
Journal of Discrete Algorithms 4 (2006) 633–648

www.elsevier.com/locate/jda

A loop-free two-close Gray-code algorithm for
listing k-ary Dyck words

Vincent Vajnovszki a, Timothy Walsh b,∗

a LE21 FRE-CNRS 2309, Université de Bourgogne, B.P. 47 870, 21078 Dijon-Cedex, France
b Department of Computer Science, University of Quebec At Montreal, P.O. 8888, Station A,

Montreal, Quebec, Canada, H3C 3P8

Available online 30 August 2005

Abstract

P. Chase and F. Ruskey each published a Gray code for length n binary strings with m occurrences
of 1, coding m-combinations of n objects, which is two-close—that is, in passing from one binary
string to its successor a single 1 exchanges positions with a 0 which is either adjacent to the 1 or
separated from it by a single 0. If we impose the restriction that any suffix of a string contains at least
k − 1 times as many 0’s as 1’s, we obtain k-suffixes: suffixes of k-ary Dyck words. Combinations
are retrieved as special case by setting k = 1 and k-ary Dyck words are retrieved as a special case by
imposing the additional condition that the entire string has exactly k − 1 times as many 0’s as 1’s.
We generalize Ruskey’s Gray code to the first two-close Gray code for k-suffixes and we provide
a loop-free implementation for k � 2. For k = 1 we use a simplified version of Chase’s loop-free
algorithm for generating his two-close Gray code for combinations. These results are optimal in the
sense that there does not always exist a Gray code, either for combinations or Dyck words, in which
the 1 and the 0 that exchange positions are adjacent.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Gray code; k-ary Dyck words; Two-close; Loop-free algorithm

* Corresponding author. Tel.: +1 (514) 987-3000, extension 6139; fax: +1 (514) 987-8477.
E-mail addresses: vvajnov@u-bourgogne.fr (V. Vajnovszki), walsh.timothy@uqam.ca (T. Walsh).
1570-8667/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2005.07.003

http://www.elsevier.com/locate/jda
mailto:vvajnov@u-bourgogne.fr
mailto:walsh.timothy@uqam.ca
http://dx.doi.org/10.1016/j.jda.2005.07.003


634 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
1. Introduction

Combinatorial objects such as subsets of the n-set {1,2, . . . , n}, m-combinations (sub-
sets of cardinality m) of the n-set, permutations of the n-set, binary trees and the more
general k-ary trees (rooted trees of which every node has either k children or none) can
be coded by words on a finite alphabet. To study various properties of these combinatorial
objects one can generate a list of code-words of a fixed length, representing the objects
of a fixed size, and test them all for these properties. The smaller the difference between
consecutive code-words in the list, the less time it takes to generate each new word and to
update the properties being studied in passing from one object to the next. It is therefore
useful to put the set of code-words of fixed length into an order that minimizes the greatest
difference between two consecutive code-words.

We call a family of word lists in which all the words in each list are of the same length a
Gray code if the family contains arbitrarily long words but the number of positions in which
two consecutive words in any list differ is bounded independently of the word length. An
algorithm for generating a Gray code is called loop-free [5] if the number of operations
necessary to transform each word into its successor in its list, or to determine that the
current word is the last one in its list, is bounded independently of the word length.

A binary string is a word on the alphabet {0,1}. The binary reflected Gray code, pub-
lished by F. Gray [6], is a family of lists, one for each n, of length n binary strings in
which consecutive strings in any list differ by only one letter. J.R. Bitner, G. Ehrlich and
E.M. Reingold [1] used an auxiliary array to obtain a loop-free algorithm for implementing
this Gray code.

An m-combination of the n-set can be coded by a binary string w with m 1’s and n−m

0’s. Alternatively, we can use the length m array whose ith component is the position in w

of the ith occurrence of 1 in w. We call this representation the 1-vector of w and we define
the 0-vector analogously; we extend these definitions to lists of binary strings. A Gray
code for combinations is called minimal if each binary string can be transformed into its
successor by exchanging a single 1 with a 0. There are several minimal Gray codes in the
literature for combinations. The simplest of these Gray codes [10] is called the Liu–Tang
Gray code after its authors C.N. Liu and D.T. Tang; in the 1-vector (list) of this Gray code,
at most two letters change from one 1-vector to the next. A loop-free implementation of
this Gray code was obtained by T.R. Walsh [22] and possibly other researchers as well.
Another Gray code for combinations was discovered and given a loop-free implementation
by Ehrlich [5].

A minimal Gray code for combinations is called homogeneous if the 1 and the 0 that
exchange positions are separated only by 0’s, implying that in the 1-vector only a single
letter changes value from one 1-vector to the next. Such a Gray code was discovered by
P. Eades and B. McKay [4]; a non-recursive description and a loop-free implementation of
this Gray code appear in [21].

A homogeneous Gray code for combinations is called two-close if the 1 and the 0 that
exchange positions are either adjacent or separated by a single 0, implying that in the
1-vector the letter that changes value does so by at most 2. Such a Gray code is optimal in
the sense that for some values of m and n there does not exist a Gray code in which the 1
and 0 that exchange positions are always adjacent [14]. A two-close Gray code for com-



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 635
Liu–Tang Eades–McKay Chase Ruskey

111000 123 111000 123 000111 456 123 001110 345
101100 134 110100 124 010011 256 134 100110 145
011100 234 101100 134 100011 156 234 010110 245
110100 124 011100 234 001011 356 124 011010 235
100110 145 011010 235 001101 346 125 101010 135
010110 245 101010 135 010101 246 135 110010 125
001110 345 110010 125 100101 146 235 111000 123
101010 135 100110 145 110001 126 345 110100 124
011010 235 010110 245 101001 136 245 101100 134
110010 125 001110 345 011001 236 145 011100 234
100011 156 001101 346 011100 234 156 011001 236
010011 256 100101 146 101100 134 256 101001 136
001011 356 010101 246 110100 124 356 110001 126
000111 456 011001 236 111000 123 456 100101 146
100101 146 101001 136 110010 125 346 010101 246
010101 246 110001 126 101010 135 246 001101 346
001101 346 100011 156 011010 235 146 001011 356
101001 136 010011 256 010110 245 136 100011 156
011001 236 001011 356 100110 145 236 010011 256
110001 126 000111 456 001110 345 126 000111 456

Fig. 1. The Liu–Tang, Eades–McKay, Chase and Ruskey Gray codes for 3-combinations of {1,2,3,4,5,6} in
binary string and 1-vector form (and 0-vector form for Chase).

binations was discovered by P. Chase [3], who gave an obscure non-recursive description
of its 1-vector and a FORTRAN program of a loop-free implementation of its 0-vector.
F. Ruskey [15] then published a recursive description of another two-close Gray code for
combinations, which is one of a family of Gray codes later published by T.A. Jenkyns and
D. McCarthy [7].

In Fig. 1 we show the 3-combinations of {1,2,3,4,5,6} in binary string form and in
1-vector form as ordered by the Liu–Tang, Eades–McKay, Chase and Ruskey Gray codes;
for the Chase Gray code the 0-vector is also shown.

A Dyck word is a binary string with the same number of 1’s and 0’s where any suffix has
at least as many 0’s as 1’s. Dyck words code a wide variety of combinatorial objects includ-
ing binary trees [24]. The terms minimal, homogeneous and 2-close will mean the same
thing for Dyck words and their generalizations as they do for combinations. A minimal
Gray code for Dyck words was published by Ruskey and A. Proskurowski [16]; a non-
recursive description and a loop-free implementation of this Gray code appears in [20].
A homogeneous Gray code for Dyck words was discovered by B. Bultena and Ruskey [2].

A binary string with exactly k − 1 times as many 0’s as 1’s, where any suffix has at
least k − 1 times as many 0’s as 1’s, is a generalization of a Dyck word because when
k = 2 we retrieve the definition of a Dyck word. An example of a Dyck word with k = 2
is 101100; an example of a generalized Dyck word with k = 3 is 100100. A bijection
between these generalized Dyck words and k-ary trees was presented by J. Zaks [24] and
used by D. Roelants van Baronaigien [12], who called such a binary string a bit sequence
representation for a k-ary tree; we call it a k-ary Dyck word. Ruskey generated k-ary trees



636 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
lexicographically [13]; Roelants van Baronaigien [12] obtained a loop-free implementation
of a homogeneous Gray code for k-ary Dyck words.

If the condition that a binary string has exactly k −1 times as many 0’s as 1’s is dropped
from the definition of a k-ary Dyck word, then the string is a suffix of a k-ary Dyck word;
we call such a string a k-suffix. When k = 1, a k-suffix is an unrestricted binary string.
Thus, k-suffixes with m 1’s and n � (k − 1)m 0’s generalize both m-combinations of the
(m + n)-set and k-ary Dyck words with m 1’s and n = (k − 1)m 0’s: the combinations are
retrieved by setting k = 1 and the k-ary Dyck words by setting n = (k − 1)m.

Until further notice, n will be the total number of 1’s and 0’s when we are referring
to combinations and the number of 0’s alone when we are referring to k-ary Dyck words
for k � 2.

In this article we generalize Ruskey’s two-close Gray code for combinations [15]
(slightly modified to reverse all the strings) to obtain the first two-close Gray code for
k-suffixes with m 1’s and n � (k − 1)m 0’s and, as a special case, k-ary Dyck words with
m 1’s and n = (k − 1)m 0’s. This Gray code too is optimal in the sense that for some val-
ues of m and n there does not exist a Gray code for Dyck words in which the 1 and 0 that
exchange positions are always adjacent [16]. In Section 2 we give a recursive description
and then a non-recursive description of our Gray code, and in Section 3 we give a loop-
free implementation of our Gray code when k � 2. In Section 4 we briefly discuss how we
handled the case when k = 1. The rest of this section contains an enumeration formula for
k-suffixes with m 1’s and n � m(k − 1) 0’s.

In [13] there is a formula, a proof of which appears in [8] and other places, for the
number of k-ary trees coded by k-ary Dyck words with m 1’s and (k − 1)m 0’s:

(1)

(
km

m − 1

)/
m

We provide an alternate proof of (1) in a form that enables us to deduce that the number of
k-suffixes with m 1’s and n � (k − 1)m 0’s is

(2)

(
n + m

m

)
− (k − 1)

(
n + m

m − 1

)
.

The approach we use is a standard one in combinatorial enumeration: we uniquely de-
compose an object of the type we want to enumerate into smaller objects of the same type
or a type we have already enumerated, use the decomposition to find an equation satis-
fied by the generating function that counts the objects we want to enumerate, and then use
Lagrange inversion to extract the coefficients of the generating function.

The general formula for Lagrange inversion is as follows. Let y(x) be a power series in
x that satisfies the following equation (in which we abbreviate y(x) to y):

(3)y = a + xg(y),

where g(y) is a power series in y. Then for any other power series f (y),

(4)f (y) = f (a) +
∞∑

n=1

xn

n! ∗ dn−1

dyn−1

(
d(f (y))

dy

(
g(y)

)n
)∣∣∣∣

y=a

.



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 637
An analytical proof of this formula is given in [23]; a combinatorial proof appears in [9].
Rather than differentiating n−1 times, we could instead make a change of variables, setting
y = z + a so that the derivatives in (4) are evaluated at z = 0. The (n − 1)st derivative of
a power series in z evaluated at z = 0 is just (n − 1)! times the coefficient of zn−1 in that
power series. Thus (3) becomes

(5)z = xg(z + a)

and (4) becomes

f (z + a) = f (a) +
∞∑

n=1

xn

n
∗ the coefficient of zn−1

(6)in

(
d

dz

(
f (z + a)

))(
g(z + a)

)n
.

A non-empty k-ary Dyck word can be uniquely decomposed as 1S10S20S30 . . .0Sk ,
where each Si, i = k, k − 1, . . . ,2, is the longest suffix (possibly empty) of 1S10S20S30 . . .

0Si which is itself a k-ary Dyck word (S1 is therefore also a k-ary Dyck word). It follows
that if y(x) is the generating function where the coefficient of xm is the number of k-ary
Dyck words with m 1’s, then

(7)y = 1 + xyk.

Setting y = z + 1 in (7), we obtain

(8)z = x(z + 1)k.

Eq. (8) is of the form of (5) with a = 1 and g(z + 1) = (z + 1)k ; also, we set f (z + a) =
y(x) = z + 1. Substituting these values into (6), we see that the coefficient of xm in the
generating function y(x) = z+ 1 is equal to the coefficient of zm−1 in (z+ 1)km/m, which
is given by (1).

A k-suffix with m 1’s and (k − 1)m + j 0’s can be uniquely decomposed as
S10S20S30 . . .0Sj+1, where each Si is the longest suffix (possibly empty) of S10S20S30 . . .

0Si which is a k-ary Dyck word. It follows that the generating function in which the coeffi-
cient of xm is the number of k-suffixes with m 1’s and (k−1)m+j 0’s is (y(x))j+1, where
y is defined by (7). Again, we set y = z+ 1 and obtain (8), which is of the form of (5) with
a = 1 and g(z + 1) = (z + 1)k , but this time we set f (z + a) = (y(x))j+1 = (z + 1)j+1.
Substituting these values into (6), we see that the coefficient of xm in the generating func-
tion (y(x))j+1 = (z + 1)j+1 is equal to the coefficient of zm−1 in (j + 1)(z + 1)j+kn/m,
which is equal to

j + 1

1

(
j + km

m − 1

)
.

Setting j = n − (k − 1)m and simplifying, we obtain (2).



638 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
2. A two-close Gray code for k-suffixes

In this section we present an alternative recursive description for Ruskey’s two-close
Gray code [15] for combinations represented by strings of m 1’s and n − m 0’s. Then
we modify it by reversing left to right all the binary strings and we generalize it from
m-combinations of the (n + m)-set (represented by unrestricted binary strings, or 1-
suffixes, with m 1’s and n 0’s) to k-suffixes with m 1’s and n � (k − 1)m 0’s. We give
a recursive description of our Gray code and show that it is two-close, and then we give a
non-recursive description.

We use the following notation. For each integer m � 0, the expression 0m means m

consecutive 0’s with an analogous meaning for 1m. The list obtained by appending the
letter 1 at the end of each binary string in the list L is denoted by L1 with an analogous
notation for 0 and for either letter preceding each binary string in the list L. The list L

reversed (read from the last binary string to the first one) is denoted by LR . The list L

followed by the list M is denoted by L,M .
Ruskey’s recursive description of his Gray code uses two lists, L(n,m,1) and

L(n,m,0):

(9)L(n,m,p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0n if m = 0,

1n−10,L(n − 1,m − 1,1)1 if p = 1 and m = n − 1,

LR(n − 1,m,1)0,L(n − 1,m − 1,0)1 if p = 1 and

0 < m < n − 1,

L(n − 1,m,1)0,L(n − 1,m − 1,1)1 if p = 0 and

0 < m < n − 1.

We modify it so that only one list is needed. Let L(n,m) = L(n,m,1) if m < n and
L(n,n) = 1n, so that L(n,m) contains all the binary strings with m 1’s and n − m 0’s.
Eliminating L(n,m,0) from (9) we obtain the following recursive description for L(n,m):

L(n,n) = 1n,

L(n,0) = 0n,

L(n,n − 1) = 1n−10,L(n − 1, n − 2)1 (= 1n−10,1n−201, . . . ,01n−1),

L(n,1) = LR(n − 1,1)0,0n−11,

L(n,m) = LR(n − 1,m)0,L(n − 2,m − 1)01,L(n − 2,m − 2)11

(10)if 1 < m < n − 1.

The first binary string in L(n,m) is 0n−m−11m0 when n > m and the last one is always
0n−m1m.

We modify Ruskey’s Gray code as defined by (10) by reversing left-to-right all the bi-
nary strings and letting n be the number of 0’s and then we generalize it from combinations
(1-suffixes) to k-suffixes. Let Lk(n,m) be the list defined by formula (11):

Lk(n,0) = 0n,

Lk(n,m > 0) = 1Lk
R(n,m − 1) if n = m(k − 1),



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 639
Lk(n,1) =
{

0Lk(n − 1,1),10n if n = k,

0Lk
R(n − 1,1)10n if n > k,

Lk(n,m > 1)

(11)

=
{

0Lk(n − 1,m),10Lk(n − 1,m − 1),11Lk(n,m − 2) if n = m(k − 1) + 1,

0Lk
R(n − 1,m),10Lk(n − 1,m − 1),11Lk(n,m − 2) if n > m(k − 1) + 1.

It can easily be shown by induction on n + m that each binary string in Lk(n,m) is a
k-suffix with m 1’s and n � m(k−1) 0’s. The observation that follows formula (13) implies
that Lk(n,m) exhaustively lists those suffixes. When k = 1, by reversing left-to-right all
the binary strings in (11) one obtains a version of (10) that defines m-combinations of the
(n + m)-set.

A Java applet generating the list Lk(n,m) is available on the web site of the first au-
thor [18].

In what follows we will be referring to the lines of (11) according to the positions
of the right-hand sides of (11). For example, line 4 of (11) is the equation “Lk(n,1) =
0Lk

R(n − 1,1),10n if n > k”.

Theorem 1. Eqs. (11) define Lk(n,m) uniquely (that is, unambiguously).

Proof. We observe that (11) is a well-defined recursive definition. If m = 0, we apply
line 1, the set of base cases. Suppose that m > 0. The case where n = m(k − 1) is covered
by line 2. The case where n = m(k − 1) + 1 is covered by line 3 (where m = 1) and line 5
(where m > 1). The case where n > m(k − 1) + 1 is covered by line 4 (where m = 1) and
line 6 (where m > 1). Since n � m(k − 1), all the cases are covered, each one by a single
line. Moreover, in each of the cases where m > 0, at least one of the parameters (m or n) is
reduced by at least 1 and the other one is not increased, so that eventually either m drops
to 0 (a base case) or n drops to m(k − 1). In the latter case, m is reduced (line 2), so that
the recursion eventually stops at some base case. �
Theorem 2. If n = m(k − 1), then the first binary string in Lk(n,m) is 1m0n and the last
one is 101m−10n−1 (unless n = 0 so that k = 1 or m = 0, in which case the list consists of
the single binary string 1m). If n > m(k − 1), then the first binary string is 01m0n−1 and
the last one is 1m0n.

Proof. We proceed by induction on the total string length n + m. If n + m = 0, then by
line 1 of (11) the list consists of the empty binary string, in agreement with the theorem.

Now we suppose that n+m > 0 and that the theorem holds for all lists of binary strings
of length less than n + m so that, in particular, it holds for all the sublists in (11) (minus
the prefixes).

If m = 0, then n > m(k − 1), so that the first binary string and the last one should both
be 0n, in agreement with first line of (11). Suppose that m > 0 and n = m(k − 1). If k = 1,
then n = 0. The second line of (11) implies that L1(0,m) = 1m, in agreement with the
theorem. If k > 1, then n > (m − 1)(k − 1); so by the induction hypothesis the first binary
string of Lk(n,m−1) is 01m−10n−1 and the last one is 1m−10n. By the second line of (11),



640 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
the first binary string of Lk(n,m) is 1m0n and the last one is 101m−10n−1, in agreement
with the theorem.

Now suppose that n > m(k − 1). If n = m(k − 1) + 1, then n − 1 = m(k − 1), so that
the first binary string in Lk(n − 1,m) is 1m0n−1, and if n > m(k − 1) + 1, then n − 1 >

m(k − 1), so that the first binary string in Lk
R(n − 1,m) is also 1m0n−1, and in either

case, by lines 4 and 6 of (11) the first binary string of Lk(n,m) is 01m0n−1, in agreement
with the theorem. If m = 1, then by lines 3 and 4 of (11) the last binary string is 10n, in
agreement with the theorem. If m > 1, then n > (m − 2)(k − 1), so that the last binary
string of Lk(n,m − 2) is 1m−20n; thus by lines 5 and 6 of (11) the last binary string of
Lk(n,m) is 1m0n, in agreement with the theorem. This completes the proof. �
Theorem 3. The list defined by (11) is a two-close Gray code.

Proof. Again we use induction on the string length, anchored by the trivial case where the
string length is 0. By the induction hypothesis, all the sublists in the right sides of (11) are
two-close Gray codes; so it suffices to show that this condition is satisfied by the transition
from one binary string to the next across the commas. Lines 1 and 2 have no transitions
and the transition of lines 3 and 4 are special cases of the first transition of lines 5 and 6,
respectively, when m = 1. If k > 1, then by Theorem 2 the first transition of line 5 is
0101m−10n−2,1001m−10n−2, the first transition of line 6 is 001m0n−2,1001m−10n−2 and
the second transition of both lines 5 and 6 is 101m−10n−1,1101m−20n−1. If k = 1, then
by Theorem 2 the first transition of line 5 is 01m,101m−1, the second transition of line 5
is 101m−1,1101m−2, and the transitions of line 6 are the same as if k > 1. In all these
transitions a single 1 exchanges positions with a 0 which is either adjacent to the 1 or
separated from it by a single 0. This completes the proof. �

In the rest of this section we give a detailed non-recursive description of the Gray code
defined by (11), using a general method from [21] and [22] that we summarize in the next
three paragraphs.

A list of words is called prefix-partitioned if all the words in the list with the same
prefix form an interval of contiguous words in the list; suffix-partitioned word lists
are defined analogously. In each interval of words (c[1], . . . , c[m]) in which the prefix
(c[1], . . . , c[i −1]) or the suffix (c[i +1], . . . , c[m]) is constant, the letter c[i] runs through
a sequence of distinct values defined by the prefix or suffix. This property generalizes
graylex order as defined in [3], in which the letters are numbers and the sequence of values
assumed by each number is required to be monotone, and graylex order in turn generalizes
lexicographical order, in which the sequence is required to be increasing. Most of the Gray
codes in the literature are either prefix- or suffix-partitioned or else can be transformed into
such lists; position vectors, 0- and 1-vectors, P -suites [11] and shuffles [17] are among the
transformations that can be used.

All the Gray codes in Fig. 1 are suffix-partitioned, but of these only the Liu–Tang
Gray code is graylex, and we use that one to illustrate how the sequence of distinct
values assumed by each letter constitutes a non-recursive description of a prefix- or
suffix-partitioned list. The following description of that Gray code in 1-vector form ap-
pears in [3]: the last letter c[m] of the word (c[1], . . . , c[m]) runs through the sequence



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 641
of distinct values m,m + 1, . . . , n, and in each interval of words in which the suffix
(c[i + 1], . . . , c[m]) is constant, the ith letter c[i] runs through the sequence of distinct
values i, i + 1, . . . , c[i − 1]− 1 if m− i is even or c[i + 1]− 1, . . . , i + 1, i if m− i is odd.

To get the first word in the list, we set c[m] to its first value in the sequence for c[m],
which is m; then, for each i from m− 1 down to 1 we set c[i] to the only value it can have,
which is i. To get the last word in the list, we set c[m] to its last value, which is n, and
(if m � 2) we set c[m−1] to its last value, which is m−1; then, for each i from m−2 down
to 1 we set c[i] to the only value it can have, which is 1. To get the successor to the word
(c[1], . . . , c[m]), we find the smallest i such that c[i] is not at its last value in the sequence
defined by the suffix (c[i + 1], . . . , c[m]), change it to its next value in that sequence; then,
for each j from i − 1 down to 1, we set c[j ] to the first value in the sequence determined
by the suffix (c[j + 1], . . . , c[m]). For example, let n = 6,m = 3, c[1] = 1, c[2] = 2 and
c[3] = 4. The sequence for c[1] is (1); so c[1] is at its last value. The sequence for c[2] is
(3,2); so c[2] is also at its last value. The sequence for c[3] is (4,5,6); so c[3] is not at its
last value and we set c[3] to its next value after 4, which is 5. The sequence for c[2] is now
(4,3,2); so we set c[2] to its first value, which is 4. The sequence for c[1] is now (1,2,3)

and c[1] is already at its first value of 1; so we do not change it.
Our generalization of Ruskey’s Gray code, its 1-vector and its 0-vector are all prefix-

partitioned: this assertion follows from the observation that only prefixes are appended
to the lists on the right side of (11) and that in each line the appended prefixes are all
distinct and none of them is a prefix of another. We opt for the 1-vector for reasons that are
explained in [19].

Let (c[1], . . . , c[m]) be the 1-vector of a binary string with m 1’s and n � m(k − 1) 0’s.
In what follows, the prefix of c[i] will mean the prefix (c[1], . . . , c[i − 1]). A necessary
condition for (11) to list k-suffixes is that for each i,1 � i � m, the farthest right the ith
last 1 can move is to the kith last position in the string, so that the maximum value that c[i]
can attain in an interval of 1-vectors in which its prefix is fixed is given by

(12)max(i) = n + m + 1 − k(m − i + 1).

Since the Dyck word condition on suffixes permits 1’s to go arbitrarily far to the left, the
minimum value of c[i] in the same interval of 1-vectors is (trivially):

(13)min(i) = 1 if i = 1 and c[i − 1] + 1 otherwise.

The non-recursive description given by Theorem 4 includes the assertion that, in an interval
of 1-vectors with the prefix of c[i] fixed, c[i] attains every value from min(i) to max(i), so
that (11) does in fact generate all the k-suffixes with m 1’s and n � m(k − 1) 0’s.

We call a sequence of numbers that consists of all the integers from min(i) to max(i)
even-rising if, aside from min(i), which is either its first or its last number, it rises through
consecutive even numbers and then falls through consecutive odd numbers, with max(i)
being part of the rising sequence if it is even or the falling sequence if it is odd. An anal-
ogous definition is given for an odd-rising sequence. An even- or odd-rising sequence is
completely determined by min(i), max(i) and its first and last numbers. If the first num-
ber is min(i), then the last number is either min(i) + 1 or min(i) + 2, and we say that the
sequence is of form 1,2 or 1,3, respectively. Similarly, if the last number is min(i), then



642 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
Table 1
The possible forms of even-rising and odd-rising sequences

Form Even-rising Odd-rising

1,2 2,4,6,7,5,3 and 2,4,6,5,3 1,3,5,6,4,2 and 1,3,5,7,6,4,2
1,3 1,2,4,6,7,5,3 and 1,2,4,6,5,3 2,3,5,6,4 and 2,3,5,7,6,4
2,1 2,4,6,7,5,3,1 and 2,4,6,5,3,1 3,5,6,4,2 and 3,5,7,6,4,2
3,1 4,6,7,5,3,2 and 4,6,5,3,2 3,5,6,4,2,1 and 3,5,7,6,4,2,1

the first number is either min(i) + 1 or min(i) + 2, and we say that the form is 2,1 or 3,1,
respectively. These forms are illustrated in Table 1.

In [20] a 1 in a Dyck word is called a liberal if it is not in its rightmost position. Here
we call a 1 a tory if it is in its rightmost position and is not the first symbol of the binary
string, and we give the same name to a c[i] in the 1-vector which is equal to max(i) and is
greater than 1.

Theorem 4. Let (c[1], . . . , c[m]) be the 1-vector of a word in the list Lk(n,m) defined
by (11).

Assertion 1. The sequence of distinct values assumed by c[i] in the interval of 1-vectors
in which its prefix is fixed attains all the values from min(i) to max(i) and only those values.

Assertion 2. It is even-rising if the prefix of c[i] contains an even number of tories and
odd-rising otherwise.

Assertion 3. If n = m(k − 1), then c[1] is fixed at 1; otherwise c[1] is of form 2,1.
Assertion 4. For each i > 1 the form of c[i] depends on c[i − 1] as follows.
Assertion 4.1. If c[i − 1] = max(i − 1) and k = 1, then c[i] stays at c[i − 1] + 1 =

max(i).
Assertion 4.2. Suppose that c[i − 1] = max(i − 1) and k > 1. If c[i − 1] is going to fall

by 1, then the form is 1,2; otherwise (i.e., if it has just risen by 1) the form is 2,1.
Assertion 4.3. Suppose that c[i − 1] is rising and is not max(i − 1). If c[i − 1] is going

to rise by 1 and (either k = 1 or c[i] will not rise to max(i − 1)), then the form of c[i]
is 1,2; otherwise the form is 1,3.

Assertion 4.4. Suppose that c[i − 1] is falling and is not max(i − 1). If c[i − 1] has just
fallen by 1 and (either k = 1 or c[i] did not fall from max(i − 1)), then the form of c[i] is
2,1; otherwise the form is 3,1.

Proof. We first show that min(i) and max(i) are the actual minimum and maximum value
that c[i] can attain. No c[i] can go lower than min(i) because 1 � c[1] < c[2] < · · · ; the
assertion that this minimum can be attained can be proved by induction on the string length
using the observation that each line of (11) contains either a prefix or a single binary string
beginning with 1. The assertion that max(i) is the actual maximum value of c[i] can also be
proved by induction. Putting prefixes in front all the binary strings in a list does not affect
how far right a 1 can go; so the inductive hypothesis implies that all the 1’s in the sublists
of (11) that are not part of the prefixes go as far right as the theorem says they should and
no farther. Lines 3 through 6 of (11) each have a prefix 0 in the first sublist, allowing even
the first and second 1 to reach their rightmost positions as part of shorter binary strings.
And in line 2, where the first 1 is constrained to be in position 1, max(1) = 1.



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 643
Assertion 2 of the theorem—that c[i] is even-rising if the prefix contains an even num-
ber of tories and odd-rising otherwise—also follows by induction. It is trivial for Lk(0,0);
the inductive hypothesis implies that it is true for all the sublists minus their prefixes.
Putting an odd-length prefix in front of all the binary strings in a list changes the parity of
all the numbers in the 1-vector; this cancels the list-reversal everywhere except in the first
sublists of lines 3 and 5. But in that case (and line 3 is a special case of line 5 with m = 1),
n − 1 = m(k − 1), so that by substituting from line 2 we find that there is both a prefix
01 and a list-reversal. When n = m(k − 1) + 1, then max(1) = 2, so that the list-reversal
cancels the effect of putting a c[1] = max(1) to the left of all the other c[i]. This shows that
all the c[i] except possibly those that are part of the prefixes appended to the lists of binary
strings in (11) behave properly. Furthermore, c[1] and c[2] also behave properly until they
become part of the prefixes in (11), at which point c[1] drops to 1 and c[2] drops to 2, and
these final values, being their respective minima, affect only the form. This completes the
proof of assertion 2. Even- and odd-rising sequences both attain all the values from their
minimum to their maximum; so assertion 1 holds as well.

Finally we prove the assertions about the form, beginning with assertion 3 about the
form of c[1].

If n = m(k − 1), then from line 2 we know that c[1] stays at 1. Otherwise, since it is
even-rising and ends at its minimum value 1, it must be of the form 2,1 as asserted in the
theorem.

We prove assertion 4 by examining all the cases covered by the sub-assertions 4.1
through 4.4.

Suppose that c[i − 1] = max(i − 1).
If k = 1, then max(i) = min(i); so c[i] stays at that value, in accord with assertion 4.1.
We now prove assertion 4.2, which deals with the case where k > 1.
Suppose that c[i − 1] is going to fall by 1. Then either it just rose by 2 or else can

assume only two values: max(i − 1) followed by max(i − 1) − 1.
Suppose it just rose by 2. Then c[i] must start at c[i − 1]+ 1. If it ended at c[i − 1]+ 3,

then it would have to hit c[i−1]+2 on the rise. But c[i] is even-rising if and only if c[i−1]
is odd-rising; so c[i − 1]+ 2 is of the wrong parity to be part of the rising sequence of c[i].
Thus, c[i] must end at c[i − 1] + 2, and the form is 1,2 as asserted.

Suppose that c[i−1] can assume only the sequence of values max(i−1), max(i−1)−1.
Then k must be 2, so that c[i] can also assume only the two values c[i − 1] + 1 and c[i −
1] + 2. Consider the sublist S of binary strings consisting of just those for which c[i − 1]
of the corresponding 1-vector follows the sequence of values max(i − 1), max(i − 1) − 1,
and then consider the list T of suffixes of S beginning one letter to the left of the i − 1st 1.
By successively applying (11) we eventually find either T or T R . Since c[i] = max(i), all
the suffixes in T have exactly one more 0 than 1 (m − i + 3 0’s and m − i + 2 1’s); so T or
T R is generated by line 5 of (11):

L2(m − i + 3,m − i + 2)

= 0L2(m − i + 2,m − i + 2),10L2(m − i + 2,m − i + 1),

11L2(m − i + 3,m − i).



644 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
In this list, the first 1 moves left and the corresponding number c[i − 1] in the 1-vector
falls; so L2(m − i + 3,m − i + 2) = T and not T R . The sublist of T in which c[i − 1] =
max(i) is 0L2(m − i + 2,m − i + 2). From Theorem 2 the first binary string in this list is
01m−i+20m−i+2 and the last one is 0101m−i+10m−i+1. The second 1 starts adjacent to the
first 1 and ends up separated from it by a single 0; so c[i] follows a sequence of form 1,2
as asserted.

If instead c[i − 1] just rose by 1, then by the same argument applied to the reversed
sequence we can show that c[i] follows a sequence of form 2,1, proving assertion 4.2.

We now prove assertion 4.3. Suppose that c[i − 1] is rising. Then c[i] cannot end at
c[i − 1] + 1, or even at c[i − 1] + 2 if c[i − 1] is going to rise by 2, or else, when c[i − 1]
does rise, it will bump into or pass c[i], forcing c[i] to rise at the same time, contradicting
homogeneity; so c[i] must start at c[i − 1] + 1 and end at c[i − 1] + 3 if c[i − 1] is going
to rise by 2. The form of the sequence is thus 1,3 as asserted. If c[i] is going to rise by 1 to
max(i) and k > 1, then since the form is going to be 2,1, c[i] must now rise to c[i − 1]+ 3
and the form is 1,3; if k = 1 then max(i) = c[i − 1] + 2, so the form is 1,2. Suppose that
c[i − 1] is going to rise by 1 but not to max(i − 1). It will rise to c[i − 1] + 1 and then
rise again; so c[i] must end at c[i − 1] + 2 so that it will start there when c[i − 1] is at
c[i − 1] + 1, allowing c[i − 1] to rise again. The form is thus 1,2 as asserted.

If c[i − 1] is falling, the arguments used in the case when it was rising can be applied to
the reversed sequence to prove assertion 4.4.

All the cases having been exhausted, the proof is complete. �

3. A loop-free implementation when k ��� 2

In this section we obtain a loop-free implementation of the Gray code defined by for-
mula (11) using a general method from [21] and [22] that we summarize below.

In a Gray code the number of letters that have to be changed in transforming a word into
its successor is bounded above by a constant, but before these letters can be changed they
must first be located. In a prefix-partitioned list, the leftmost letter that has to be changed is
the rightmost letter c[p] that is not at its last value in the sequence determined by its prefix
(c[1], . . . , c[p − 1]); we call its position p the pivot. In [1] an auxiliary array was used
to locate the pivot in the binary reflected Gray code [6] in constant time. In [21] and [22]
we gave a general description of this array and showed that it finds the pivot in constant
time for any strictly prefix- or suffix-partitioned list—that is, one where each sequence of
distinct values assumed by a letter has at least two values, so that the first value is never
also the last one—and we summarize these results below.

For a strictly prefix-partitioned list of length m words, the auxiliary array, which we
call the e-array after its inventor Ehrlich, is of the form (e[0], e[1], . . . , e[m]). This array
serves to keep track of the left and right endpoints of the maximal (by inclusion) subwords
(c[j + 1], . . . , c[i]) each of whose letters is in its last position; we call such a subword a
z-subword. For each i, e[i] = i unless c[i] is the rightmost letter of a z-subword (c[j +
1], . . . , c[i]), in which case e[i] = j . For the first word, none of the letters is at its last
value because the list is strictly partitioned; so e[i] is initialized to i for each i. For any
word, we first set p to e[m]. If p = 0, then all the letters are at their last value; so the



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 645
current word is the last one. If p > 0, then g[p] is not at its last value but all the letters to
its right are at their last values; so p is the pivot. We first update the word and then update
the e-array as follows. Since c[m] will be set to its first value unless m was the pivot, we
set e[m] to m. Then, if after the update g[p] is now at its last value as determined by the
prefix (c[1], . . . , c[p − 1]), it is now the rightmost letter of a z-subword which extends a
z-subword that used to end in c[p − 1] if there was one; so we set e[p] to e[p − 1] and
then set e[p − 1] to p − 1. A case-by-case proof that this update preserves the description
of the e-array appears in [21].

When k � 2 the list of k-suffix 1-vectors is strictly prefix-partitioned (except that if
n = m(k − 1), then c[1] is always 1 and can be ignored); so the e-array of [1] enables the
pivot to be found in constant time. If i is the pivot, we need to know whether c[i] is rising
or falling and whether the value to which we change it is its last value; a second array s

does these duties and can also be updated in constant time. We also need a third auxiliary
array p which determines if c[i] has an even or odd number of tories to its left. When c[i]
reaches or leaves its maximum value, all the elements of p to the right of p[i] would have
to be changed, which could not be done in constant time if we insisted that all the p[i] be
correct even when they are not being used. Instead, we evaluate each p[i] when i is the
pivot and c[i] is at its first value. We keep a variable Odd which is 1 if the whole 1-vector
c contains an odd number of tories and 0 otherwise. Then p[i] is set to Odd if and only if
there are an even number of tories in the rest of c, and the following theorem shows that
only one letter to the right of c[i] has to be checked.

Theorem 5. Let i be the pivot. If k > 2, then there are no tories to the right of c[i]. If k = 2,
then the only letter to the right of c[i] that can be a tory is c[i + 1].

Proof. Since i is the pivot, all the letters to the right of c[i] are at their last values; so we
consider the conditions under which the last value in a sequence, which we call last(j),
can also be the maximum value max(j).

For each j > 1, the number of values that c[j ] can assume is equal to max(j − 1) −
c[j − 1] + k. If k � 3, then the only way for last(j) to be equal to max(j) is if c[j − 1] =
max(j − 1) and c[j ]’s sequence is of the form 1,3. But from Theorem 4 we see that the
form is 1,3 only when c[j − 1] is rising and not when it is equal to max(j − 1). Therefore,
if k � 3, then there are no tories to the right of c[i].

Now suppose that k = 2. Now there are two possibilities for c[j ] to be a tory: c[j −
1] = max(j) − 1 and c[j ]’s sequence is of form 1,3 or c[j − 1] = max(j − 1) and c[j ]’s
sequence is of form 1,2.

Suppose that c[i] = max(i). By Theorem 4, c[i + 1]’s sequence is of form 1,2 if and
only if c[i] is going to fall by 1. In this case, c[i + 1] is now a tory. But since it can only
assume two values, it has just risen by 1; so, by Theorem 4, c[i + 2]’s sequence is of form
2,1 and c[i + 2] is not a tory. Whenever any c[j − 1] is falling, c[j ]’s sequence is either
of form 2,1 or 3,1, so that if c[j ] is at its last value, then it is falling too. It follows that
none of the letters to the right of c[i + 1] can be tories.

Suppose that c[i] = max(i) − 1 and c[i + 1]’s sequence is of form 1,3. Then c[i + 1] is
a tory which has just risen by 1; so by the same argument as above, none of the letters to



646 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
its right can be tories. It follows that c[i + 1] is the only letter to the right of c[i] that can
be a tory. �

Aside from the variables i (the pivot) and Odd, we keep three other variables for the
sake of efficiency: MN = min(i), MX = max(i) and M0 = n + m− k(m+ 1) (since MX =
M0 + ki). The array element s[i] is 0 if c[i] is at its first or last value, and otherwise s[i]
is positive if c[i] is rising and negative if it is falling and its absolute value is equal to
last(i) − min(i) + 1. Initially e[j ] = j for 0 � j � m and s[j ] = p[j ] = 0 for 1 � j � m

because only c[1] can start by being a tory. If n = m(k − 1), then c[j ] = j for 1 � j � m;
otherwise c[j ] = j + 1 for 1 � j � m. Finally, Odd = 0 unless n = m(k − 1) + 1 because

Procedure Next
i:=e[m];
if i=1 then MN:=1 else MN=c[i-1]+1 end if; {MN is the minimum value of c[i]}
MX:=M0+k*i; { MX is the maximum value of c[i]}
if s[i]=0 then { c[i] is at its first value }

p[i]:=Odd; { parity of total number of tories }
s[i]:=1; {c[i] starts rising unless it starts at max(i)}
if c[i]=MX then p[i]=1-p[i]; s[i]:=-s[i] end if; {one of these tories is not to c[i]’s left}
if (k=2) and (i<m) and (c[i+1]=MX+2) then p[i]=1-p[i] end if {see above comment}

end if;
if s[i]>0 then { c[i] is rising }

if c[i]=MN then {MN is taken and c[i] can’t end there}
s[i]:=2

else
if (c[i]=MN+1) and (s[i]=2) then {MN+1 is also taken}

s[i]:=3
end if

end if;
if (c[i] mod 2 = p[i]) and (c[i]<MX-1) then

c[i]:=c[i]+2
else

c[i]:=c[i]+1
end if;
if c[i]=MX then Odd:=1-Odd; s[i]:=-s[i] end if {one more tory}

else { c[i] is falling }
if c[i]=MX then Odd:=1-Odd end if; {one fewer tory}
if (c[i] mod 2 �= p[i]) and (c[i]>MN+1) then

c[i]:=c[i]-2
else

c[i]:=c[i]-1
end if

end if;
e[m]:=m; {beginning to update Ehrlich array}
if c[i]+s[i]=MN-1 then {c[i] is at its last value}

s[i]:=0; {c[i] will be at its first value the next time i is the pivot}
e[i]:=e[i-1]; e[i-1]:=i-1

end if
end Next.

Fig. 2. A loop-free implementation of a two-close Gray code for k-suffixes (k � 2).



V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648 647
in this case c[1] starts at max(1) = 2. The main program processes the current array c and
calls the procedure Next, shown in Fig. 2, as long as the pivot e[m] does not drop below
the smallest index of an array element that can change value. If n > m(k − 1), then the
execution terminates when e[m] drops to 0. If n = m(k − 1), then c[1] is always 1; so the
execution terminates when e[m] drops to 1.

This algorithm has been implemented in C and tested. For k = 2, n = m = 5, it gave the
following list of 1-vectors of length 10 binary Dyck words: 12345, 12346, 12348, 12349,
12347, 12367, 12368, 12369, 12379, 12378, 12358, 12359, 12357, 12356, 12456, 12458,
12459, 12457, 12467, 12468, 12469, 12479, 12478, 12578, 12579, 12569, 12568, 12567,
13567, 13568, 13569, 13579, 13578, 13478, 13479, 13469, 13468, 13467, 13457, 13459,
13458, 13456.

4. The case when k = 1

As announced in the introduction, we have found the first two-close Gray code for
k-suffixes, a generalization of k-ary Dyck words, and given it a loop-free implementa-
tion for every k � 2. For k = 1 the list of suffixes is not strictly partitioned; but there
already exist two two-close Gray codes for 1-suffixes (combinations), Ruskey’s [15] and
Chase’s [3], and Chase provided a loop-free implementation of his Gray code in 0-vector
form as a FORTRAN program that requires no auxiliary array. The reader is invited to
examine Fig. 1, compare Chase’s Gray code with Ruskey’s (the similarity is not quite
as obvious when n is odd) and try to obtain a non-recursive description of Chase’s Gray
code in 0-vector form as a suffix-partitioned list. In [19] we present a non-recursive de-
scription of both Chase’s and Ruskey’s Gray codes in 0-vector form as suffix-partitioned
lists, provide a pseudocode for our implementation of Chase’s Gray code and prove that
our non-recursive description of Ruskey’s Gray code is equivalent to his recursive one. To
prove that our description of Chase’s Gray code is equivalent to his FORTRAN program
we had to trace every path in his program. Such a proof is too tedious to be included even in
a technical report; however a rough outline is available from the second author on request.

Note added in proof

A complete proof (in French), obtained by the second author’s M.Sc. student Mohamed
Abdo after the acceptance of this article, is also available.

References

[1] J.R. Bitner, G. Ehrlich, E.M. Reingold, Efficient generation of the binary reflected Gray code and its appli-
cations, Comm. ACM 19 (1976) 517–521.

[2] B. Bultena, F. Ruskey, An Eades–McKay algorithm for well-formed parentheses strings, Inform. Process.
Lett. 68 (1998) 255–259.

[3] P. Chase, Combination generation and graylex ordering, in: Proceedings of the 18th Manitoba Conference
on Numerical Methods and Computing, Winnipeg, 1988, Congressus Numerantium 19 (1989) 215–242.



648 V. Vajnovszki, T. Walsh / Journal of Discrete Algorithms 4 (2006) 633–648
[4] P. Eades, B. McKay, An algorithm for generating subsets to fixed size with a strong minimal interchange
property, Inform. Process. Lett. 19 (1984) 131–133.

[5] G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other combinatorial config-
urations, J. ACM 20 (1973) 500–513.

[6] F. Gray, Pulse code communication, U.S. Patent 2 632 058, March 17, 1953.
[7] T.A. Jenkyns, D. McCarthy, Generating all k-subsets of {1, . . . , n} with minimal changes, Ars Combinato-

ria 40 (1995) 153–159.
[8] D.A. Klarner, Correspondences between plane trees and binary sequences, J. Combin. Theory 9 (1970)

401–411.
[9] G. Labelle, Une nouvelle démonstration combinatoire des formules d’inversion de Lagrange, Adv. Math. 42

(1981) 217–247.
[10] C.N. Liu, D.T. Tang, Algorithm 452, Enumerating M out of N objects, Comm. ACM 16 (1973) 485.
[11] J.M. Pallo, R. Racca, A note on generating binary trees in A-order and B-order, Internat. J. Comput.

Math. 18 (1) (1985) 27–39.
[12] D. Roelants van Baronaigien, A loopless Gray-code algorithm for listing k-ary trees, J. Algorithms 35 (2000)

100–107.
[13] F. Ruskey, Generating t -ary trees lexicographically, SIAM J. Comput. 7 (1978) 424–439.
[14] F. Ruskey, Adjacent interchange generation of combinations, J. Algorithms 9 (1988) 162–180.
[15] F. Ruskey, Simple combinatorial Gray codes constructed by reversing sublists, in: Lecture Notes in Comput.

Sci., vol. 762, Springer, Berlin, 1993, pp. 201–208.
[16] F. Ruskey, A. Proskurowski, Generating binary trees by transpositions, J. Algorithms 11 (1990) 68–84.
[17] V. Vajnovszki, A loopless algorithm for generating the permutations of a multiset, Theoret. Comput. Sci. 307

(2003) 415–431.
[18] V. Vajnovszki, http://www.u-bourgogne.fr/v.vincent.
[19] V. Vajnovszki, T.R. Walsh, A loopless two-close Gray-code algorithm for listing k-ary Dyck words, Rapport

de recherche No. 03-01, Département d’Informatique, Université du Québec à Montréal, March 2003.
[20] T.R. Walsh, Generation of well-formed parenthesis strings in constant worst-case time, J. Algorithms 29

(1998) 165–173.
[21] T.R. Walsh, Gray codes for involutions, JCMCC 36 (2001) 95–118.
[22] T.R. Walsh, Generating Gray codes in O(1) worst-case time per word, in: DMTCS 2003, in: Lecture Notes

in Comput. Sci., vol. 2731, Springer, Berlin, 2003, pp. 73–88, Invited paper.
[23] E.T. Whittaker. G.N. Watson, A Course of Modern Analysis, Cambridge, 1940.
[24] S. Zaks, Generation and ranking of k-ary trees, Inform. Process. Lett. 14 (1982) 44–48.

http://www.u-bourgogne.fr/v.vincent

	A loop-free two-close Gray-code algorithm for listing k-ary Dyck words
	Introduction
	A two-close Gray code for k-suffixes
	A loop-free implementation when k>=2
	The case when k=1
	Note added in proof
	References


