=2*j-1 THEN LastRight:=NOT LastRight; END;
 ELSE
 LastRight:=NOT LastRight;
 IF i=2*j-1 THEN
 A[i+1]:=0
 ELSE
 A[2*j+1]:=0;
 END; (* IF i *)
 END; (* IF j *)
 EXIT;
 ELSE (* jth 1 can't move
*)

56

 i:=i-1; j:=j-1;
 END; (* IF Right *)
 END; (* LOOP *)
END Next;

57

PROCEDURE Rank(n,k:CARDINAL; A:Dyck; List:ListType):
CARDINAL;
VAR i,j,f,t,r,d:CARDINAL;
 Dir: BOOLEAN;
BEGIN
 IF List=Variable THEN
 k:=1;
 WHILE A[k+1]=1 DO k:=k+1 END;
 IF k=1 THEN k:=2 END;
 ELSIF List=Special THEN
 k:=1; n:=n+1;
 END; (* IF List *)
 f:=1; (* computing first binomial coefficient
*)
 FOR i:=1 TO n-k DO
 f:=f*(2*n-k-i) DIV i;
 END; (* FOR *)
 IF List=Variable THEN (* computing rank of last bitstring for this value of k
*)
 r:=f*(2*n-k)*(k+1) DIV (n*(n+1));
 IF A[2]=1 THEN (* k was always greater than 1 - if k was 1 we changed it to 2
*)
 Dir:=TRUE;
 r:=r-1;
 ELSE
 Dir:=FALSE;
 END; (* IF A[2] *)
 ELSE
 r:=(f*k DIV n) - 1;
 Dir:=TRUE;
 END; (* IF *)
 j:=k+2;
 IF List=Special THEN (* subtract 2 from all indices of A to remove prefix 10 *)
 d:=2
 ELSE
 d:=0;
 END; (* IF List *)
 FOR i:=k+1 TO n DO
 WHILE A[j-d]=0 DO
 f:=f*(n+i-j) DIV (2*n-j+1); (* updating binomial coefficient
*)
 j:=j+1;
 END; (* WHILE *)
 IF j<2*i-1 THEN
 t:=(f*(2*i-j) DIV (n-j+i+1)) - 1;
 IF Dir THEN r:=r-t ELSE r:=r+t END; (* updating rank
*)
 Dir:=NOT Dir;
 END; (* IF j *)

58

 f:=f*(n-i+1) DIV (2*n-j+1);
 (* updating binomial coefficient when both i and j change *)
 j:=j+1;
 END; (* FOR *)
 RETURN(r);
END Rank;

59

PROCEDURE Unrank(n,k,r:CARDINAL; VAR A:Dyck;
 VAR OK: BOOLEAN; List:ListType);
VAR i,j,f,nf,d: CARDINAL;
BEGIN
 IF List=Variable THEN
 k:=n; f:=0; nf:=1;
 WHILE r>=nf*(k+1) DIV (n+1) DO
 IF k=1 THEN OK:=FALSE; RETURN; END;
 k:=k-1; f:=nf;
 nf:=f*(2*n-k) DIV (n-k);
 END; (* WHILE *)
 r:=r-f*(k+2) DIV (n+1);
 END; (* IF *)
 IF List=Special THEN
 d:=2; k:=1; n:=n+1;
 ELSE
 d:=0;
 FOR i:=1 TO k DO
 A[i]:=1;
 END; (* FOR *)
 A[k+1]:=0;
 END; (* IF *)
 f:=1;
 FOR i:=1 TO n-k DO
 f:=f*(2*n-k-i) DIV i;
 END; (* FOR *)
 nf:=f*k DIV n;
 (*nf means new value of f; when nf meets the stopping condition we use
f*)
 OK:=r<nf;
 IF NOT OK THEN RETURN END;
 IF (List<>Variable) OR (k>1) THEN
 r:=(f*k DIV n) - 1 - r;
 END; (* IF *)
 j:=k+2;
 FOR i:=k+1 TO n DO
 LOOP
 nf:=f*(n+i-j) DIV (2*n-j+1);
 IF nf*(2*i-j-1) DIV (n+i-j) <= r THEN EXIT END;
 A[j-d]:=0; j:=j+1; f:=nf;
 END; (* LOOP *)
 A[j-d]:=1;
 IF j<2*i-1 THEN
 r:=(f*(2*i-j) DIV (n-j+i+1)) - 1 - r;
 END; (* IF *)
 f:=f*(n-i+1) DIV (2*n-j+1);
 j:=j+1;
 END; (* FOR *)
 FOR i:=j TO 2*n DO
 A[i-d]:=0;

60

 END; (* FOR *)
END Unrank;

61

BEGIN (* RankTree *)
 WriteString('Generating Dyck-Words by Transpositions.');
WriteLn;
 LOOP
 WriteLn;
 WriteString('Enter number of pairs, 0 to quit: ');
 ReadCard(n);
 IF n=0 THEN
 EXIT
 END; (* IF n *)
 WriteString('Enter length of prefix of 1s, 0 for variable:
');
 ReadCard(k);
 IF (k>n) THEN
 WriteString('The maximum is '); WriteCard(n,1);
WriteLn;
 ELSE
 IF k>0 THEN
 List:=Fixed;
 ELSE (* k=0 *)
 WriteString('Enter 1 to do n=n+1 and k=1, 0 otherwise:
');
 ReadCard(k);
 IF k>0 THEN List:=Special ELSE List:=Variable END;
 END; (* outer IF k *)
 First(n,k,A,Done,LastRight,List);
 WriteLn;
 WHILE NOT Done DO
 FOR i:=1 TO 2*n DO
 WriteCard(A[i],1);
 END; (* FOR *)
 r:=Rank(n,k,A,List);
 WriteCard(r,10);
 Unrank(n,k,r,B,OK,List);
 IF OK THEN
 WriteString(" ");
 FOR i:=1 TO 2*n DO
 WriteCard(B[i],1);
 END; (* FOR *)
 ELSE
 WriteString("Rank too big");
 END; (* IF *)
 WriteLn;
 Next(n,k,A,Done,LastRight,List);
 END; (* WHILE *)
 Unrank(n,k,r+1,B,OK,List);
 IF OK THEN
 WriteString("Out of bounds test NOT
working");WriteLn;
 ELSE

62

 WriteString("Out of bounds test working");WriteLn;
 END; (* IF *)
 END; (* IF k *)
 END; (* LOOP *)
END RankTree.

63

PROCEDURE First(n:CARDINAL; VAR k:CARDINAL;VAR Done: BOOLEAN;
 VAR A,Pos,Dir,Ehr:Dyck; List: ListType);
 (* for loop-free algorithm
*)
VAR i: CARDINAL;
BEGIN
 Done:=FALSE;
 IF List=Variable THEN
 k:=n;
 ELSIF List=Special THEN
 k:=1;
 END; (* IF List *)
 FOR i:=1 TO k DO
 A[i]:=1; Pos[i]:=i;
 END; (* FOR *)
 IF k=n THEN
 FOR i:=n+1 TO 2*n DO
 A[i]:=0;
 END; (* FOR *)
 ELSIF (k>1) OR ((n=2) AND (List=Fixed)) THEN
 A[k+1]:=0; A[k+2]:=1; Pos[k+1]:=k+2;
 FOR i:=k+3 TO 2*k+2 DO A[i]:=0 END; (* FOR *)
 FOR i:=k+2 TO n DO
 A[2*i-1]:=1; A[2*i]:=0; Pos[i]:=2*i-1;
 END; (* FOR *)
 ELSE (* k=1 *)
 IF List=Special THEN
 IF n=1 THEN
 A[2]:=0;
 ELSE
 A[2]:=1; A[3]:=0; A[4]:=0; Pos[2]:=2;
 FOR i:=3 TO n DO
 A[2*i-1]:=1; A[2*i]:=0; Pos[i]:=2*i-1;
 END; (* FOR *)
 END; (* IF n *)
 ELSE
 A[2]:=0;
 IF n=2 THEN
 A[3]:=1; A[4]:=0; Pos[2]:=3;
 ELSIF n>2 THEN
 A[3]:=1; A[4]:=1; A[5]:=0; A[6]:=0; Pos[2]:=3;
Pos[3]:=4;
 FOR i:=4 TO n DO
 A[2*i-1]:=1; A[2*i]:=0; Pos[i]:=2*i-1;
 END; (* FOR *)
 END (* IF n *)
 END; (* IF List *)
 END; (* IF k *)
 FOR i:=1 TO n DO
 IF Pos[i]=2*i-1 THEN Dir[i]:=0 ELSE Dir[i]:=1 END;

64

 Ehr[i]:=i;
 END; (* FOR *)
END First;

65

PROCEDURE Next(n: CARDINAL; VAR k: CARDINAL;VAR Done:
BOOLEAN;
 VAR A,Pos,Dir,Ehr:Dyck; List: ListType);
(* LOOP-FREE SEQUENCING ALGORITHM *)
VAR i,j: CARDINAL;
BEGIN
 j:=Ehr[n]; (* the jth 1 is to be moved *)
 IF ((List=Fixed) AND ((j<=k) OR (j<=2))) OR (j<=1) THEN
 Done:=TRUE; RETURN;
 END; (* IF *)
 Ehr[n]:=n;
 i:=Pos[j]; (* the position of the jth 1 *)
 IF i=2*j-1 THEN (* it must move left *)
 Dir[j]:=0;
 END; (* IF *)
 IF Dir[j]=1 THEN (* jth 1 moves right *)
 A[i]:=0; Pos[j]:=i+1;
 IF j=k THEN (* List=Variable and k drops
*)
 A[i+1]:=1;
 k:=k-1;
 ELSIF j=n THEN (* only one 1 moves *)
 A[i+1]:=1;
 ELSE (* the jth 1 displaces the j+1st 1 which moves too. *)
 IF i+1=2*j-1 THEN (* It moves one space to the right *)
 A[i+2]:=1; Pos[j+1]:=i+2; Dir[j+1]:=1;
 ELSE (* It moves as far right as possible. *)
 A[2*j+1]:=1; Pos[j+1]:=2*j+1; Dir[j+1]:=0;
 END; (* IF i+1 *)
 END; (* IF j *)
 ELSE (* jth 1 moves left *)
 A[i-1]:=1; Pos[j]:=i-1;
 IF j=n THEN (* only one 1 moves *)
 A[i]:=0;
 ELSE (* the j+1st 1 displaces the jth 1 *)
 Pos[j+1]:=i; Dir[j+1]:=1;
 IF i=2*j-1 THEN (* It used to be adjacent to the jth 1 *)
 A[i+1]:=0
 ELSE (* It used to be as far right as possible *)
 A[2*j+1]:=0;
 END; (* IF i *)
 END; (* IF j *)
 END; (* IF Dir[j] *)
 IF (Pos[j]=2*j-1) OR (Pos[j]=Pos[j-1]+1) THEN
 (* the jth 1 can't move further*)
 Ehr[j]:=Ehr[j-1];
 Ehr[j-1]:=j-1;
 END; (* IF *)
END Next;

66

67

BEGIN (* EhrlichTree *)
 WriteString('Generating Dyck-Words by Transpositions.');
 WriteLn;
 LOOP
 WriteLn;
 WriteString('Enter number of pairs, 0 to quit: ');
 ReadCard(n);
 IF n=0 THEN
 EXIT
 END; (* IF n *)
 WriteString('Enter length of prefix of 1s, 0 for variable:
');
 ReadCard(k);
 IF (k>n) THEN
 WriteString('The maximum is '); WriteCard(n,1); WriteLn;
 ELSE
 IF k>0 THEN
 List:=Fixed;
 ELSE (* k=0 *)
 WriteString('Enter 1 to do n=n+1 and k=1, 0 otherwise:
');
 ReadCard(k);
 IF k>0 THEN
 List:=Special;
 ELSE
 List:=Variable;
 END; (* inner IF k *)
 END; (* outer IF k *)
 First(n,k,Done,A,Pos,Dir,Ehr,List);
 WriteLn;
 WHILE NOT Done DO
 FOR i:=1 TO 2*n DO
 WriteCard(A[i],1);
 END; (* FOR *)
 WriteString(" ");
 FOR i:=1 TO n DO
 WriteCard(Pos[i],1);
 END; (* FOR *)
 WriteString(" ");
 FOR i:=1 TO n DO
 WriteCard(Dir[i],1);
 END; (* FOR *)
 WriteString(" ");
 FOR i:=1 TO n DO
 WriteCard(Ehr[i],1);
 END; (* FOR *)
 WriteLn;
 Next(n,k,Done,A,Pos,Dir,Ehr,List);
 END; (* WHILE *)
 END; (* IF k *)

68

 END; (* LOOP *)
END EhrlichTree.

